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ABSTRACT Mathematical models of meiosis that relate offspring to parental genotypes through parameters such as meiotic
recombination frequency have been difficult to develop for polyploids. Existing models have limitations with respect to their analytic
potential, their compatibility with insights into mechanistic aspects of meiosis, and their treatment of model parameters in terms of
parameter dependencies. In this article I put forward a computational approach to the probabilistic modeling of meiosis. A computer
program enumerates all possible paths through the phases of replication, pairing, recombination, and segregation, while keeping track
of the probabilities of the paths according to the various parameters involved. Probabilities for classes of genotypes or phenotypes are
added, and the resulting formulas are simplified by the symbolic-computation system Mathematica. An example application to
autotetraploids results in a model that remedies the limitations of previous models mentioned above. In addition to the immediate
implications, the computational approach presented here can be expected to be useful through opening avenues for modeling a host
of processes, including meiosis in higher-order ploidies.

MEIOTIC recombination is the exchange of chromo-
somal regions between homologous chromosomes

during meiosis, a specialized type of cell division in sexually
reproducing eukaryotes (Lao and Hunter 2010; Lichten and
De Massy 2011; Pradillo and Santos 2011). Meiotic recom-
bination ensures the proper segregation of chromosomes
through the formation of crossovers between interhomolo-
gous DNA strands (Lichten and De Massy 2011) and in-
creases genetic diversity among offspring (Yanowitz 2010).

Polyploidy is the accumulation of additional complete
sets of chromosomes and is widespread among flowering
plants, including important crop species (Brownfield and
Köhler 2011; Jackson et al. 2011). While evidence that poly-
ploidy has promoted speciation or morphological diversifi-
cation is lacking (Otto 2007), the possibility has been
acknowledged (Comai 2005; Otto 2007), and it has recently
been suggested that increased rates of meiotic recombination

might have contributed to the evolutionary success of poly-
ploid plants (Pecinka et al. 2011).

Tetraploids are generally classified as allotetraploids or
autotetraploids. Allotetraploids such as Arabidopsis suecica
(Pecinka et al. 2011) are derived from two different (dip-
loid) species (Brownfield and Köhler 2011) and are tradi-
tionally considered to show pairing between homologous
chromosomes only, although pairing between homeologous
chromosomes may occur (Yang et al. 2013). Autotetraploid
genomes are derived from a single species (Brownfield and
Köhler 2011) and generally show no pairing preference
among the four homologous chromosomes, although again
preferential pairing might occur (R. Wu et al. 2001).

Mathematical models of meiosis that relate the genotypes
of offspring to those of their parents at single- or multiple-
marker locations through parameters such as the meiotic
recombination frequency between a marker pair are easily
formulated for diploids and allopolyploids, but have been
difficult to develop for autopolyploids. The difficulties lie in
the more complex meiosis in autopolyploids, in which not
only bivalents are formed—pairs of homologous chromo-
somes, parts of which are then exchanged later through
crossovers—but possibly also higher-order valents such as
quadrivalents. In quadrivalents, each chromosomal region
is still paired with only one other chromosome, but pairing
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Figure 1 (A–E) Models of meiotic recombination in diploids and autotetraploids. The left column shows diploids and the right column tetraploids. (A)
Replication of chromosomes. (B) Pairing of chromosomes into bivalents (diploids, tetraploids) and quadrivalents (tetraploids). (C) Recombination of
paired chromosomes. See also Figure 2. (D) Distribution of (possibly) recombined chromosomes into gametes. (E) Crossing of gametes into seeds.
Shaded circles show overall numbers of possibilities in that step. 1, p, p1, and p2 on the left sides of steps denote probabilities from previous steps.
Formulas on the right sides of steps denote probabilities up to and including the current step. Alternatives are separated by vertical bars in square
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partners can switch in a position-dependent manner. Such
pairing-partner switches can lead to the phenomenon of
double reduction, in which homologous segments of sister
chromatids—“sister factors” (Levings and Alexander
1966)—end up in the same gamete (Mather 1935; Haynes
and Douches 1993). Double reduction of a locus requires
homologous chromosomes to form a quadrivalent and a re-
combination between the locus and the centromere (Mather
1936; Luo et al. 2004). Estimates of coefficients of double
reduction can provide insights into the extent of quadriva-
lent formation (see, e.g., Wang and Luo 2012), and esti-
mates of the recombination frequency r are necessary for
the construction of genetic maps (see, e.g., Ripol et al.
1999).

In 1947, Fisher described 11 modes of tetraploid gamete
formation for two linked loci (Fisher 1947), but it was not
until over half a century later that frequencies of these gam-
ete types were expressed in terms of recombination and
double-reduction parameters under a tetrasomic model of
inheritance that takes the formation of quadrivalents into
account (S. S. Wu et al. 2001; Luo et al. 2004; Wu and
Ma 2005; Lu et al. 2012). The resulting sets of equations,
however, have at least three limitations: First, the models
are descriptive rather than analytical; that is, they do not
explain the probability distribution of gamete modes in
terms of biological (here meiotic) mechanisms; instead,
gamete modes are described in terms of observables, that
is, whether a gamete is recombined or not and double re-
duced or not. Second, as a consequence, the resulting mod-
els might not be compatible with any given mechanistic
model of meiosis, either agreed upon for a particular species
or hypothesized with the aim of further testing. Third, the
parameterizations of probability distributions treat recombi-
nation rates and coefficients of double reduction as indepen-
dent, thus putting aside the fact that recombination is
required to allow double reduction to take place.

In this article I put forward a computational approach to
the probabilistic modeling of meiosis, with an example
application to autotetraploids. The approach takes account
of the major mechanistic aspects of autotetraploid meiosis,
including mixed bivalent and quadrivalent pairings, pairing-
partner switches, and recombination on a chromatid level. A
computer program enumerates all possible paths through
the phases of replication, pairing, recombination, and
segregation, while keeping track of the probabilities of the
paths according to the various parameters involved. Proba-
bilities for classes of genotypes or phenotypes are added,
and the resulting formulas are simplified by the symbolic-
computation system Mathematica (Wolfram Research, Inc.
2010).

The approach is applied to the case of extreme autote-
traploids with tetrasomic inheritance, the mixed formation
of bivalents and quadrivalents, two linked marker loci on the
same arm of a chromosome, and one partner switch per
quadrivalent. Model parameters model the ratio of quadri-
valent to bivalent formation (t), the location of the partner
switch (between the centromere and the centromere-proximal
locus, between the two loci, or outside these two regions), the
recombination frequency between the centromere and the
centromere-proximal locus (q), and the recombination fre-
quency between the two loci (r).

The resulting model is profoundly different from previ-
ous ones in several aspects, including the distribution of
probability mass across gamete modes, most strikingly by
one of the modes having zero probability. The coefficient of
double reduction at the centromere-proximal locus, a, and
the coefficient of double reduction at the centromere-distal
locus, b, are not independent variables, but are fully
explained through the other parameters. Further symbolic
elimination of the partner switch location parameters turns
the five-parameter model into a four-parameter model of r,
q, a, and b; the mixing parameter t disappears, showing
that the ratio of quadrivalent to bivalent formation does
not influence the frequencies of gamete modes beyond a

and b.
The resulting model is also applied to a recent study of

recombination frequencies in tetraploids based on a seed-
fluorescence assay (Pecinka et al. 2011) and in a simulation
study, in which it is compared to previously published
models.

In addition to the immediate implications described, the
computational approach presented here can be expected to
be useful through opening avenues for modeling a host of
processes, among them manifestations of meiosis that
contain multiple-partner switches, crossover and chromatid
interference, and meiosis in higher-order ploidies, such as
hexaploidy and beyond.

Materials and Methods

The definition of the 11 gamete modes is taken from Table 1
in Luo et al. (2004), but see also Table 10 in Fisher (1947),
there in a different order. With A denoting the centromere-
proximal locus and B the centromere-distal locus, and with
1 # i, j, k, l # 4 (i, j, k, l all different) denoting the four
copies of the marker-carrying chromosome, the 11 gamete
modes are defined as

1: AiBi / AiBi
2: AiBj / AiBj

brackets, r is the frequency of recombination between the two marker loci, q is the recombination frequency between the centromere and the
centromere-proximal marker, t is the quadrivalent-to-bivalent ratio, and pDP and pPC are the probabilities of having a partner switch between the
markers and between the centromere-proximal marker and the centromere, respectively. f(pDP, pPC, r, q) denotes a function of the parameters indicated.
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3: AiBi / AiBj
4: AiBj / AiBk
5: AiBi / AjBi
6: AiBj / AkBj
7: AiBi / AjBj
8: AiBi / AjBk
9: AiBj / AjBi
10: AiBj / AjBk
11: AiBj / AkBl

with the two columns of A’s and B’s showing the two chro-
mosomes of the gamete.

The computational procedure, as described in detail in the
Results section, has been implemented in the functional pro-
gramming language Haskell. The computer program outputs
sums of probabilities for gamete modes and other classes of
interest that are then simplified by the symbolic-computation
system Mathematica (Wolfram Research, Inc. 2010). The pro-
gram together with ASCII text versions of the formulas pre-
sented in this article are available from the author.

Results

A five-parameter model

The approach put forward here is to computationally
enumerate all possible paths of meiosis through the phases
of replication, pairing, recombination, and segregation,
while keeping track of the probabilities of the paths
according to the various parameters involved. Probabilities
for classes of genotypes or phenotypes are added, and the
resulting formulas are simplified by the symbolic-computa-
tion system Mathematica. As an example application, I
present the development of a model of meiosis in an
autotetraploid with two linked marker loci on the same
arm of a chromosome, taking into account mixed bivalent
and quadrivalent pairings, pairing-partner switches, and

recombination on a chromatid level (see Figure 1, together
with a comparison to diploid meiosis).

Autotetraploids are modeled here as extreme autotetra-
ploids, that is, without pairing preferences between chro-
mosomes. Chromosomes can form either quadrivalents or
bivalents, following a quadrivalence-to-bivalence ratio t.

Consistent with a model of quadrivalent formation in
which chromosome pairing starts at the ends of chromo-
somes, a (single) pairing-partner switch can occur such that
one end of a chromosome pairs with one chromosome and
the other end pairs with a different chromosome. Upon
completion of pairing, this manifests itself in a partner
switch, the location of which is either between the two
markers (occurring with probability pDP, D for “distal” and P
for “proximal”), between the centromere-proximal marker
and the centromere (occurring with probability pPC), or out-
side these regions (occurring with probability 1 2 pDP 2
pPC). For simplicity, in the first two cases, partner switches
are modeled to be in the middle of the respective regions;
the third case is treated as equivalent to the formation of
two bivalents, and the location of the switch is irrelevant.

Chromatids of paired (segments of) chromosomes are
modeled as pairing randomly, with sister chromatids not
being allowed to pair. Depending on the valency and, in the
case of a quadrivalent, on the position of the partner switch,
up to three (effective) recombination events per chromatid
can occur (see Figure 2). If the region between proximal and
distal markers is partner switch free, recombination between
these loci occurs with frequency r. If the partner switch is in
this region, two recombinations can occur, one in each of the
halves defined by the partner switch, with frequency
r9 ¼ ð12 ffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2r
p Þ=2. Similarly, for the region between

centromere-proximal marker and centromere, either one
recombination event with frequency q or two events with
frequency q9 ¼ ð12 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2q
p Þ=2 each can occur. The

half-recombination frequencies r9 and q9 are solutions of

Figure 2 (A–E) Chromosome pairing and recombination
events. (A) Quadrivalent with partner switch between cen-
tromere and centromere-proximal locus. (B) Quadrivalent
with partner switch between loci. (C and D) Quadrivalents
with partner switch outside the two regions in A and B,
effectively equivalent to E. (E) Two bivalents (no partner
switch). D, centromere-distal locus; P, centromere-proximal
locus; open circles, centromeres. X’s denote possible recom-
bination events (two events per X). Shaded text and arrows
describe the order of recombination events taken account
of in the computer program. Curly brackets indicate that
chromatid partner choice is not independent. Annotation of
recombination events is implicitly the same in C–E.
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r = 2r9(1 2 r9) and q = 2q9(1 2 q9), respectively, expressing
the fact that a recombination in the whole interval effectively
occurs if and only if a recombination occurs in any of the
halves but not in the other. In a partner switch free region,
modeling two half-recombinations with frequency r9 would
be equivalent to one recombination with frequency r and
likewise for q9 and q. Every region or half-region of a chroma-
tid can undergo recombination with the respective region of
the pairing partner. Recombination events are modeled as
being independent. Every region or half-region can be subject
to at most one (effective) recombination event. Since re-
combination events in the distal-marker telomere region
and the arm that does not carry the markers have no
effect on marker distributions, they can be ignored here.

Paired centromeres together with their attached chroma-
tids are randomly distributed toward opposite poles (mod-
eling anaphase I), and the two chromatids attached to
a common centromere are again randomly distributed
toward different poles (modeling anaphase II). This results
in four gametes, each carrying two chromatids that are not
sister chromatids. Note though that through recombination,
parts of chromatids that were originally sister chromatids
(sister factors) can now end up in the same gamete.

Sorting the resulting gametic products into gamete
modes (see Materials and Methods for a definition of
modes), and summing up probabilities per mode, results,
after simplification with Mathematica, in the following
five-parameter model, with r being the recombination fre-
quency between the two markers, q the recombination fre-
quency between the centromere and the centromere-proximal
marker, t the quadrivalent-to-bivalent ratio, pDP the probability
of a pairing-partner switch between the two markers, pPC the
probability of a pairing-partner switch between the centromere
and the centromere-proximal marker, p1–p11 the probabilities of
the 11 modes, and r9 the half-recombination frequency as de-
fined above:

P1¼ PPC

�
q
4
2

qr
2
þ qr2

4

�
t

P2¼ PPC  qr2t
4

P3¼ PPC

�
qr
2
2

qr2

2

�
t

P4¼ 0

P5¼ PPC

�
r
2
2

qr
2
2

r2

2
þ qr2

2

�
t þ PDP

�
r
4
2
rr9
4

�
t

P6¼
PDP rr9t

4

P7 ¼ 12 2rþ r2 þ PPC

�
2

q
4
þ r
4
þ qr

2
2
r2

4
2

qr2

4

�
t

þ  PDP

�
5r
8
2

13r2

16
2 r9þ 7rr9

8

�
t

P8 ¼ 2r2 2r2 þ PPC
�
2 rþ r2

�
t þ PDP

�
2

r
2
þ 13r2

8
2
3rr9
2

�
t

P9 ¼ PPC

�
r
4
þ r2

4
2

qr2

4

�
t þ PDP

�
2

r
8
þ 3r2

16
þ r9

2
2
5rr9
8

�
t

P10¼ PDP

�
2 3r2

8
þ 3rr9

2

�
t

P11 ¼ r2 2
PPC r2t

2
þ PDP

�
2

r
4
2

5r2

8
þ r9

2
2

rr9
4

�
t:

Coefficients of double reduction

Instead of sorting gametic products into gamete modes we can
also classify them according to whether they are double
reduced, in the centromere-proximal marker locus, in the
centromere-distal marker locus, or in both marker loci.
Summing up probabilities defines the coefficients of double
reduction at the proximal locus, a, and at the distal locus, b, as

a ¼ PPCqt
4

(1)

b ¼ PDPrt
4

þ PPC

�
q
4
þ r
4
2 qr2

r2

2
þ qr2

�
t: (2)

Table 1 Mean estimates of recombination frequency r and standard deviations of estimates (in parentheses), relative to true values

Relative mean estimated r

r q Five-parameter model Luo et al. (2004) S. S. Wu et al. (2001) Wu and Ma (2005)

0.01 0.01 0.97 (0.025) 0.91 (0.023) 0.91 (0.023) 0.91 (0.023)
0.01 0.10 0.99 (0.024) 0.91 (0.022) 0.91 (0.022) 0.91 (0.022)
0.01 0.30 1.00 (0.025) 0.92 (0.022) 0.92 (0.022) 0.92 (0.022)
0.10 0.01 0.99 (0.022) 0.95 (0.020) 0.95 (0.020) 0.95 (0.020)
0.10 0.10 0.99 (0.022) 0.95 (0.020) 0.95 (0.020) 0.95 (0.020)
0.10 0.30 1.00 (0.022) 0.95 (0.021) 0.95 (0.021) 0.95 (0.021)
0.30 0.01 1.00 (0.023) 1.03 (0.023) 1.04 (0.024) 1.03 (0.023)
0.30 0.10 1.00 (0.022) 1.03 (0.022) 1.04 (0.024) 1.03 (0.022)
0.30 0.30 1.00 (0.020) 1.04 (0.022) 1.05 (0.023) 1.04 (0.022)

r and q are varied as indicated; t, pDP, and pPC are fixed to 0.67, 0.21, and 0.34, respectively.
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Elimination of parameters

The above probabilities of the 11 gamete modes are defined
in terms of the five parameters r, q, t, pDP, and pPC. Since the
coefficients of double reduction, a and b, are also defined in
terms of pDP and pPC, we can solve these two equations for
pDP and pPC and substitute the solutions in the gamete mode
equations, effectively eliminating pDP and pPC, and making a

and b parameters. This procedure results in the following
model, with pe1–p

e
11 being the probabilities of the 11 modes,

with parameters eliminated (indicated by the superscript e)
and again r9 as defined above:

pe1 ¼ að12 2rþ r2Þ

pe2 ¼ ar2

pe3 ¼ að2r2 2r2Þ

pe4 ¼ 0

pe5 ¼ bð12 r9Þ
þ   a

�
2 1þ 2r2 2r2 þ r92 4rr9þ 2rr9

q
þ 4r2r92

2r2r9
q

�
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q
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q

�
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�
5
2
2

13r
4

þ 7r9
2

2
4r9
r

�

þ a

�
2

7
2
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4
2
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r
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q

�

pe9 ¼ b

�
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1
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4
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�
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218rr9þ 9rr9
q

þ 10r2r92
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q

224r2r9þ 12r2r9
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pe11 ¼ r2 þ b

�
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r
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q
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2
4  r9
q

2
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r
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q

�
:

Surprisingly, the quadrivalent-to-bivalent ratio t also disap-
pears, indicating that it does not influence gamete mode
probabilities beyond the coefficients of double reduction a

and b. The resulting model is now one of four parameters, r,
q, a, and b. Note, however, that a and b are not indepen-
dent parameters, but depend on r and q, and that probabil-
ities are undefined for r= 0 or q= 0. For r= 0, limits can be
found by setting r = 0 in the original p1–p11and eliminating
parameters again, resulting in the probabilities of all gamete
modes becoming zero, except modes 1 and 7:

lim
r/0

pe1 ¼ a

lim
r/0

pe7 ¼ 12a:

Note that a = b in this case. Limits for q = 0 cannot be
found in the same way, since a becomes also zero, and, as
a consequence, pDP and pPC cannot be both eliminated.

Table 2 Mean estimates of the coefficient of double reduction a and standard deviations of estimates (in parentheses), relative to true
values

Relative mean estimated a

r q a Five-parameter model Luo et al. (2004) S. S. Wu et al. (2001)

0.01 0.01 0.00057 1.07 (0.029) 1.07 (0.029) 1.11 (0.033)
0.01 0.10 0.00570 0.97 (0.027) 0.97 (0.028) 0.98 (0.031)
0.01 0.30 0.01708 0.97 (0.028) 0.98 (0.028) 0.99 (0.032)
0.10 0.01 0.00057 1.07 (0.029) 1.07 (0.029) 1.11 (0.033)
0.10 0.10 0.00570 0.97 (0.028) 0.97 (0.028) 0.98 (0.031)
0.10 0.30 0.01708 0.97 (0.028) 0.98 (0.028) 0.99 (0.032)
0.30 0.01 0.00057 1.07 (0.029) 1.07 (0.029) 1.11 (0.033)
0.30 0.10 0.00570 0.97 (0.027) 0.97 (0.028) 0.98 (0.031)
0.30 0.30 0.01708 0.97 (0.028) 0.98 (0.028) 0.99 (0.032)

r and q are varied as indicated; t, pDP, and pPC are fixed to 0.67, 0.21, and 0.34, respectively; the true a is determined by q, t, and pPC through Equation 1.
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Application to a seed fluorescence assay

Melamed-Bessudo et al. (2005) introduced transgenic A.
thaliana lines carrying two fluorescent seed markers that
the authors used to estimate meiotic recombination frequen-
cies (MRFs) between the two marker loci in diploid Arabi-
dopsis plants. In Pecinka et al. (2011), the procedure was
applied to tetraploidized Arabidopsis plants, with one copy
of chromosome 3 carrying the markers on its top arm (green
centromere-distal and red centromere-proximal), and MRFs
were found to be significantly higher than in diploids. However,
MRFs were estimated on the basis of a diploid model of meiosis,
which is equivalent to a tetraploid model in which only biva-
lents form (see Wang and Luo 2012 and Rehmsmeier 2012 for
an in-depth discussion). For a mixed bivalent–quadrivalent
model we can specialize the five-parameter gamete model to
the following equations (either by computationally sorting
gametes into the various seed fluorescence classes or by man-
ually adding probabilities from corresponding gamete modes),
which describe the probabilities of seeds that contain only the
red-fluorescent marker (pr, “red only”), of seeds that contain
only the green-fluorescent marker (pg, “green only”), of seeds
that contain both markers (py, “yellow”), and of seeds that
contain none of the markers (pb, “brown”):
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t:

Eliminating pDP and pPC (and implicitly t), as was done
above for the 11 gamete modes, results in the following
four-parameter model of seed fluorescences:
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Table 3 Mean estimates of the coefficient of double reduction b and standard deviations of estimates (in parentheses), relative to true
values

Relative mean estimated b

r q b Five-parameter model Luo et al. (2004) S. S. Wu et al. (2001)

0.01 0.01 0.0020 0.98 (0.029) 3.3 (0.036) 0.92 (0.032)
0.01 0.10 0.0069 0.98 (0.025) 1.6 (0.031) 0.94 (0.030)
0.01 0.30 0.0179 0.99 (0.030) 1.2 (0.030) 0.99 (0.032)
0.10 0.01 0.0141 0.98 (0.028) 4.2 (0.032) 0.97 (0.031)
0.10 0.10 0.0174 1.00 (0.029) 3.7 (0.030) 0.99 (0.031)
0.10 0.30 0.0247 1.00 (0.029) 2.9 (0.029) 1.01 (0.030)
0.30 0.01 0.0346 0.98 (0.030) 4.7 (0.026) 1.02 (0.032)
0.30 0.10 0.0354 0.98 (0.030) 4.7 (0.025) 1.02 (0.032)
0.30 0.30 0.0372 0.99 (0.029) 4.6 (0.023) 1.01 (0.033)

r and q are varied as indicated; t, pDP, and pPC are fixed to 0.67, 0.21, and 0.34, respectively; the true b is determined by r, q, t, pDP, and pPC through Equation 2.
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Note again that that probabilities are undefined for r = 0 or
q = 0, but that limits for r = 0 can be found by setting r =
0 in the original pr, pg, py, and pb and eliminating parameters
again, resulting in the following equations:

lim
r/0

per ¼ 0

lim
r/0

peg ¼ 0

lim
r/0

pey ¼ 22a

4

lim
r/0

peb ¼ 2þ a

4
:

Note again that a = b in this case. Also again, limits for q =
0 cannot be found in the same way, since a becomes also
zero, and, as a consequence, pDP and pPC cannot be both
eliminated.

While the four-parameter model of seed fluorescences
cannot be solved for the four parameters—since there are
only three independent equations, the four equations sum-
ming up to unity—one can find the relationships

peg   2   per ¼
a2b

4

peb   2   pey ¼ aþ b

4
;

allowing estimation of the coefficients of double reduction a

and b from seed count differences. Note that these same
equations can also be derived from other models, such as
the one in Luo et al. (2004) as used in Rehmsmeier (2012)
(see Supporting Information, File S1), suggesting that this
particular seed fluorescence assay is not sensitive to the un-
derlying model of meiosis when coefficients of double re-
duction are to be determined. This, however, does not hold
in cases where two or three copies of a chromosome carry
the markers (see File S1).

Seed fluorescence probabilities for selfed plants can be
defined by combining gamete probabilities, following the

procedure in Wang and Luo (2012) and Rehmsmeier
(2012).

Simulations

To understand the implications of the five-parameter model
with respect to parameter estimation, I simulated gamete
formation with fully informative markers (see, e.g., S. S. Wu
et al. 2001) according to the five-parameter model and es-
timated parameters with the same model, with Luo et al.’s
model (Luo et al. 2004) and with Wu et al.’s model (S. S. Wu
et al. 2001; Wu and Ma 2005). Parameters r and q covered
ranges from small to large values (0.01, 0.1, and 0.3), and t,
pDP, and pPC were fixed to 0.67, 0.21, and 0.34, respectively.
The sample size was 1000, each sampling was repeated 100
times, and means and standard deviations were calculated
from these 100 repetitions. Since gamete modes 7 and 9
cannot be distinguished by their genotypes, nor can modes
8 and 10 (see, e.g., S. S. Wu et al. 2001), the respective
counts were added, as were the corresponding probability
functions. S. S. Wu et al. (2001) and Wu and Ma (2005) give
slightly different equations for the recombination frequency
r (denoted u in S. S. Wu et al. 2001), and both versions
were used here. Parameters for the five-parameter model
and for Luo et al.’s model were estimated with a maximum-
likelihood approach, using R’s optim function in conjunc-
tion with the BFGS method and gradient functions (R Core
Team 2012). For Wu et al.’s model, the recombination fre-
quency r was directly estimated with a closed-form solu-
tion to their equations describing r (Equation 6 in S. S. Wu
et al. 2001 and Equations 4, 5, and 8 in Wu and Ma 2005),
and coefficients of double reduction, a and b, were calcu-
lated directly as sums of observed gamete frequencies
[â ¼ f1 þ f2 þ f3 þ f4;   b̂ ¼ f1 þ f2 þ f5 þ f6 (S. S. Wu et al.
2001)]. For Luo et al.’s model, b was calculated from
r and a according to Equation 1 in Luo et al. (2004). True
values of a and b and their estimates from the five-parameter
model were calculated from the (true or estimated, respec-
tively) r, q, t, pDP, and pPC.

Table 1 shows mean estimates of the recombination fre-
quency r and standard deviations of the estimates, expressed
relative to the true values. Mean estimates for the five-
parameter model are mainly perfect (1.0) or near perfect
(0.99); for very small values of r and q, the mean estimate
is slightly lower, at 0.97. The mean estimates for Luo et al.’s
and Wu et al.’s models are between 0.91 and 1.03 of the true
values. Mean estimates for Luo et al.’s and Wu et al.’s models
are identical, and mean estimates for S. S. Wu et al. (2001)
and Wu and Ma (2005) are nearly identical. Relative stan-
dard deviations are similar for all methods and always very
small (#0.025).

Table 2 shows mean estimates of the coefficient of double
reduction at the centromere-proximal locus, a, and standard
deviations of the estimates, expressed relative to the true
values. Mean estimates for the five-parameter model and
for Luo et al.’s model are between 0.97 and 1.07 and are
mainly identical. Estimates with the direct method (sums of

Table 4 Mean estimates of recombination frequency q and
standard deviations of estimates (in parentheses), relative to
true values

r q
Relative mean estimated q,

five-parameter model

0.01 0.01 25.6 (2.27)
0.01 0.10 4.0 (0.57)
0.01 0.30 1.4 (0.26)
0.10 0.01 4.7 (1.24)
0.10 0.10 1.8 (0.55)
0.10 0.30 1.0 (0.23)
0.30 0.01 1.4 (0.18)
0.30 0.10 1.1 (0.19)
0.30 0.30 1.1 (0.19)

r and q are varied as indicated; t, pDP, and pPC are fixed to 0.67, 0.21, and 0.34,
respectively.
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gamete mode frequencies) are between 0.98 and 1.11. Rel-
ative standard deviations are small for all methods, although
slightly larger for the direct method.

Table 3 shows mean estimates of the coefficient of double
reduction at the centromere-distal locus, b, and standard
deviations of the estimates, expressed relative to the true
values. Mean estimates from the five-parameter model are
between 0.98 and 1.00. Mean estimates from sums of gam-
ete mode frequencies are between 0.92 and 1.02. Estimates
from Luo et al.’s model are between 1.2 and 4.7. Standard
deviations are small for all methods.

Table 4 shows mean estimates of the recombination fre-
quency q and standard deviations of the estimates, expressed
relative to the true values. Mean estimates are accurate for
the majority of cases, but deviate strongly from the true val-
ues for small values of r and q.

Table 5 shows mean estimates of the quadrivalent-to-
bivalent ratio t, the probability of a pairing-partner switch
between the two markers pDP, and the probability of a pairing-
partner switch between the centromere and the centromere-
proximal marker pPC and standard deviations of the estimates,
expressed relative to the true values. Mean estimates of t
are accurate, with values between 0.83 and 1.11, but have
standard deviations of mainly between 0.25 and 0.3. Mean
estimates of pDP and pPC are inaccurate for small values of
r and q (r and q = 0.01), with values of 2.7 and 0.41. Mean
estimates of pDP and pPC are accurate for larger values of
r and q, with values between 0.69 and 1.6 for r and q $ 0.1
and values of 0.92 and 1.1 for r and q = 0.3. Standard
deviations for estimates of pDP and pPC are large, with values
between 0.29 and 0.82.

Discussion

Owing to its complexities, polyploid meiosis has resisted the
development of mathematical models. Indeed, Luo et al.
point out that a tedious analysis was necessary to be able
to express probabilities of gamete modes as functions of
meiotic recombination frequency and the coefficient of dou-
ble reduction (Luo et al. 2004). Any attempt to manually

formulate the complex model of tetraploid meiosis pre-
sented here—one that is consistent with postulated mecha-
nistic behaviors such as the formation of pairing-partner
switches—would be doomed. The computational approach
to developing mathematical models of polyploid meiosis
that is presented here makes complex models feasible to
begin with.

In addition to the methodological advances, the resulting
model of autotetraploid meiosis gives unexpected insights
into the process of double reduction and its consequences
for model parameterization and gamete mode probabilities.
Luo et al.’s model (Luo et al. 2004) is a model of two param-
eters, the frequency of recombination between the two loci,
r, and the coefficient of double reduction at the centromere-
proximal locus, a. For double reduction at the centromere-
proximal locus to occur, a partner switch between the cen-
tromere and the locus is necessary, and the probability of
such a switch is, in addition to other requirements,
expressed by a. Luo et al. couple the coefficient of double
reduction at the centromere-distal locus, b, to a by b =
(a(3 2 4r)̂ 2 + 2r(3 2 2r))/9 (Equation 1 in Luo et al.
2004). Double reduction at that locus, however, requires
a partner switch between it and the centromere—the prob-
ability of which cannot be controlled by a and r alone (see
Wu and Ma 2005 for a related discussion). In fact, letting
one locus coincide with the centromere, thus forcing a to be
zero, would make b entirely defined by r.

In response to this problem, Wu and Ma (2005) devel-
oped a model that is parameterized with b as well as with
a and r. The model presented here contains a further
parameter, the frequency of recombination between the
centromere and the centromere-proximal locus, q. This ad-
ditional parameter is naturally introduced when the possi-
bility of a pairing-partner switch between the centromere
and the centromere-proximal locus is taken into account.
Indeed, upon setting the probability of such a pairing-
partner switch, pPC above, to zero, q disappears again
from the equations, which can easily be seen in the defi-
nitions of p1–p11 by noting that q occurs only with pPC as
a factor.

Table 5 Mean estimates of the quadrivalent-to-bivalent ratio t, of the probability of a pairing-partner switch between the two markers
pDP, and of the probability of a pairing-partner switch between the centromere and the centromere-proximal marker pPC, and standard
deviations of estimates (in parentheses), relative to true values

Five-parameter model

r q Relative mean estimated t Relative mean estimated pDP Relative mean estimated pPC

0.01 0.01 0.93 (0.43) 2.68 (0.82) 0.41 (0.40)
0.01 0.10 1.05 (0.38) 2.15 (0.79) 0.62 (0.41)
0.01 0.30 1.11 (0.30) 1.49 (0.69) 0.91 (0.39)
0.10 0.01 0.82 (0.25) 0.74 (0.58) 1.52 (0.47)
0.10 0.10 0.90 (0.29) 0.95 (0.65) 1.35 (0.51)
0.10 0.30 0.83 (0.26) 0.69 (0.51) 1.58 (0.46)
0.30 0.01 0.92 (0.25) 1.11 (0.32) 1.21 (0.34)
0.30 0.10 0.96 (0.26) 1.01 (0.36) 1.20 (0.40)
0.30 0.30 1.05 (0.26) 0.92 (0.29) 1.08 (0.36)

r and q are varied as indicated; t, pDP, and pPC are fixed to 0.67, 0.21, and 0.34, respectively.
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In the model presented here, the coefficients of double
reduction, a and b, are not independent parameters, unlike
a in Luo et al. (2004) and a and b in Wu and Ma (2005), but
are defined in terms of the quadrivalent-to-bivalent ratio t,
the probabilities of partner switches, pDP and pPC, and the
recombination frequencies r and q. The coefficients of dou-
ble reduction are thus decomposed into what constitutes
them mechanistically (in terms of t, pDP, pPC, r, and q),
allowing for a deeper understanding of these individual
aspects.

The analytic nature of the coefficients of double re-
duction has surprising consequences for the dependence of
gamete mode probabilities on these coefficients. When
setting a and b to zero in the model presented here, all
modes except modes 7, 8, and 11 reduce to probability zero,
in contrast to the model of Luo et al., in which, among
others, modes 9 and 10 remain nonzero as well (mode 9
being described by the genotype AiBj/AjBi and mode 10 by
AiBj/AjBk, with A denoting the centromere-proximal marker;
B denoting the centromere-distal marker; the “/” distin-
guishing the two chromosomes; and i, j, and k denoting
different chromosomes). The probability of mode 9 becom-
ing zero appears counterintuitive at first glance, since this
mode is not double reduced in either of the two loci. How-
ever, the manifestation of this mode requires a pairing-partner
switch between the centromere and the centromere-distal
locus (see Figure 3). Since here a and b are defined in terms
of recombination frequencies r and q, pairing-partner switch
probabilities pDP and pPC, and the quadrivalent-to-bivalent
ratio t, setting a and b to zero while leaving r and q un-
touched is equivalent to setting either pDP and pPC or t to

zero, thus prohibiting the necessary formation of a pairing-
partner switch. This becomes also apparent from the
definition of p9 in the five-parameter model. The require-
ment of a partner switch holds similarly for mode 10 (see
Figure 4).

A further striking result of the model presented here is
not only the generally different distribution of probability
mass among the gamete modes, but also the fact that
gamete mode 4 (AiBj/AiBk) has probability zero, even in the
general case of mixed quadrivalent and bivalent formation.
Since Ai is double reduced, there must be a partner switch
between the centromere and the centromere-proximal locus.
On the other hand, the two sister segments containing Bi
have to cross over with two different chromosomes, j and k,
which would require a second partner switch, between the
two loci. Indeed, in a model that allows two partner
switches, gamete mode 4 has nonzero probability (see File
S2).

When the probabilities of pairing-partner switches, pDP
and pPC, are eliminated and a and b are introduced, the
quadrivalent-to-bivalent ratio parameter t also disappears,
indicating that t does not contribute to the probabilities of
gamete modes beyond its contribution to the coefficients of
double reduction. In other words, gamete mode probabili-
ties are fully defined in terms of recombination frequencies
and coefficients of double reduction. Interestingly, this does
not hold for a model in which a second partner switch can
be formed (see File S3).

Double-reduction parameters in Luo et al. (2004) and Wu
and Ma (2005) are conditioned on complete quadrivalency,
thus being inconsistent with a definition of double reduction

Figure 3 (A–D) Gamete mode 9 through a partner switch (but without double reduction). Partner switch is between the two loci, A and B. Circles
denote centromeres. X denotes two recombinations. (A) A quadrivalent forms, and the two chromosomes (solid lines) recombine twice. (B) The
recombined chromosomes. The distal markers, B, have been swapped. (C) Chromosomes move apart in anaphase I. (D) Chromatids move apart in
anaphase II. Two gametes now have configuration AiBj /AjBi (gamete mode 9). A single recombination leads to one gamete of mode 9. A similar process
is shown (with one or two recombinations) for the partner switch being between the centromere and the centromere-proximal locus (A9 and B9,
continuing with C and D).
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that does not make assumptions in this respect. Estimates of
double reduction can thus be expected to be biased when
the formation of bivalents is not negligible. In contrast, in
the model presented here, coefficients of double reduction
explicitly depend on the quadrivalent-to-bivalent ratio t and
are thus not conditioned on any particular valency.

The results of the simulations show that estimates under
the five-parameter model of the recombination frequency r
are very accurate and more so than estimates under existing
models. Estimates of the coefficient of double reduction a

are similarly accurate for all methods. Interestingly, this is
also the case for the five-parameter model, even though a is
not estimated directly, but calculated from the estimates of
the five parameters. Estimates of the coefficient of double
reduction b are very accurate for the five-parameter model
and similar to the direct method of S. S. Wu et al. (2001).
Estimates of b under Luo et al.’s model, by using their Equa-
tion 1, deviate considerably from the true values, demon-
strating that b cannot be accurately expressed through Luo
et al.’s Equation 1 by a and r alone when gamete mode
frequencies follow the five-parameter model presented here.
Estimates of q, the recombination frequency between the
centromere and the centromere-proximal locus, deviate
strongly from the true value for very small values of r and
q, such as r and q = 0.01. Closer inspection shows that for
these values, the estimated q is frequently close to 1/2 (see
Figure S1), explaining the relative mean estimate of �0.25.
For such small values of r and q, several gamete modes have
exceedingly small probabilities. For example, for r = 0.01
and q = 0.01 (and t = 0.67, pDP = 0.21, pPC = 0.34), the
probability of gamete mode 2 is ,5.7e-8. As a consequence,
extremely large sample sizes would be necessary to generate

gamete counts for all modes and to allow for an accurate
estimation of q. Nevertheless, for larger values of r and q,
mean estimates of q are accurate. Assuming that recombi-
nation frequency grows monotonously with distance from
the centromere, estimates of q could assist in genetic-map
construction by directly suggesting a linear order of markers
on a chromosome arm.

In this article I have put forward a computational
approach to the probabilistic modeling of meiosis, with an
example application to autotetraploids. The relative simplic-
ity of automatically deriving such a model from a computa-
tional description of its underlying mechanisms and the
multitude of aspects in which the resulting model distin-
guishes itself from previously published ones demonstrate
the usefulness of the approach. Possibilities now arise for the
development of more complex models, such as a tetraploid
three-locus model with 107 gamete modes (Fisher 1947),
hexaploid two-locus models with two mixing ratios (one
hexavalent vs. one quadrivalent and one bivalent vs. three
bivalents) and 40 gamete modes (Fisher 1947), or models of
ploidies of even higher order.

It is worth noting that the approach presented here
relieves the developer of mathematical models from the
burden of having to argue about properties of gamete modes
in terms of model parameters. Instead, the modeler can
concentrate on a computational description of the process
and leave the construction and simplification of expressions
to the computer. The resulting mathematical models simply
emerge automatically. Not only does this approach allow
one to build mathematical models that would be impossible
to build manually, but also it frees creative energy that can
be invested in the definition of the structure of the model

Figure 4 (A–D) Gamete mode 10 through a partner switch (but without double reduction). Partner switch is between the two loci, A and B. Circles
denote centromeres. X’s denote two recombinations each. (A) A quadrivalent forms, and the chromosomes (solid lines) recombine twice in each of the
positions indicated by X. (B) The recombined chromosomes. The distal markers, B, have been swapped. (C) Chromosomes move apart in anaphase I. (D)
Chromatids move apart in anaphase II. Two gametes have now configuration AiBj /AjBk (gamete mode 10). A single recombination leads to one gamete
of mode 10.
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and in the interpretation of the resulting mathematical
formulas.
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!!! =   ! 1 − ! !  

!!! =   !
!!

3
  

!!! =   2  !  ! 1 − !   

!!! =   2  !
!!

3
  

!!! =
2 1 − ! ! 1 − !

3
  

!!! =
2 1 − ! !!

9
  

!!! =    1 − ! 1 − ! !  

!!! =
4 1 − ! ! 1 − !

3
  

!!! =
1 − ! !!

9
  

!!"! =
4 1 − ! !!

9
  

!!!! =
2 1 − ! !!

9
	  

	  

Probabilities	  for	  gamete	  marker	  classes	  (red-‐only,	  green-‐only,	  yellow/both,	  brown/none)	  can	  be	  defined	  by	  

summing	  up	  the	  propabilities	  of	  gamete	  modes,	  weighted	  by	  the	  frequencies	  of	  the	  class	  in	  question	  among	  all	  

genotypes	  of	  the	  respective	  mode	  (see	  also	  ref.	  19).	  For	  each	  mode,	  the	  weight	  is	  the	  ratio	  of	  the	  number	  of	  

instances	  of	  that	  gamete	  mode	  that	  are	  compatible	  with	  the	  class	  in	  question	  (red-‐only	  etc.)	  and	  the	  overall	  

number	  of	  instances	  for	  that	  mode.	  The	  latter	  numbers	  are	  independent	  of	  actual	  genotypes	  and	  can	  for	  

example	  be	  taken	  from	  Table	  1	  in	  ref.	  14.	  The	  former	  numbers	  depend	  on	  the	  genotype.	  In	  the	  single-‐copy	  case	  

(genotype	  RG/XY/XY/XY,	  with	  XY	  representing	  wild-‐type	  chromosomes),	  these	  numbers	  (“multipliers”)	  	  are:	  

	  

!!! =    0,3,3,6,0,3,0,6,0,6,6   

!!
! =    0,3,0,3,3,6,0,6,0,6,6   

!!
! =    1,0,3,0,3,0,3,6,3,6,0   
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!!
! =    3,6,6,3,6,3,3,6,3,6,0 	  

	  

which	  defines	  probabilities	  of	  color	  classes	  (the	  single-‐copy	  case	  indicated	  by	  the	  superscript	  S)	  as:	  

	  

!!!" =
0  !!!

4
+
3  !!!

12
+
3  !!!

12
+
6  !!!

12
+
0  !!!

12
+
3  !!!

12
+
0  !!!

6
+
6  !!!

24
+
0  !!!

6
+
6  !!"!

24
+
6  !!!!

12
+ 0  

!!!" =
0  !!!

4
+
3  !!!

12
+
0  !!!

12
+
3  !!!

12
+
3  !!!

12
+
6  !!!

12
+
0  !!!

6
+
6  !!!

24
+
0  !!!

6
+
6  !!"!

24
+
6  !!!!

12
+ 0  

!!!" =
1  !!!

4
+
0  !!!

12
+
3  !!!

12
+
0  !!!

12
+
3  !!!

12
+
0  !!!

12
+
3  !!!

6
+
6  !!!

24
+
3  !!!

6
+
6  !!"!

24
+
0  !!!!

12
+ 0  

!!!" =
3  !!!

4
+
6  !!!

12
+
6  !!!

12
+
3  !!!

12
+
6  !!!

12
+
3  !!!

12
+
3  !!!

6
+
6  !!!

24
+
3  !!!

6
+
6  !!"!

24
+
0  !!!!

12
+ 0	  

	  

which	  simplify	  to	  

	  

!!!" =   −
2   +   ! −6   +   ! !

36
  

!!!" =
!   6  –   2  !   +   !   −6   +   5  !

12
  

!!!" =
!   −3   +   6  !  –   5  !! +   2   3  –   3  !   +   !!

12
  

!!!" =
2   +   ! −3   +   ! !

36
	  

	  

With	  !   = (3  (−1   +   4  !   +   !"#$((−1   +   4  !  )(−1   +   4  !))))/(−4   +   16  !  )  from	  Eq.	  1	  in	  ref.	  14	  we	  obtain	  

the	  following	  equations	  for	  seed-‐count	  differences	  (assuming	  a	  backcross	  with	  wildtype	  plants,	  such	  that	  seed	  

fluorescence	  probabilities	  are	  the	  same	  as	  gamete	  probabilities):	  

	  

!!!" −   !!!" =
! −   !
4

  

!!!" −   !!!" =
! +   !
4

	  

	  

which	  are	  the	  same	  as	  those	  derived	  for	  the	  model	  presented	  in	  this	  article	  (see	  main	  text).	  

	  

In	  the	  double-‐copy	  case	  (genotype	  RG/RG/XY/XY)	  we	  have	  the	  following	  multipliers:	  
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!!! = (0,2,2,4,0,1,0,2,0,2,1)  

!!
! = 0,2,0,1,2,4,0,2,0,2,1   

!!
! = 1,1,3,2,3,2,3,8,3,8,4   

!!
! = 2,2,2,0,2,0,1,0,1,0,0 	  

	  

leading	  to	  these	  gamete	  color	  frequencies	  (the	  superscript	  D	  indicates	  the	  double-‐copy	  case),	  specialized	  from	  

the	  Luo	  et	  al.	  model	  (indicated	  again	  by	  the	  superscript	  L):	  

	  

!!!" =   −
!   −14   +   ! −22   +   ! +   5  !

63
  

!!!" =
!   26  –   11  !   +   ! −26   +   23  !

63
  

!!!" =
189  –   82  !   +   42  !! +   ! −105   +   130  !  –   114  !!

252
  

!!!" =
63  –   78  !   +   22  !! +   ! 105  –   114  !   +   26  !!

252
	  

	  

	  

With	  the	  above	  definition	  of	  !	  again,	  we	  obtain	  the	  following	  seed-‐count	  differences	  in	  the	  double-‐copy	  case,	  

again	  assuming	  a	  backcross	  with	  wildtype	  plants,	  such	  that	  seed	  fluorescence	  probabilities	  are	  the	  same	  as	  

gamete	  probabilities:	  

	  

!!!" −   !!!" =
−1   +   10  ! −   6  ! +   !"#$ −1   +   4  ! −1   +   4  !

28
  

!!!" −   !!!" =

97   +   282  !! −   30  ! −   13  !"#$ −1   +   4  ! −1   +   4  !

+  ! −481   +   210  ! −   17  !"#$ −1   +   4  ! −1   +   4  !
168  (−1   +   4  !)

	  

	  

	  

These	  equations	  are	  different	  from	  equations	  derived	  from	  the	  model	  presented	  in	  this	  article	  which	  are:	  

	  

!!!" −   !!!" =
! −   !
3

  

!!!" −   !!!" =
! +   ! − 2

3
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where	  !!!",	  !!!",	  !!!",	  and	  !!!"	  can	  be	  derived	  from	  !!!	  to	  !!!! ,	  the	  double-‐copy	  multiplicators	  !!!,	  !!
!,	  !!

!,	  and	  

!!
!,	  and	  the	  gamete	  mode	  frequencies	  (see	  derivation	  of	  !!!"	  etc.	  above),	  or	  directly	  by	  sorting	  gametes	  

according	  to	  color	  in	  the	  computational	  procedure	  as:	  

	  

	  

!!!" =
!
3
−
!!

6
+   ! −

1
6
+
5  !
12

+
!!

3  !

+   !
1
6
−
7  !
4
+

!
3  !

+
10  !!

3
−
3  !!

2  !
−
5  !!

3
+
5  !!

6  !
+
4  !!

3
−
2  !!

3  !
−
!!

3  !
−
4  !  !!

3
+
2  !  !!

3  !
	  

!!!" =
!
3
−
!!

6
+   ! −

1
2
+
5  !
12

+
!!

3  !

+   !
1
2
−
7  !
4
+

!
3  !

+
10  !!

3
−
3  !!

2  !
−
5  !!

3
+
5  !!

6  !
+
4  !!

3
−
2  !!

3  !
−
!!

3  !
−
4  !  !!

3
+
2  !  !!

3  !
	  

!!!" =
5
6
−
!
3
+
!!

6
+   !

1
6
−
5  !
12

−
!!

3  !

+   ! −
1
2
+
7  !
4
−

!
3  !

−
10  !!

3
+
3  !!

2  !
+
5  !!

3
−
5  !!

6  !
−
4  !!

3
+
2  !!

3  !
+
!!

3  !
+
4  !  !!

3
−
2  !  !!

3  !
	  

!!!" =
1
6
−
!
3
+
!!

6
+   !

1
2
−
5  !
12

−
!!

3  !

+   ! −
1
6
+
7  !
4
−

!
3  !

−
10  !!

3
+
3  !!

2  !
+
5  !!

3
−
5  !!

6  !
−
4  !!

3
+
2  !!

3  !
+
!!

3  !
+
4  !  !!

3
−
2  !  !!

3  !
	  

	  

	  

For	  the	  triple-‐copy	  case	  (genotype	  GR/GR/GR/XY)	  we	  have	  the	  following	  multipliers:	  

	  

!!! =    0,1,1,1,0,0,0,0,0,0,0   

!!
! =    0,1,0,0,1,1,0,0,0,0,0   

!!
! =    1,1,2,2,2,2,2,4,2,4,2   

!!
! =    1,0,0,0,0,0,0,0,0,0,0 	  

	  

With	  these,	  we	  obtain	  from	  Luo	  et	  al.’s	  model:	  

	  

!!!" −   !!!" =
! −   !
3

  

!!!" −   !!!" =
34  !! −   8   −3   +   ! +   ! −109   +   50  ! −   3  !"#$((−1   +   4  !)  (−1   +   4  !)

−24   +   96  !
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and	  from	  the	  model	  presented	  in	  this	  article:	  

	  

!!!" −   !!!" =
! −   !
4

  

!!!" −   !!!" =
! +   ! − 4

4
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File	  S2	  

Probabilities	  of	  the	  eleven	  gamete	  modes	  and	  coefficients	  of	  double	  reduction	  when	  a	  second	  partner	  switch	  is	  

allowed	  

	  

The	  superscript	  !	  indicates	  that	  a	  second	  partner	  switch	  is	  allowed.	  The	  occurrence	  of	  two	  simultaneous	  partner	  

switches	  is	  modeled	  such	  that	  they	  are	  not	  in	  the	  same	  region,	  that	  is	  they	  have	  to	  have	  at	  least	  one	  marker	  

between	  them.	  The	  eleven	  gamete	  modes:	  

	  

!!! =
!!"!   4  –   8  !   +   4  !! !

16
+
!!"!!"!   2  !  –   3  !! −   4  !! +   4  !  !! !

16
    

!!! =
!!"!  !!!

4
+
!!"!!"!   −2  !  –   !! +   4  !! −   4  !  !! !

16
  

!!! =   −
!!"!  !   −4   +   4  ! !

8
–
!!"!!"!  !   −3  !   +   4  !! !

8
    

!!! =
!!"!!" − !  !! +   4  !  !  !! !

8
    

!!! =
!!"!!"!   −4   +   4  !   +   4  !  –   5  !  ! !

8
+
!!"!   4  –   4  !  –   4  !   +   4  !  ! !

8
+
!!"!   2  –   2  !! !

8
  

!!! =   −
!!"!!"!  !!!

8
+
!!"!  !!!

4
  

!!! =
16  –   32  !   +   16  !!

16
+
!!" −4  !   +   4  !   +   8  !  !  –   4  !! −   4  !  !! !

16

+
!!" 10  !  –   13  !! −   16  !! +   14  !  !! !

16

+
!!"!!" −4  !   +   4  !! +   2  !  !! +   4  !  !! −   6  !  !  !! !

16
  

!!! =
16  –   16  ! !

8
+
!!"!   −8   +   8  ! !

8
+
!!"!   −4   +   13  !  –   12  !! !

8

+
!!"!!"!   8  –   6  !  –   8  !   +   3  !  !   +   6  !  !! !

8
  

!!! =
!!" 4  !   +   4  !! −   4  !  !! !

16
+
!!" −2  !   +   3  !! +   8  !! −   10  !  !! !

16

+
!!"!!" −4  !   +   6  !  !  –   4  !! +   2  !  !! −   8  !  !! +   6  !  !  !! !

16
  

!!"! =
−3  !!" !! −   4  !  !! !

8
–
3  !!"!!" − !  !! +   2  !  !  !! !

8
  

!!!! =    !! −
!!"!!!
2

+
!!"!!" − !  ! +   4  !! −   2  !  !! +   2  !  !! !

8
+
!!" −2  !  –   5  !! +   4  !! −   2  !  !! !

8
	  

	  

Coefficients	  of	  double	  reduction:	  
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!! =
!!"!  !
4

  

!! =
!!"!   +   !!" 2   −1   +   !!" −1   +   ! !  –   !   −1   +   2  ! 1   +   2   −1   +   !!" ! !

4
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   2	  

File	  S3	  

Probabilities	  of	  the	  eleven	  gamete	  modes	  when	  a	  second	  partner	  switch	  is	  allowed,	  with	  !!"	  and	  !!"	  eliminated	  

	  

Superscript	  !	  indicates	  that	  a	  second	  partner	  switch	  is	  allowed;	  superscript	  !	  indicates	  that	  !!"	  and	  !!" 	  are	  eliminated.	  

	  

!!!"   =

!
! −2   +   4  ! !! −   4  !  !! +   !! −20   +   21  !   +   16  !! −   32  !  !! +   2  !! 7  –   10  !  –   4  !! +   8  !  !!

+  !   8  –   6  !  –   8  !! +   20  !  !!

+  !   ! −2  !   +   3  !! +   4  !! −   4  !  !! −    −1   +   ! !!  !
!   8  ! 1  –   !   +   !   −1   +   2  ! −   !  !

	  

  

  

!!!"

=
!

! −2   −1   +   ! !   3  !! +   4  !! −   2  !   1   +   2  !! +   !   −1   +   2  ! 6  !! −   4  !! +   2  !   1   +   6  !! −   !! 3   +   8  !!

+  !   ! 2  !   +   !! −   4  !! +   4  !  !! −   !!!
!  (8  !(1  –   !   +   !  (−1   +   2  !)) −   !  !)

  

  

!!!" =
−2  ! ! −2   +   4  ! !! +   4  !  !! +   !   −8   +   5  !   +   8  !! −   16  !  !! +   2  !! 5  –   6  !  –   4  !! +   8  !  !!

+  !   ! 3  !  –   4  !! −    −1   +   ! !  !
8  ! 1  –   !   +   !   −1   +   2  ! −   !  !

	  

	  

!!!" =
−2  ! − !" +   ! !   1  –   2  ! ! −   2   −1   +   ! ! !  –   4  !!

8  !(1  –   !   +   !  (−1   +   2  !)) −   !  !
	  

	  

!!!"

=

!! !   8  –   26  !   +   24  !! −   8  !! +   4   −2   +   6  !  –   5  !! +   !!

+  !"   −1   +   !! ! +   ! 2  ! 4  –   4  !   +   !   −4   +   5  ! +    2   −1   +   ! !  !! −   !   −1   +   !   2  –   4  !! +   !! +   !! −2   +   4  !! !
8  !(1  –   !   +   !  (−1   +   2  !)) −   !  !

	  

	  

!!!" =
!"  –   ! !   1  –   2  ! ! −   2   −1   +   ! ! 2  !"  –   !!!

8  !(1  –   !   +   !  (−1   +   2  !)) −   !  !
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   3	  

!!!"

=

−8  !!
−2   +   4  ! !! −   2  !  !! +   !! −18   +   15  !   +   10  !! −   20  !  !! +   2  !! 7  –   3  !! +   !   −8   +   6  !!

+  !   6  –   4  !! +   !   −4   +   11  !!

+  !   8   +   13  ! !!–   4  !! +   16  !!! −   2  !   2   +   ! 5   +   7  !! !

+  !
−16  !  !! ! +   ! −   2   −1   +   2  ! !! −16   +   13  ! +   2  !   16   +   4  ! 2   +   3  !  !! −   16  !!! +   !   −16   +   7  ! +   39  !!!

–   !! 96   +   8  ! 2   +   ! −   16  ! −   60  !!! +   !   −128   +   61  ! +   120  !!! +   2  !! 48  –   7   3   +   2  !! !
+  4  !   −20   +    12   +   7  !! !

4  !  (8  !(1  –   !   +   !  (−1   +   2  !)) −   !  !)
	  

	  

!!!" =

4  !! 3  !   1  –   2  ! ! −2   +   !   +   2  !! −   2   −1   +   ! 4   +   3  !! +   2  !   −7   +   3  !!

+  !   4   −1   +   ! !   +   ! 4  –   13  !   +   12  !! !

−  !
4  ! 8  –   8  !   +   3  !   −2   +   !   +   2  !! +   4  !   1   +   3  !! ! −   2   −1   +   2  ! !! −16   +   13  !

+  !   !   32  –   29  ! −   48  !!! +   8   −4   +   3  !!! +   !! 64  –   26  ! −   24  !!! +   !   −96   +   68  ! +   48  !!!
2  (8  !(1  –   !   +   !  (−1   +   2  !)) −   !  !)

	  

	  

!!!" =

−8  !!
−2   +   4  ! !! +   4  !  !! +   !! −8   +   11  !  –   14  !! +   28  !  !! −   2  !! −2  –   3  !! +   6  !   1   +   !!

+  !   2   +   8  !! −   !   3   +   19  !!

+  !"   −3  !! −   8  !! +   2  !   1   +   5  !! !

+  !
−8  ! −2   +   ! !! −   4  !  !! +   !   −2   +   3  !   1   +   !!

+   
2  !   −3  !! +   8  !! −   2  !   2   +   9  !! +   !! 3   +   10  !!

+  !   12  !! +   8  !! −   8  !! 2   +   5  !! −   2  !   1   +   21  !! +   !! 11   +   72  !!
!

4  !   8  ! 1  –   !   +   !   −1   +   2  ! −   !  !
	  

	  

!!"!" =
3   – !" +   ! !   1  –   2  ! ! −   2   −1   +   ! ! 4  !"  –   8  !!! −   !  ! +   4  !!!

2  (8  !(1  –   !   +   !  (−1   +   2  !)) −   !  !)
	  

	  

!!!!"

=

−4  !! !   1  –   2  ! ! !   +   2  !! −   2  !! −   2  !   !  –   5  !! +   2  !! +   2  !! −   2  !  !!

+  !   −2  !! +   ! 5  !! −   4  !! +   2  !   1   +   !! !

+  !
4  ! −4  !! +   !   !   +   2  !! −   2  !! +   4  !  !!! −   2  !   !  –   4  !! +   9  !  !! !

+  !! −4   +   3  !  –   12  !! +   24  !  !! ! −   2   −1   +   2  ! !! −8   +   5  ! −   2  !! −8   +   ! −   2  !!! +   !   8  –   6  ! +   4  !!!
2  !  (8  !(1  –   !   +   !  (−1   +   2  !)) −   !  !)
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