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Tourette syndrome (TS) is a neurodevelopment disorder characterized by motor
and phonic tics. We investigated the topological alterations in pediatric TS using
morphological topological analysis of brain structures. We obtained three-dimensional
T1-weighted magnetic resonance imaging (MRI) sequences from 59 drug-naïve
pediatric patients with TS and 87 healthy controls. We identified morphological
topographical alterations in the brains of patients with TS compared to those of the
healthy controls via GRETNA software. At the global level, patients with TS exhibited
increased global efficiency (Eglob) (p = 0.012) and decreased normalized characteristic
path length (λ) (p = 0.027), and characteristic path length (Lp) (p = 0.025) compared
to healthy controls. At the nodal level, we detected significant changes in the nodal
betweenness, nodal degree, and nodal efficiency in the cerebral cortex-striatum-
thalamus-cortex circuit. These changes mainly involved the bilateral caudate nucleus,
left thalamus, and gyri related to tics. Nodal betweenness, nodal degree, and nodal
efficiency in the right superior parietal gyrus were negatively correlated with the motor
tic scores of the Yale Global Tic Severity Scale (YGTSS) (r = −0.328, p = 0.011;
r = −0.310, p = 0.017; and r = −0.291, and p = 0.025, respectively). In contrast,
nodal betweenness, nodal degree, and nodal efficiency in the right posterior cingulate
gyrus were positively correlated with the YGTSS phonic tic scores (r = 0.353, p = 0.006;
r = 0.300, p = 0.021; r = 0.290, and p = 0.026, respectively). Nodal betweenness in
the right supplementary motor area was positively correlated with the YGTSS phonic tic
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scores (r = 0.348, p = 0.007). The nodal degree in the right supplementary motor area
was positively correlated with the YGTSS phonic tic scores (r = 0.259, p = 0.048).
Diagnosis by age interactions did not display a significant effect on brain network
properties at either the global or nodal level. Overall, our findings showed alterations in
the gray matter morphological networks in drug-naïve children with TS. These findings
enhance our understanding of the structural topology of the brain in patients with TS
and provide useful clues for exploring imaging biomarkers of TS.

Keywords: magnetic resonance imaging, morphological topology, Tourette’s syndrome, children, gray matter

INTRODUCTION

Tourette syndrome (TS) is a neurodevelopmental disorder
characterized by multiple motor tics and at least one vocal tic
present for greater than 1 year (American Psychiatric Association
[APA], 2013). The symptoms wax and wane in frequency
(American Psychiatric Association [APA], 2013). The age of
onset is before 18 years (American Psychiatric Association [APA],
2013). Motor tics start at the age of 3–8 years, while phonic
tics can begin as early as 3 years, but typically they follow the
onset of motor tics by several years (Leckman and Cohen, 1999;
Leckman, 2002). Some symptoms gradually decrease with age,
whereas others persist into adulthood. TS may be comorbid with
autism spectrum disorder (ASD), obsessive-compulsive disorder
(OCD), attention deficit hyperactivity disorder (ADHD), or other
mental disorders. The symptoms of TS are complex, recurrent,
difficult to treat, and are often accompanied by a variety of
behavioral disorders, which greatly impact children’s ability to
learn, live, and interact socially (Robertson, 2000). The neural
mechanisms, by which tics arise, are not fully understood. The
pathogenesis of TS remains unclear, and genetic defects can
lead to neuroanatomical abnormalities and neurobiochemical
dysfunction. Most scholars speculate that the disease is related
to neuronal dysfunction in the basal ganglia, prefrontal lobe, and
limbic system, and its onset is related to various factors, such
as psychiatric, environmental, genetic, and epigenetic factors,
as well as embryonic development and infections, biochemical
metabolism, and improper medication. Dysregulation of the
actions of brain dopamine and 5-hydroxytryptamine and their
interactions are currently considered to be related to tics, and
abnormalities in the cerebral cortex-striatum-thalamus-cortex
(CSTC) circuit are associated with the development of TS
(Leckman, 2002).

In recent years, MRI has rapidly developed. It is non-
invasive and has a high temporal and spatial resolution. MRI
can provide physiopathological information at multiple levels,
from macroscopic tissue morphology to microscopic subcellular
structures, from blood flow and energy metabolism to functional
changes in brain regions for the diagnosis, prediction, treatment,
and evaluation of diseases. The development of multimodal
neuroimaging with MRI has provided an opportunity to achieve
a breakthrough in elucidating the neurological mechanisms of
neuropsychiatric disorders and to explore objective indicators
for clinical diagnosis and treatment (Gong, 2020). This provides
strong technical support for investigating the structure and

function of the brain. Several studies have explored structural
brain imaging changes in patients with TS compared to those
of healthy controls. Kong et al. (2020) conducted a surface-
based study and detected alterations in cortical thickness, sulcus,
cortical curvature, and local gyrification index in 52 patients
with TS compared with those structures in 52 healthy controls.
Greene et al. conducted a study on altered gray matter and white
matter in 103 children with TS and 103 healthy controls. They
observed an increase in the volume of the gray matter of the
posterior thalamus, hypothalamus, and midbrain and a decrease
in the volume of the white matter bilaterally in the orbital and
medial prefrontal cortex using the voxel-based morphometry
approach (Greene et al., 2017). Draper et al. (2016) reported
that premonitory sensory phenomena are negatively related to
the thicknesses of the insula and sensorimotor cortex. White
matter abnormalities of the cortical-striatal-pallido-thalamic
were explored in a study by Worbe et al. (2015) and they
determined that there was an increase in the brain volume in the
thalamus and right cingulum bundle. A decrease in white matter
volume in the right frontal pole was reported by Liu et al. (2013),
and brain volume changes were observed in the bilateral frontal
and left temporal lobes. A reduction in gray matter volume in the
bilateral frontal lobe and cingulum was reported by Draganski
et al. (2010). Müller-Vahl et al. (2009) detected both gray matter
volume and white matter volume reductions in the frontal lobe.
Increases were found in the left middle frontal gyrus and left
sensorimotor areas. The YGTSS scores were negatively correlated
with the gray matter volume.

The aforementioned studies demonstrated gray and white
matter alterations in brain regions involved CSTC in pediatric
patients with TS. However, there have been no structure-
based topological analyses on TS in children. A novel approach
called structural covariance network (SCN) analysis has been
utilized for brain structure analysis in 3D T1-weighted imaging
(Seidlitz et al., 2018; Sun et al., 2018). The analysis was
performed using structural brain data to construct a structural
network with correlations (He et al., 2007; Alexander-Bloch
et al., 2013). The analysis was performed using structural brain
data to construct correlations between structural networks.
It is a useful tool for morphological topological analysis of
the brain (Tijms et al., 2012). We aimed to explore the
morphological topological alterations in the gray matter of
pediatric patients with TS. This study hypothesized that gray
matter morphological topology differed in pediatric patients with
TS from healthy controls.
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MATERIALS AND METHODS

Participants
Participants were recruited from July 2015 to June 2020 at
West China Second University Hospital, Sichuan University.
This study was approved by the Ethics Committee of the
West China Second University of Sichuan University. The legal
guardians of all pediatric patients provided written informed
consent. A total of 59 pediatric and adolescent patients with TS
were recruited from West China Second University Hospital,
Sichuan University. The diagnosis criteria of pediatrics were
made according to the Diagnostic and Statistical Manual of
Mental Disorders-5 (DSM-V) (American Psychiatric Association
[APA], 2013). The DSM-V criteria for Tourette disorder are as
follows (American Psychiatric Association [APA], 2013): (i) both
multiple motor and one or more vocal tics were present at some
time during the illness, though not necessarily concurrently (a tic
is a sudden, rapid, recurrent, non-rhythmic, stereotyped motor
movement, or vocalization); (ii) the tics may wax and wane in
frequency, but have persisted for more than 1 year since the onset
of the first tic; (iii) onset occurred before 18 years of age; and (iv)
the disturbance is not due to the direct physiological effects of
a substance (e.g., cocaine) or a general medical condition (e.g.,
Huntington’s disease or post-viral encephalitis). The exclusion
criteria were as follows: (1) concomitant with other neurological,
psychiatric, or metabolic diseases; (2) MRI scans indicated
structural or signal abnormalities of intracranial lesions; (3)
claustrophobia or otherwise unsuitable for MRI scans; and (4)
medication used for TS treatment. Initially, 85 patients with TS
were recruited. Fourteen patients with TS were concomitant with
ADHD. Three patients with TS were concomitant with OCD.
No patient with TS were concomitant with OCD and ADHD
or ASD. One of the patients with TS had a combination of
abnormal thyroid function. Six patients were excluded because
of image quality issues. Two patients fail to persist through the
examination. All above 26 patients were excluded. Finally, 59
patients with TS were included in this study.

A total of 87 age- and gender-matched healthy pediatric
controls participated in this study. The exclusion criteria were as
follows: (1) neurological, psychiatric, or other metabolic diseases;
(2) MRI scans indicated structural or signal abnormalities of
intracranial lesions; (3) claustrophobia or otherwise unsuitable
for MRI scans; and (4) a history of mental disorders.

Data Acquisition
Clinical data are collected using a standardized process for
assessment and collection by clinicians. All the participants are
drug- naïve.

Imaging data were collected from pediatric patients with
TS and healthy controls (HCs). All participants were scanned
using 1.5T MRI and 3D T1 structural images were obtained.
The scan parameters for T1-weighted imaging were as
follows: echo time = 4.6 ms; repetition time = 9.6 ms; flip
angle = 8◦; slice thickness = 1 mm; no interslice gap; voxel
size = 0.8 × 0.8 × 0.6 mm3; field of view = 240 mm × 240 mm;
and matrix size = 256 × 256. The total number of slices was 162.

Data Preprocessing
Magnetic resonance images were evaluated by two expert
radiologists (YL and HQ with 11 years and 16 years of MRI
diagnosis experience, respectively) for artifacts, structural, or
signal abnormalities, and 6 subjects were excluded from the
study. Routine image processing, such as spatial smoothing
and spatial normalization, was performed using the Statistical
Parametric Mapping (SPM) software package (version 121) for
voxel-based morphometry (VBM) analysis (Ashburner et al.,
2000). Specifically, tissue segmentation was performed with
structural images (Ashburner and Friston, 2005) and the
segmented gray matter (GM) of each subject was non-linearly
co-registered to the generated study-specific template using
Diffeomorphic Anatomical Registration Through Exponentiated

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

TABLE 1 | Demographic characteristics of patients with Tourette’s syndrome (TS)
and healthy controls (HCs).

Characteristics Tourette’s syndrome Healthy control

Mean SD Mean SD P-value

Age (years) 7.97 1.91 8.67 2.63 0.136

Education (years) 2.24 1.70 2.89 1.72 0.642

Gender (Male/Female) 36/23 NA 48/39 NA 0.483

Age at onset (years) 5.38 2.79 NA NA NA

Disease duration (month) 23.00 21.42 NA NA NA

Total YGTSS score 22.84 7.56 NA NA NA

Total motor tic score 13.96 4.32 NA NA NA

Total phonic tic score 8.88 4.60 NA NA NA

TABLE 2 | Regions showing altered node centrality (including nodal betweenness,
nodal degree, and nodal efficiency) in patients with TC and HCs.

Brain regions P-values

Nodal betweenness Nodal degree Nodal efficiency

TS > HC

SMA.R 0.0371* 0.0006* 0.0006*

ORBsupmed.R 0.0645 0.0027* 0.0080

PCG.R 0.3837 0.0002* 0.0002*

SOG.L 0.0022* 0.0002* 0.0004*

CAU.L 0.0073 0.0024* 0.0025

CAU.R 0.1313 0.0024* 0.0043

THA.L 0.0002* 0.0004* 0.1222

TS < HC

ORBinf.R 0.0022* 0.0159 0.1013

SPG.R 0.0002* 0.0041* 0.0621

TROsup.R 0.0031* 0.0020* 0.0039

*Significant differences with FDR correction were applied to each nodal measure.
A permutation test was conducted to get the p-values. CAU, caudate nucleus;
HC, healthy control; L, left; ORBinf, inferior frontal gyrus, orbital part; ORBsupmed,
superior frontal gyrus, medial orbital; PCG, posterior cingulate gyrus; R, right;
SMA, supplementary motor area; SOG, superior occipital gyrus; SPG, superior
parietal gyrus; THA, thalamus; TPOsup, temporal pole: superior temporal gyrus;
TS, Tourette’s syndrome.
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FIGURE 1 | The significant alternations of nodal betweenness (A–C), nodal degree (D–F), and nodal efficiency (G–I) of gray matter (GM) in pediatric Tourette
syndrome and healthy controls. CAU, caudate nucleus; HC, healthy control; L, left; ORBinf, inferior frontal gyrus, orbital part; ORBsupmed, superior frontal gyrus,
medial orbital; PCG, posterior cingulate gyrus; R, right; SMA, supplementary motor area; SOG, superior occipital gyrus; SPG, superior parietal gyrus; THA, thalamus;
TPOsup, temporal pole: superior temporal gyrus; TS, Tourette syndrome.

Lie Algebra (DARTEL) software (Ashburner, 2007). Co-
registered images were then transformed to the standard
Montreal Neurological Institute (MNI) space, the same space as
the brain parcellation, modulated by the Jacobian determinants
derived from the spatial normalization to preserve tissue volume
after warping, resampled to a 2-mm isotropic resolution, and
finally smoothed using a Gaussian kernel with a 6-mm full-width
half-maximum (FWHM).

Construction of Gray Matter
Morphological Networks
For each subject, the nodes of the GM network were defined
as the 90 cortical regions of interest (ROIs) (Tzourio-Mazoyer
et al., 2002) utilizing the automated anatomical labeling (AAL)
algorithm. The edges were defined as the Kullback–Leibler
divergence-based similarity (KLS) measurement (Kong et al.,

2014) of morphological distributions between different cortical
regions, which was previously described in detail (Kong et al.,
2014, 2015; Wang et al., 2016). Briefly, kernel density estimation
(KDE) (Wang et al., 2016) was used to estimate the probability
density functions (PDFs) of image intensities within each cortical
region from the AAL method, with the KDE bandwidths
estimated by Scott’s rule (Scott, 2015) using public Matlab codes
(function: kde2). The similarity of image intensity PDFs of
different cortical regions was quantified as the Kullback–Leibler
(KL) divergence, which is a probability theory index calculating
the differences between two probability distributions (Burnhan
and Anderson, 2002). KLS values range between 0 and 1, where 1
represents an identical distribution for the two regions. The KL-
based similarity values between all possible pairs of 90 cortical

2http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-
estimator
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FIGURE 2 | Scatter plots with 95% confidence interval (CI) of nodal brain network properties of different regions compared to YGTSS total scores (A) and sub
scores of motor tics (B–D) and phonic tics (E–H).

regions formed a 90×90 similarity matrix, in which each element
represents the similarity of morphological distributions between
two cortical regions.

The GM structural network properties were calculated using
the Matlab-based GRETNA software (Wang et al., 2015). This
method was sensitive in detecting the morphological topology
(e.g., He et al., 2009; Zhang et al., 2011). A wide range of the
sparsity (S) thresholds was set up with a wide range for each
correlation matrix. The range values of S were set to make sure
that the thresholded networks were measured for the small-
worldness with sparse properties and had the minimum number
of spurious edges (Watts and Strogatz, 1998). Consequently,
threshold values, ranging between 0.10 and 0.34 with an interval
of 0.01, were used. All global and nodal network metrics were
measured at each sparsity value. For each network metric,
the area under the curve (AUC) was calculated to reflect
measures across the sparsity parameter S. Nodes with statistically
significant differences in network efficiency of local brain regions
between the two groups of subjects were visualized using the
BrainNet Viewer software (Version 1.63).

At the global level, global efficiency (Eglob), characteristic
path length (Lp), normalized characteristic path length (λ),
clustering coefficient (Cp), normalized clustering coefficient
(γ), and small-worldness (σ) were calculated. At the nodal
level, the nodal degree, nodal efficiency (Eloc), and nodal
betweenness were computed (Rubinov and Sporns, 2010). Briefly,
Cp reflects the local interconnectivity extent. Lp measures the
average distance or routing efficiency between any pair of
network nodes, with higher values indicating lower routing
efficiency. Small-world attributes (γ, λ, and σ) indicate the
degree of organization of the small world. Eglob indicates
the global efficiency of parallel information transfer in the
network. Eloc reflects the communication efficiency among
the first neighbors of a node. The nodal degree reflects the

3https://www.nitrc.org/projects/bnv/

capacity to communicate information. The nodal efficiency
indicates the nodal efficiency of parallel information transfer.
The nodal betweenness centrality means the influence of a node
over information flow between other nodes in the network.
Detailed information on these metrics was previously provided
(Rubinov and Sporns, 2010).

STATISTICAL ANALYSIS

Group comparisons of demographic and clinical data were
conducted using IBM SPSS software (IBM SPSS Statistics for
Windows, Version 24.0, IBM Corp., Armonk, NY, United States).
Two-tailed independent-sample t-tests and chi-square tests were
performed. The threshold was set at P < 0.05.

A non-parametric substitution test was used for
morphological topology metric comparison analysis (e.g.,
Zhang et al., 2011; Lei et al., 2015). The AUC of each network
metric was calculated across the S values to determine differences.
All values were randomly reclassified into two groups, and the
mean difference between the two groups was calculated for each
network metric for multiple comparisons. This randomization
procedure was repeated 10,000 times. The 95th percentile of
each distribution was used as the threshold for significance
testing. In addition, the Benjamini–Hochberg procedure was
used to test for nodal centrality and to correct for multiple
comparisons by controlling for false discovery rate (FDR)
(Benjamini et al., 2001).

As children’s brains are undergoing development, we
proposed to analyze the age and diagnosis interaction effect. This
analysis used a general linear model to examine the interaction
effects of the network with age and diagnosis at global and node
levels. In this analysis, gender and years of education were used
as covariates, diagnosis, and age and the interaction of diagnosis
and age were the dependent variables. The results were corrected
for FDR, setting P < 0.05, as the threshold. We also analyzed
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the correlation between the morphological metrics and clinical
data. For the global and nodal attributes, where differences were
detected earlier, correlation analysis was performed with the
clinical scale separately. The above analysis was conducted by the
IBM SPSS software (version 24.0).

RESULTS

Clinical Information
The basic clinical information and YGTSS scores are shown in
Table 1. Age and sex were matched between the TS and HCs
(p > 0.05).

Brain Network Properties Alterations
Compared to HCs, patients with TS indicated a significant
increase in Eglob (p = 0.012) and a decrease in λ (p = 0.027) and
Lp (p = 0.025). Increased Eglobal means increased global efficiency
of parallel information transfer in the network, lower Lp values
indicate higher routing efficiency. No significant differences were
identified in the Eloc (p = 0.063), Cp (p = 0.217), γ (p = 0.267), or
σ (p = 0.435). The p-value has been FDR corrected.

Differences in Nodal Brain Network
Metrics
The nodal betweenness, nodal degree, and nodal efficiency
differences are presented in Table 2. The significantly different
regions included the right frontal lobe, right temporal lobe, right
parietal lobe, right post-cingulum, bilateral caudate nucleus, and
left thalamus (Figure 1).

Relationships Between Topological
Metrics and Clinical Data
Nodal betweenness, nodal degree, and nodal efficiency in the
right superior parietal gyrus were negatively correlated with
the motor tics scores of the YGTSS (r = −0.328, p = 0.011;
r = −0.310, p = 0.017; r = −0.291, and p = 0.025, respectively).
Nodal betweenness, nodal degree, and nodal efficiency in the
right posterior cingulate gyrus were positively correlated with
the YGTSS phonic tics scores (r = 0.353, p = 0.006; r = 0.300,
p = 0.021; r = 0.290, and p = 0.026, respectively). Nodal
betweenness in the right supplementary motor area was positively
correlated with the YGTSS phonic tics scores (r = 0.348,
p = 0.007). The nodal degree in the right supplementary motor
area was positively correlated with the YGTSS phonic tics scores
(r = 0.259, p = 0.048). The correlations were exhibited in
Figure 2. The metrics of the structural connectome of the sparsity
threshold were shown in Figure 3.

Age and Diagnosis Interaction on
Network Properties
The Eglob, λ, Lp revealed no significant main effect of age and
diagnosis interaction at the global level. At the nodal level,
our findings revealed no significant main effect of diagnosis-by-
age interaction on nodal betweenness, nodal degree, or nodal
efficiency (Table 3).

FIGURE 3 | The metrics of the structural connectome of the sparsity threshold
in global efficiency (A), local efficiency (B), normalized characteristic path
length (λ) (C), clustering coefficient (Cp) (D), characteristic path length (Lp) (E),
normalized clustering coefficient (γ) (F), small-worldness (σ) (G), respectively.
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TABLE 3 | Linear modeling of age effects on node-level average controllability in drug-naïve patients with TS and HCs.

Source Dependent variable Type III sum source of squares df Mean square F value P-value

Diagnosis*age Eglob 1.25E-06 1 1.254E-6 0.363 0.548

Eloc 9.67E-07 1 9.674E-7 0.119 0.730

Cp 3.53E-06 1 3.529E-6 0.353 0.553

γ 3.92E-05 1 3.922E-5 0.027 0.869

λ 7.26E-05 1 7.260E-5 3.294 0.072

Lp 3.34E-05 1 3.342E-5 0.301 0.584

Nodal betweenness in ORBinf.R 1.020 1 1.020 0.018 0.895

Nodal betweenness in SMA.R 269.783 1 269.783 1.779 0.184

Nodal betweenness in SOG.L 11.679 1 11.679 0.039 0.844

Nodal betweenness in SPG.R 8.774 1 8.774 0.094 0.759

Nodal betweenness in TPOsup.R 93.188 1 93.188 0.487 0.486

Nodal degree in SMA.R 1.221 1 1.221 0.702 0.404

Nodal degree in ORBsupmed.R 4.325 1 4.325 0.753 0.387

Nodal degree in PCG.R 0.050 1 0.050 0.505 0.479

Nodal degree in SOG.L 0.015 1 0.015 0.005 0.946

Nodal degree in SPG.R 0.042 1 0.042 0.044 0.834

Nodal degree in CAU.L 0.678 1 0.678 0.800 0.373

Nodal degree in CAU.R 1.656 1 1.656 1.610 0.207

Nodal degree in TPOsup.R 2.082 1 2.082 0.891 0.347

Nodal efficiency in SMA.R 5.836E-5 1 5.836E-5 0.401 0.528

Nodal efficiency in PCG.R 0.000 1 0.000 0.436 0.510

Nodal efficiency in SOG.L 1.985E-6 1 1.985E-6 0.008 0.931

CAU, caudate nucleus; HC, healthy control; L, left; ORBinf, inferior frontal gyrus, orbital part; ORBsupmed, superior frontal gyrus, medial orbital; PCG, posterior cingulate
gyrus; R, right; SMA, supplementary motor area; SOG, superior occipital gyrus; SPG, superior parietal gyrus; THA, thalamus; TPOsup, temporal pole: superior temporal
gyrus; TS, Tourette’s syndrome. *Means the interaction effect of age and diagnosis.

DISCUSSION

This study explored gray matter topological alterations in drug-
naïve pediatric patients with TS. Patients with TS showed a
significant increase in Eglobal and a decrease in λ and Lp.
Altered nodal characteristics were observed, some of which
were correlated with the YGTSS total scores, phonic tics
scores, and motor tics scores. Nodal characteristic metrics are
mainly involved in the cortex-striatum-thalamus-cortex (CSTC)
circuit. This result is consistent with the results of previous
structural studies. Furthermore, this result explores the structural
abnormalities from a topological perspective.

The function of the supplementary motor area (SMA) is to
control movement (Chen et al., 2010). The SMA can produce
complex movement synergies and vocalizations. In the present
study, the YGTSS total score was positively correlated with
the nodal degree in the right SMA. In addition, phonic tics
scores were positively correlated with nodal betweenness in the
right SMA. The total tic severity increased as the nodal degree
increased, and the phonic tic severity increased as the nodal
betweenness increased. The nodal degree indicates the ability of
information communication, and the nodal betweenness reflects
the interaction between a node and the surrounding nodes.
SMA plays a role in maintaining postural stability and physical
coordination (Fujimoto et al., 2014). The SMA is closely linked
to the basal ganglia. The SMA projects to both the presenter’s
motor cortex and spinal cord (Tanji, 1994). Therefore, the SMA

may be associated with motor tic and compulsive behaviors
in TS (Tübing et al., 2018). Studies with probabilistic fiber
tractography revealed reduced connectivity between the SMA
and basal ganglia, as well as between frontal cortico-cortical
circuits (Cheng et al., 2013) in patients with TS.

In this study, we found that nodal betweenness and nodal
degree increased in the left thalamus of patients with TS.
Previous structural studies showed an increased volume of
the thalamus in both adults and children with TS (Miller
et al., 2010). In patients with TS, the altered volume of the
thalamus may be related to compensatory mechanisms related
to its control of twitching and the formation of overactive
motor circuits (Greene et al., 2017). The thalamus is the
core nucleus that connects the peripheral tissues, is involved
in the interactions between the cortical connections, and
accelerates the synchronous oscillatory activity of the functional
areas of the cortex (Benarroch, 2015). Convulsions may be
related to the CSTC circuit (Draper et al., 2016). Studies have
suggested that thalamic-striatal projections may act as positive
reinforcement for striatal neurons, which have behaviorally
selected roles. They monitor “top-down” control by modulating
the activity of cortico-basal ganglia loops (Kimura et al., 2004;
Smith et al., 2004).

We observed that nodal degree and nodal efficiency increased
in the right posterior cingulate gyrus in patients with TS.
The posterior cingulate gyrus is metabolically active and
has extensive connections with surrounding brain regions
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(Leech and Sharp, 2014). It is temporally and spatially associated
with common activities. The cingulate gyrus is a component
of the limbic lobe and is associated with emotion, learning,
and memory. The posterior cingulate gyrus amplifies tic
impulses more than inhibits them. Structural MRI showed
cortical thinning and/or below-normal volume in the
cingulate cortex, correlating with tic severity. Moreover,
in the posterior middle cingulate cortex, dorsal posterior
cingulate cortex, and ventral posterior cingulate cortex, cortical
thickness is a candidate biomarker shared across siblings
with TS (O’Neill et al., 2019). This study indicated the
right posterior cingulate gyrus played an essential role in
topological perspective.

In this study, the nodal degree increased in the bilateral
caudate nucleus in the TS group compared with that in the
healthy controls. The caudate nucleus is part of the striatum,
and its role includes correlating motor behavior with spatial
information, as well as limb posture maintenance, speed, and
accuracy of directed movements (Takakusaki et al., 2004; Turner
and Desmurget, 2010). A previous study showed caudate nucleus
volume reduction in both adults and children with TS (Gerard
and Peterson, 2003). Our study showed a nodal degree alteration
may result in tics.

The nodal betweenness and nodal degree in the superior
parietal lobule were lower in patients with TS than in
those of healthy controls. Motor tics scores were positively
correlated with nodal betweenness, degree, and efficiency in
the superior parietal lobule. The superior parietal lobule
is involved in spatial orientation, which may be related
to the tics. Generally, the nodal brain network properties
were in the circuit.

While previous studies have explored brain structural
abnormalities in TS from a structural perspective, our
study explored structural topological alterations in TS. Brain
structural abnormalities underlie the altered brain topology.
Our study is consistent with previous structural studies
that have identified altered brain structure topology in
the CSTC circuit.

As the brain develops in children, diagnosis and age
interaction analyses were conducted. The results showed no
significant main effect of diagnosis-by-age interactions on
the global or nodal brain network properties. Therefore, the
changes in the global or nodal brain network properties
between the patients with TS and healthy controls were
not related to age.

CONCLUSION

Using a novel gray matter morphological topology method and a
moderate patient group, we showed alterations in global or nodal
brain topological properties in patients with TS compared with
those of healthy controls. The nodal brain network properties are
included in the CSTC circuit. These alterations were not affected
by age of the developing brains of children.
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