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Abstract
The number of publications on mathematical modeling of cancer is growing at an
exponential rate, according to PubMed records, provided by the US National Library
of Medicine and the National Institutes of Health. Seminal papers have initiated and
promoted mathematical modeling of cancer and have helped define the field of math-
ematical oncology (Norton and Simon in J Natl Cancer Inst 58:1735–1741, 1977;
Norton in Can Res 48:7067–7071, 1988; Hahnfeldt et al. in Can Res 59:4770–4775,
1999; Anderson et al. in ComputMathMethodsMed 2:129–154, 2000. https://doi.org/
10.1080/10273660008833042; Michor et al. in Nature 435:1267–1270, 2005. https://
doi.org/10.1038/nature03669; Anderson et al. in Cell 127:905–915, 2006. https://doi.
org/10.1016/j.cell.2006.09.042; Benzekry et al. in PLoS Comput Biol 10:e1003800,
2014. https://doi.org/10.1371/journal.pcbi.1003800). Following the introduction of
undergraduate and graduate programs in mathematical biology, we have begun to see
curricula developing with specific and exclusive focus on mathematical oncology. In
2018, 218 articles onmathematical modeling of cancer were published in various jour-
nals, including not only traditionalmodeling journals like theBulletin ofMathematical
Biology and the Journal of Theoretical Biology, but also publications in renowned sci-
ence, biology, and cancer journals with tremendous impact in the cancer field (Cell,
Cancer Research, Clinical Cancer Research, Cancer Discovery, Scientific Reports,
PNAS, PLoS Biology, Nature Communications, eLife, etc). This shows the breadth of
cancer models that are being developed for multiple purposes. While some models are
phenomenological in nature following a bottom-up approach, other models are more
top-down data-driven. Here, we discuss the emerging trend in mathematical oncology
publications to predict novel, optimal, sometimes even patient-specific treatments, and
propose a convention when to use a model to predict novel treatments and, probably
more importantly, when not to.
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1 Introduction

1.1 The Past and Present of Mathematical Oncology

Mathematical modeling in cancer has a long history as reviewed in multiple publi-
cations (Araujo and McElwain 2004; Lowengrub et al. 2010; Altrock et al. 2015;
Friedman 2004). According to PubMed records provided by the US National Library
of Medicine and the National Institutes of Health, the number of publications on
mathematical modeling of cancer is growing at an exponential rate (Fig. 1). Early
conceptual mathematical models highlighted the universal dynamics of cancer growth
(Agur et al. 2002; Brú et al. 2003; Guiot et al. 2003) and the emergent properties of
proliferation and invasion mechanisms (Anderson et al. 2006; Hillen 2006). As can-
cer is an umbrella term for more than 100 different diseases with different intrinsic
dynamics and unique environmental and ecological niches, mathematical models have
begun to focus on the properties of specific cancers such as leukemia (Michor et al.
2005) and glioma (Eikenberry et al. 2010) or cancers of the breast (Enderling et al.
2006), prostate (Swanson et al. 2001), or bladder (Bunimovich-Mendrazitsky et al.
2008) among many others. To this success, model parameters need to be carefully
assigned, often from the experimental and the clinical literature of the specific can-
cer. Numerous mathematical oncology publications stand out by virtue of their truly
integrative nature and deliberate and interdisciplinary model calibration and valida-
tion effort (Kozusko et al. 2001; Anderson et al. 2009; Leder et al. 2013; Marusyk
et al. 2014; Prokopiou et al. 2015; Poleszczuk and Enderling 2018; Kaznatcheev et al.
2019). One of the mainstays of mathematical oncology is modeling of the various
oncological treatments including surgery (Hanin et al. 2015; Enderling et al. 2005),
radiation therapy (McAneney and O’Rourke 2007; Kempf et al. 2010; Alfonso et al.

Fig. 1 PubMed query for “Mathematical model” AND (“cancer” OR “tumor”), accessed 3/1/19. The trend
line indicates an exponential increase in number of mathematical oncology publications since 1968 (Color
figure online)
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2014; Gao et al. 2013), chemotherapy (Powathil et al. 2007; Castorina et al. 2009;
Hinow et al. 2009; Vainstein et al. 2011; Powathil et al. 2012), anti-angiogenic ther-
apy (Poleszczuk et al. 2015; Sachs et al. 2001; Poleszczuk et al. 2011; Hutchinson
et al. 2011), virotherapy (Dingli et al. 2006; Friedman et al. 2006; Mahasa et al. 2017;
Santiago et al. 2017), and immunotherapy (Kogan et al. 2012; Elishmereni et al. 2011;
Nani and Freedman 2000; Kuznetsov and Knott 2001; Castiglione and Piccoli 2007;
Kirschner and Tsygvintsev 2009) as well as their numerous possible combinations
(Hawkins-Daarud et al. 2015; Bunimovich-Mendrazitsky et al. 2011; Alfonso et al.
2019).

Several agencies have provided funding mechanisms for mathematical oncology,
including the National Science Foundation (NSF) and the National Cancer Institute
(NCI) in the USA, the Engineering and Physical Sciences Research Council (EPSRC)
and Cancer Research UK, the German Cancer Research Center (DKFZ), and multi-
national frameworks within the European Union. Several mathematical modeling
research groups and even mathematical oncology departments have become estab-
lished in cancer centers and medical schools around the world. As a result, we begin
towitness the translation and evaluation ofmathematicalmodel-derived treatment pro-
tocols in prospective clinical trials (NCT03557372, NCT03768856, NCT03656133)
(Leder et al. 2013; Prokopiou et al. 2015; Alfonso et al. 2018). Mathematical explo-
ration of the evolutionary dynamics underlying the development of prostate cancer
resistance to hormone therapy (Cunningham et al. 2011; Gatenby et al. 2009; Gatenby
and Brown 2018) led to a clinical trial of adaptive hormone therapywith treatment hol-
idays to prevent competitive release of resistant cancer cells (NCT02415621). Early
results indicate that most patients maintained stable oscillations of tumor burdens,
thereby significantly increasing time to progression from 13 to at least 27 months.
Interestingly, on average, patients received less than half of the treatment dose than
conventional continuous therapy (Zhang et al. 2017). With these mathematical oncol-
ogy success stories, cancer biologists and oncologists begin to embrace mathematical
modeling as a valuable methodology. With this, the mathematical oncology commu-
nity has the opportunity and responsibility to clearly identify the purpose of developed
models and critically evaluate and discuss if model predictions are an academic exer-
cise or have true translational merit.

As many mathematical models have become increasingly complex through the
iterative inclusion of the growing biological knowledge, the field of mathematical
modeling has slipped into parameterization frommultiple sources oftenmixing cancer
types, experimental conditions, and even spatio-temporal scales. It has become routine
to provide references for parameter values from other theoretical studies; in selected
instances, the parameter value reference trail may follow back many publications to
an initially “assumed” value without any biological or clinical data supporting the
assumption. Incorrectly calibrated and unvalidated mathematical models risk simulat-
ing cancer growth and treatment response dynamics that are, albeit being interesting,
biologically and clinically unrealistic. Yet, it has become an increasing trend to use
inadequately parameterized mathematical cancer models to predict untested treatment
protocols, to propose optimize therapy combinations and, in some cases, to develop
personalized optimal therapy approaches.
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Fig. 2 Proposed pipeline for predicting novel, potentially optimal therapy. Dashed arrows mark commonly
used shortcuts to predictions that should be avoided in translational models to predict novel treatments
(Color figure online)

Bottom-up phenomenological mathematical models often formalize biological
mechanisms. Model analysis and numerical simulations demonstrate evolving popu-
lation level dynamics based on these mechanisms. This allows the study of complex
biological andmathematical systems, and howperturbations to individualmechanisms
or rate constants qualitatively change tumor growth or treatment response. Vis-à-vis
the bottom-up approach is the top-down approach, where population level dynamics
are used to infer the mechanisms that most likely underlie the observed data. With
sparse data, this often limits complexity of mathematical oncology models. Another
crucial distinction to make is mathematical oncology vs. oncological mathematics.
While the former uses mathematical modeling as a purposely built tool to help answer
specific oncological questions, the latter uses cancer biology to motivate development
of interesting mathematics. Both approaches provide valuable scientific contributions
and are not necessarily mutually exclusive. However, as many cancer modelers lack
access to high-resolution cancer biology or oncology data including independent train-
ing and validation data sets, many models are merely academic and not positioned to
speculate on optimal therapy.

1.2 The Future of Mathematical Oncology Predictions for Novel Cancer Therapies

Before a mathematical model can make reliable, testable and translational predic-
tions about novel therapeutic doses, treatment protocols or combination therapies, we
propose that six successive steps have to be followed (Fig. 2):

1. Identify a putative biomarker

To simulate cancer and cancer therapy, a biomarker of tumor burden needs to be
identified. This may be the number of cancer cells in a petri dish or in the patient’s
blood for liquid tumors, tumor volume derived from medical images or caliper mea-
surements from mouse experiments for solid cancers, or surrogate markers such as
prostate-specific antigen (PSA) in liquid biopsies. In contrast to statistical models that
correlate random variables (such as pre-treatment tumor size with treatment outcome),
mathematical modeling simulates the dynamics of the tumor and their underlying

123



3726 R. Brady, H. Enderling

mechanisms. Therefore, the data of putative biomarkers for mechanistic modeling
should be temporally resolved.

2. Develop mechanistic model

The change of the putative biomarker over time is described using dynamic models
such as mechanistic differential equations or cellular automata or agent-based models
(here, we focus on differential equations but the application to discrete models is
intuitive). If only temporal data are available, ordinary differential equations (ODE)
are often sufficient. Partial differential equations (PDE) should only be used if spatio-
temporally resolved data are available, or temporal dynamics alone are insufficient
to explain the observed biomarker dynamics. The number of model variables and
parameters should be determined with utmost care and limited based on the available
data. Information criteria offer invaluable analyses to balance model complexity with
degrees of freedom (Akaike 1974; Ludden et al. 1994).

If longitudinal data are limited (as often in clinical studies), non-mechanistic or
statistical models may be considered that simulate the dynamics of the biomarker
without resolution of the underlying mechanisms. Such models, however, will have
limited ability to predict novel treatment protocols beyond considerations for treatment
holidays.

3. Calibrate model with existing data

The mathematical model is only suitable to simulate and predict novel treatment
protocols if it can fit and predict the data of known therapies. If possible, model param-
eters should not be taken from the empirical wisdom or the literature but derived from
the data within realistic bounds. A variety of machine learning and established statis-
tical methods are already available to identify model parameters for simple models.
To further aid in parameter estimation for larger models and across multiple data sets,
however, major advances are still required to reliably calibrate mathematical models.
Model analysis should be performed to test parameter identifiability (Eisenberg and
Jain 2017). Non-identifiable parameters or parameters with low sensitivitymay be rep-
resented as (non-)linear combination of other model parameters or assigned nominal
values from the appropriate literature.

For individual patient data andmodels built with the intent to predict patient-specific
treatment protocols, it is important to identify which parameters drive individual
response dynamics, andwhich parameters can be held uniform across a patient popula-
tion. As above, the number of patient-specific parameters should be kept to aminimum
to be able to learn these parameter values from patient data to simulate and predict
personalized treatment protocols.

4. Validate model with untrained data

Once calibrated with data, the mathematical model must be validated against inde-
pendent data. The learned model parameters should be held constant, and the model’s
ability to fit untrained data should be evaluated via methods such as R2 analyses. If
independent training and testing data sets are not available, data should be randomly
stratified into model calibration and validation cohorts. For smaller data sets, leave-
one-out studies may be required to learn and test model parameters. This step provides
an internal control and prevents overfitting to training data.
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5. Evaluate predictive performance for known treatment

Amodel’s ability to fit data does not imply that it is predictive.Manymodels may fit
data equally well but make different predictions forward in time (Murphy et al. 2016).
Before a mathematical model should be used to predict novel treatments, the model
must be able to predict responses to treatment protocols for which data are available.
As above, an independent prediction evaluation cohort is the gold standard, but random
stratification of a single data set into model training, validation, and prediction perfor-
mance evaluation may be required and acceptable. How to evaluate model prediction
performance depends on the purpose of the model. If the model aims to predict binary
events (response, resistance, survival), statistical tools such as the concordance index
or area under the receiver operating characteristic curvemay be applicable (Steyerberg
et al. 2010). To further understand and assess clinical utility, the positive predictive
value (PPV) and negative predictive value (NPV) formodel prediction should be calcu-
lated (Janes et al. 2015). If and only if the predictive performance for known treatment
responses and outcomes is sufficiently high (a conventional notion of acceptable cut-
offs for predictive performance is yet to be established in the field of mathematical
oncology), models may be used to simulate and predict untested treatments.

6. Simulate and predict untested treatments

To use calibrated and validatedmodel parameters to simulate alternative treatments,
it is important to limit the exploration space to treatments that can be derived from the
calibrated and validated model. Treatments that the model was not trained to predict
should not be simulated. Furthermore, if, for example, the training data contain only
single-dose levels and the biological dose response curves are unknown, predictions
into untested doses should be met with caution and limited confidence.

While it is straightforward to simulate arbitrary treatment protocols, clinical feasi-
bility (for example, radiation therapies can rarely be delivered more than twice a day
or on the weekend due to logistical constraints) and biologically important bounds
(such as drug agent half-life or toxicity) must be honored. Additionally, when com-
paring predicted responses to innovative treatments with the data, one can only draw
conclusions about the evaluated regimes. To claim ‘optimal therapy,’ rigorous optimal
control approaches and an exhaustive analysis should be provided.

2 Conclusions

Mathematical oncology has contributed significant scientific insights into the dynam-
ics of tumor growth and treatment response and is uniquely positioned to help map
the multidimensional treatment response space (Enderling et al. 2018). The art of
the mathematical oncology profession must deploy a standard to only predict novel
treatments if the model is properly trained and validated to do so. We call for the
convention to up-front identify model purpose and model predictions as either ‘aca-
demic’ or ‘translational’ in nature. Shortcuts to translational treatment predictions
(Fig. 2) may hurt the field of mathematical oncology that is in the advent of earning
the trust of oncologists and, ultimately, may hurt patients that would be prospectively
treated with ill-informed, model-suggested treatment protocols.
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