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Abstract Background/purpose: Peroxisome proliferator-activated receptor g (PPARg) is a
major transcription factor of energy metabolism-associated genes, and three PPARg isoforms
have been identified in periodontal tissues and cells. When energy metabolism homeostasis is
affected by PPARg downregulation in periodontal ligament fibroblasts (PDLFs), osteo/cemen-
togenic abilities are markedly lost. Herein, we investigated whether PPARg agonists promote
periodontal tissue regeneration, and which PPARg isoforms and metabolic pathways are indis-
pensable for osteo/cementogenic abilities.
Materials and methods: A PPARg agonist was locally administered to regenerate murine peri-
odontal tissue. The distinct functions of the PPARg isoforms in PDLFs were assessed using an
overexpression strategy. Candidate metabolic processes were searched using gene ontology
analysis of PPARg-knockdown PDLFs. In vitro differentiation assays were performed to eval-
uate the effects of farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP), two
major isoprenoid intermediates.
Results: PPARg agonists accelerated periodontal tissue regeneration. Full-length PPARg over-
expression specifically enhanced the osteo/cementogenic differentiation of PPARg agonist
einduced PDLFs. The isoprenoid metabolic process was the top-ranked downregulated
metabolism-associated pathway following PPARg knockdown; FPP and GGPP enhanced and
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suppressed PDLFs’ differentiation, respectively. Gene expression analysis of human clinical
periodontal tissues revealed that osteocalcin correlated with farnesyl pyrophosphate synthe-
tase (FDPS ), which catalyzes FPP production, but not with two FPP conversion enzymes: ger-
anylgeranyl diphosphate synthase 1 (GGPS1) or farnesyl diphosphate farnesyltransferase 1
(FDFT1).
Conclusion: Preferable PPARg agonistic actions depend on the full-length PPARg isoform. FPP
increased PDLFs’ osteo/cementogenic abilities. Therefore, administering FPP and precisely
controlling FDPS, GGPS1, and FDFT1 activities could be a novel strategy for accelerating peri-
odontal tissue regeneration.
ª 2025 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Fibroblastic cells in periodontal ligament tissue (periodontal
ligament fibroblasts, PDLFs) possess stem cellelike proper-
ties and, thus, can differentiate into osteo/cementogenic
cells.1e5 Inhibition of Wingless, the Drosophila melanogaster
segment-polarity gene, and integrase-1, the vertebrate ho-
mologue (Wnt) secretion, such as Wnt3a, a key inducer of
osteogenesis and cementogenesis, in murine PDLFs leads to a
higher width of periodontal ligament tissue and suppresses
the expression of osteogenic markers in periodontal ligament
tissue.6 Therefore, osteo/cementogenic abilities of PDLFs
are indispensable for maintaining periodontal tissue ho-
meostasis. During periodontal regeneration, PDLFs prolifer-
ate and migrate from the remaining periodontal ligament
tissue to the surgically disinfected space and reconstruct the
physiological periodontal tissue composed of cementum,
alveolar bone, and periodontal ligament tissue.7

PDLFs utilize energy metabolic processes to maintain
osteo/cementogenic differentiation abilities.8 Knockdown
of peroxisome proliferator-activated receptor g (PPARg), a
key transcription factor for genes involved in energy
metabolic pathways, in PDLFs results in a marked reduction
in the expression of osteo/cementogenic-related and
extracellular matrix (ECM)-related genes. Moreover, thia-
zolidinedione compounds (TZDs), chemical agonists of
PPARg, such as rosiglitazone and troglitazone, enhance the
osteo/cementogenic abilities in vitro.8 Periodontal tissue/
cells express three isoforms of PPARg: a full-length PPARg
and two partially deleted isoforms, ubiquitous isoform of
PPARg (PPARg-UBI) and periodontal isoform of PPARg
(PPARg-PDL).9 PPARg-UBI was previously identified in adi-
pocytes, and PPARg-PDL was newly identified as a PDL-
specific isoform.9,10 Local application of procyanidin B2, a
PPARg ligand, into the periodontal tissue of ligature-
induced periodontitis mice prevents alveolar bone loss.9

Mechanistically, PDLFs treated with procyanidin B2 exhibit
suppressed expression of PPARg-UBI, which stabilizes the
nuclear factor kB (NF-kB) p65 and the expression of genes
encoding pro-inflammatory cytokines. PPARg isoform-
dependent functions have been identified; however, the
distinct functions of PPARg isoforms in osteo/cementogenic
differentiation remain unclear.

PPARg is a key modulator of energy metabolism, such as
lipid and glucose metabolism;11 acetyl coenzyme A (acetyl-
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CoA) is a central coordinator for lipid and glucose meta-
bolism.12 However, which metabolic pathways and in-
termediates contribute to maintaining the osteo/
cementogenic abilities of PDLFs remain unclear.

In the present study, we assessed the effects of TZDs on
periodontal tissue regeneration. Next, the osteo/cemen-
togenic abilities of the three PPARg isoforms in PDLFs were
explored. Subsequently, the isoprenoid metabolic pathway
was identified as the most severely downregulated meta-
bolic pathway in PPARg-knockdown PDLFs. Isoprenoid syn-
thesis originates from the mevalonate pathway, which
starts with the conversion of 3-hydroxy-3-methylglutaryl-
CoA to mevalonic acid, and then synthesizes intermediates
such as farnesyl diphosphate (FPP) and geranylgeranyl
diphosphate (GGPP) by the condensation reaction of iso-
pentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP). Therefore, FPP and GGPP were used to identify
the key intermediates for osteo/cementogenic abilities.

Materials and methods

Reagents

Rosiglitazone (R2408), FPP ammonium salt (F6892), and
GGPP ammonium salt (G6025) were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Troglitazone (209e19481) was
purchased from FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan).

Experimental animals

All experimental procedures conformed to the “Regulations
for Animal Experiments and Related Activities at Tohoku
University” and were reviewed by the Institutional Labo-
ratory Animal Care and Use Committee of Tohoku University
and approved by the President of the University (Permit No.
2020DnA-044-06). Eleven-week-old male C57BL6/J mice
(specific pathogen-free grade) were purchased from CLEA
Japan, Inc. The mice were allowed to adapt to the new
environment for one week before the experiments. The
mice were anesthetized, and silk ligatures (Elp Sterile
Blade Silk, Black, 5e0, Akiyama Medical MFG, Tokyo,
Japan) were tied around the left second maxillary molar for
14 days. After the 14-day periodontal inflammation period,
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Table 1 Primer pairs used in this study.

Primer
name

Species Direction Sequence

AKR1C3 Human forward ATCCGAAGCAAGATTGCAGA
reverse GGACCAACTCTGGTCGATGA

ALDH3A2 Human forward GGCAAAGCTTCTCCCTCAGT
reverse CCATGACAATTTTGCCAACC

AKR1C1 Human forward CAGCCTTGGAAAGGTCACTG
reverse TGGGATCACTTCCTCACCTG

SDC3 Human forward GGGCTACTTCGAGCAGGAGT
reverse GAGGGGAGCTCTTCAAATGG

FDPS Human forward AGGGCAATGTGGATCTTGTC
reverse GAAAGAACTCCCCCATCTCC

GGPS1 Human forward TTGGCTGAAAGTTCCAGAGG
reverse CCACGTCGGAGTTTTGAGTT

FDFT1 Human forward CCTCAAGAGGTTTGGAGCAG
reverse TGGTGCAGTGCATTGGTTAT

COL1A1 Human forward GTGCTAAAGGTGCCAATGGT
reverse ACCAGGTTCACCGCTGTTAC

OCN Human forward GGCGCTACCTGTATCAATGG
reverse TCAGCCAACTCGTCACAGTC

HPRT Human forward TGGCGTCGTGATTAGTGATG
reverse CGAGCAAGACGTTCAGTCCT

AKR1C3 Z aldo-keto reductase family 1 member C3.
ALDH3A2 Z aldehyde dehydrogenase 3 family member A2.
AKR1C1 Z aldo-keto reductase family 1 member C1.
SDC3 Z syndecan 3, FDPS Z farnesyl pyrophosphate synthe-
tase.
GGPS1 Z geranylgeranyl diphosphate synthase 1.
FDFT1 Z farnesyl diphosphate farnesyltransferase 1.
COL1A1 Z collagen type I alpha 1 chain, OCN Z osteocalcin.
HPRT Z hypoxanthine phosphoribosyltransferase 1.
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rosiglitazone (1.2 mg/kg) dissolved in solvent (50% DPBS,
40% PEG300, 5% Tween 80, 5% DMSO) was locally applied
into the mesial and distal sides of the left second maxillary
molars every other day for 14 days. The mice in the control
group were administered the same amount of solvent at the
same frequency. The right maxillae of the rosiglitazone and
solvent-treated control groups were not treated throughout
the experimental period.

Micro-computed tomography

Micro-computed tomography (mCT) was conducted as pre-
viously described.9,13 The vertical distances from the
cemento-enamel junction to the alveolar bone crest at the
mesial and distal roots of the second maxillary molars were
measured and added. This sum was used to quantitatively
compare bone regeneration levels in the periodontal
regeneration stage.

Histology

The maxilla samples used for mCT analysis were decalcified
using ethylenediaminetetraacetic acid at 4 �C for 2 weeks.
Masson’s trichrome staining was performed on 5 mm-thick
paraffin sections as previously described.14e16

Cell culture and stable cell line generation

Human PDLFs were purchased from Lonza Inc. (Walkersville,
MD, USA) and maintained in low-glucose Dulbecco’s modified
Eaglemedium (DMEM; Thermo Fisher Scientific, Carlsbad, CA,
USA) supplemented with 100 units/mL of penicillin, 100 mg/
mL of streptomycin, and 10% fetal bovine system. PDLFs were
cultivated at 37 �C under humidified atmospheric conditions
(5% CO2 and 95% air). PDLFs stably expressing the full-length
(PPARg), PPARg-UBI, and PPARg-PDL were generated as pre-
viously described.9 For inducing osteo/cementogenic differ-
entiation, PDLFs were cultured in an induction medium (low-
glucose DMEMwith 10% FBS, ascorbic acid (100 mg/mL), and b-
glycerophosphate (10 mM)) in the presence or absence of
troglitazone or rosiglitazone for 12 days.

Alkaline phosphatase activity

Alkaline phosphatase (ALP) activity was measured as pre-
viously described17 and normalized to the cell numbers
obtained from a parallel cell culture.18

Alizarin red S staining

Alizarin red S staining and the average intensity calcula-
tions were performed as previously described.19

RNA-seq data processing

The RNA-seq dataset deposited in NCBI’s Gene Expression
Omnibus (GEO, accession number: GSE178607) was pro-
cessed as previously described.8,20 Subsequently, gene
ontology analyses of enhanced biological processes of the
PDLFs transfected with control siRNA relative to the cells
562
transfected with siRNA for PPARg were conducted to
identify the pathways suppressed by PPARg knockdown.

Quantitative reverse transcription polymerase
chain reaction

Total RNA purification, cDNA preparation, and quantitative
reverse transcription polymerase chain reaction (qPCR)
were conducted as previously described.21e23 Osteocalcin
(OCN ) and collagen type I alpha 1 chain (COL1A1) expres-
sion analyses were conducted previously.9 Hypoxanthine
phosphoribosyltransferase 1 (HPRT ) was used as the in-
ternal reference control. The qPCR primer sequences used
for the target genes are listed in Table 1.

Immunohistochemical analyses

Immunostaining was performed on 5-mm thick paraffin
sections. The fixed maxillae of 1.5-month-old male mice
were decalcified and embedded in paraffin as described
above. The sections were stained with Alexa Fluor� 488
Tyramide SuperBoost� Kit (B40922, Thermo Fisher Scienti-
fic) according to the manufacturer’s instructions. The sec-
tions were incubated with rabbit IgG (DA1E, Cell Signaling
Technologies, Danvers, MA, final concentration 10 mg/mL),
rabbit anti-farnesyl diphosphate farnesyltransferase 1
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(FDFT1) (13128-1-AP, Proteintech, Rosemont, IL, final con-
centration 10 mg/mL), rabbit anti-farnesyl pyrophosphate
synthetase (FDPS) (16129-1-AP, Proteintech, final concen-
tration 10 mg/mL), and rabbit anti-geranylgeranyl diphos-
phate synthase 1 (GGPS1) (14944-1-AP, Proteintech, final
concentration 10 mg/mL) at 4 �C overnight. Immunofluo-
rescent signals were observed using a fluorescence micro-
scope (BZ-X710; Keyence, Osaka, Japan).

Clinical sample preparation

Clinical samples were prepared as previously described with
the approval of the Ethics Committee of Tohoku University
Graduate School ofDentistry (approval number: 2020-3-045).9

Statistical analysis

Statistical analysis was performed using a one-way analysis
of variance, followed by Tukey’s test (Fig. 2) and Dunnett’s
test (Fig. 3).

Results

Rosiglitazone accelerates periodontal tissue
regeneration after ligature removal

To investigate whether TZDs such as rosiglitazone and tro-
glitazone can induce periodontal tissue regeneration
in vivo, ligature ties surrounding the second molar were
removed after 14 days. Subsequently, rosiglitazone was
administered locally every alternate day for 14 days.
Quantitative analysis of the distance between the
cemento-enamel junction and the alveolar bone crest
showed that the distance was significantly narrower in the
rosiglitazone-treated group than in the solvent-treated
group (P Z 0.0496), indicating that rosiglitazone adminis-
tration accelerated alveolar bone regeneration (Fig. 1A).
No apparent effect was observed on the non-ligature side
(Fig. 1A). Masson’s trichrome staining of ligated second
molars that exhibited median values of the distance be-
tween the cemento-enamel junction and the alveolar bone
crest in the rosiglitazone and solvent-treated control
groups showed that rosiglitazone treatment induced alve-
olar bone regeneration (Fig. 1B).

Overexpression of full-length peroxisome
proliferator-activated receptor g specifically
enhances troglitazone-induced osteo/
cementogenic differentiation of periodontal
ligament fibroblasts

PDLF-PPARg, PDLF-PPARg-UBI, PDLF-PPARg-PDL, and PDLF-
empty, which stably expressed the empty vector, were
cultured in osteo/cementogenic induction medium in the
presence or absence of troglitazone (10 mM) for 12 days. ALP
activity and calcium nodule formation, which are specific
markers of osteo/cementogenic differentiation, were evalu-
ated every three days. PDLF-PPARg caused a marked increase
in ALP activity upon troglitazone treatment on day 6 (Fig. 2A).
Concomitantly, troglitazone treatment of PDLF-PPARg showed
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strong calcium nodule formation at days 9 and 12 (Fig. 2B)
Therefore, analyses of the distinct isoforms revealed that the
agonistic actions of troglitazone for osteo/cementogenic dif-
ferentiation were caused by the full-length PPARg isoform.

Intermediates of the isoprenoid metabolic process
regulate the osteo/cementogenic abilities of
periodontal ligament fibroblasts

Toexplore thekeyenergymetabolic pathways associatedwith
the osteo/cementogenic abilities of PDLFs, differentially
downregulated genes of PDLFs transfected with siRNA for
PPARG by comparing with PDLFs transfected with control
siRNA were extracted from publicly available RNA-seq data-
sets. Subsequently, gene ontology analysis was conducted to
rank the pathways suppressed by PPARG knockdown
(Supplemental Fig. 1). Pathways associated with osteo/
cementogenic differentiation and bone matrix mineraliza-
tion, and withmetabolic pathways are highlighted in blue and
red, respectively (Fig. 3A). The isoprenoid metabolic process
rankedfirst among themetabolic pathways. To assesswhether
TZD treatment upregulated the expression of isoprenoid
metabolic process-related geneswith high values of fragments
per kilobase of exon per million mapped reads and signifi-
cantly suppressed the expression level by PPARG knockdown,
PDLFswere stimulatedwith TZDs for 3 and 6 days under osteo/
cementogenic induction. We found that three of the four
examined genes, aldo-keto reductase family 1 member C3
(AKR1C3),aldo-keto reductase family 1memberC1 (AKR1C1),
and syndecan 3 (SDC3), were upregulated by TZDs (Fig. 3B).
These results indicate that TZDs were at least partially able to
trigger an isoprenoid pathway in an osteogenic environment.
Next, PDLFs were stimulated with the key isoprenoid in-
termediates FPP (20 mM) or GGPP (20 mM) for 6 days, and ALP
activity was assessed (Fig. 3C). FPP increased ALP activity.
However, GGPP synthesized from FPP by GGPS1 did not
enhance ALP activity. TZD treatment enhanced the ALP ac-
tivity of PDLFs compared to DMSO treatment, as expected,
and FPP, but not GGPP, increased ALP activity. Alizarin Red S
staining showed that FPP treatment accelerated calcified
nodule formation (Fig. 3D). Subsequently, the expression of
three catalytic enzymes inmouse periodontal ligament tissues
was analyzed: FDPS, which catalyzes the production of FPP
from IPP and DMAPP; GGPS1; and FDFT1, which enzymatically
converts FPP to squalene. Immunohistochemical analysis of
the one-third apex of the periodontal tissue of the first and
second molars showed that FDPS, GGPS1, and FDFT1 were
expressed in the periodontal ligament tissue, indicating that
the isoprenoid metabolic process was active (Fig. 3E).

Farnesyl pyrophosphate synthetase expression is
correlated with osteocalcin expression, and
farnesyl diphosphate farnesyltransferase 1
expression is strongly correlated with collagen
type I alpha 1 chain expression in human clinical
periodontal tissues

Human clinical periodontal tissue samples obtained during
surgical or nonsurgical periodontal treatment, as described
previously,9 were used to examine whether a correlation



Figure 1 Local administration of rosiglitazone promotes periodontal tissue regeneration in amurinemodel. (A) The vertical distances
from the cemento-enamel junction to the alveolar bone crest at the mesial and distal roots at 14 days after ligature removal were
measured and summed (nZ 13). (B) Demineralized male maxilla sections treated with 0 or 1.2 mg/kg of rosiglitazone for 14 days after
ligature removal were stained with Masson’s trichrome. *P < 0.05 was considered to be a statistically significant difference from the
control. n.s.Z not significant. The border of the alveolar bone and periodontal ligament tissue are indicated by dash line. Scale bars
correspond to 500 and 100 mm at low and high magnification, respectively. Ros Z rosiglitazone.
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existed between the expression levels of OCN, an osteo/
cementogenic-related gene; COL1A1, an ECM-related
gene; and FDPS, GGPS1, or FDFT1. A weak correlation be-
tween OCN and FDPS was identified (r Z 0.221); however,
no apparent correlation between OCN and GGPS1
(r Z 0.173) or between OCN and FDFT1 (r Z �0.036) was
observed (Fig. 4). COL1A1 expression was strongly corre-
lated with FDFT1 (r Z 0.947) but not with FDPS
(r Z �0.014) or GGPS1 (r Z �0.032).
Discussion

PPARg agonists, such as rosiglitazone and procyanidin B2,
can prevent periodontal tissue breakdown in experimental
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periodontitis models.9,24 The present study demonstrated
for the first time that local administration of TZDs into
regenerating periodontal tissue accelerated periodontal
tissue regeneration in an animal model (Fig. 1). Mechanis-
tically, the TZD-induced differentiation abilities of PDLFs
relied on full-length PPARg rather than the other two
deleted isoforms (Fig. 2). Furthermore, both FPP and GGPP
showed potent but inverse effects on the osteo/cemento-
genic abilities of PDLFs, with FPP showing inducible abili-
ties (Fig. 3).

Among the PPARg agonists, troglitazone showed the
most drastic inducible effects on osteo/cementogenic dif-
ferentiation and matrix mineralization of PDLFs in vitro,8

we conducted in vitro experiments primarily with trogli-
tazone as the PPARg agonist (Fig. 2). However, troglitazone



Figure 2 Overexpression of full-length PPARg specifically enhances troglitazone-induced osteo/cementogenic differentiation of
PDLFs. (A, B) PDLF-empty, PDLF-PPARg, PDLF-PPARg-UBI, and PDLF-PPARg-PDL were cultured in mineralization-inducing medium
for a maximum of 12 days. ALP activities were normalized by cell numbers (A) and calcium deposition was visualized by Alizarin Red
S staining (B). ***P < 0.001 was considered a statistically significant difference compared with the PDLF-empty treated with tro-
glitazone on day 6. n.s. Z not significant, Tro Z troglitazone.
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was replaced with rosiglitazone for clinical use as a drug for
type 2 diabetes mellitus because of its hepatotoxicity.25e27

Therefore, rosiglitazone was used for the in vivo study
(Fig. 1). As the original ALP activities (day 0) and the ALP
activities at the early differentiation stage (day 3) of PDLF-
PPARg, PDLF-PPARg-UBI, and PDLF-PPARg-PDL were higher
than those of PDLF-empty (Fig. 2A). Not only full-length
PPARg, but PPARg-UBI and PPARg-PDL possessed osteo/
cementogenic inducible abilities independent of TZDs. In
particular, PPARg-PDL expression in clinical periodontal
tissue was highly correlated with COL1A1 expression.9 The
deduced amino acid sequence indicates that PPARg-UBI and
PPARg-PDL lack the ligand binding domain. Therefore,
PPARg-UBI and PPARg-PDL may not act as a nuclear re-
ceptor. Some portions of the overexpressed PPARg-UBI and
PPARg-PDL localized in the cytoplasm. Further studies are
required to determine how PPARg-UBI and PPARg-PDL
enhance osteo/cementogenic abilities by modulating
protein-protein interactions in PDLFs.
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Acetyl-CoA participates in lipid, glucose, and amino acid
metabolism and is the starting material for the mevalonate
pathway.28 Amino-bisphosphonate, an analog of inorganic
pyrophosphate, which inhibits FDPS enzymatic ability in
osteoclasts, protects against osteoporosis.29e31 Thus, inhi-
bition of the mevalonate pathway can retain bone volume
and bone mineral density in vivo. In contrast, the in vitro
finding that FPP accelerated the osteo/cementogenic dif-
ferentiation and matrix mineralization abilities of PDLFs
suggested a preferable role of FPP in PDLFs (Fig. 3). In line
with the present study, PDLFs stimulated with alendronate,
an amino-bisphosphonate, at physiological concentrations
(2e25 mM) showed lower ALP activity and suppressed
calcified nodule formation.32 As FPP showed preferential
but GGPP showed adverse effects (Fig. 3), FDPS expression
was more correlated with OCN than GGPS1 and FDFT1
(Fig. 4), and the expression levels of COL1A1 and FDFT1
were highly correlated (Fig. 4), selective conversion of FPP
into squalene rather than GGPP might be key for FPP-



Figure 3 The isoprenoid metabolic process is most severely downregulated metabolic pathway in PPARg-knockdown PDLFs. (A)
Gene ontology analysis of the downregulated genes in PDLFs transfected with siRNA for PPARG by comparing with PDLFs transfected
with control siRNA. Raw RNA-seq data were obtained from NCBI’s Gene Expression Omnibus (GEO) under accession number
GSE178607. (B) PDLF-1 cells were cultured in mineralization-inducing medium for 3 and 6 days in the presence of troglitazone
(10 mM) or rosiglitazone (10 mM). The gene expression levels of AKR1C3, ALDH3A2, AKR1C1, and SDC3, which were categorized in
“isoprenoid metabolic process” and identified as the downregulated genes in PPARG-knockdown PDLFs, were evaluated. (C) PDLFs
were cultured in mineralization-inducing medium for 6 days in the presence of troglitazone (10 mM) or rosiglitazone (10 mM) and FPP
(20 mM) or GGPP (20 mM). ALP activities were normalized by cell numbers. (D) PDLFs were cultured in mineralization-inducing
medium for 12 days in the presence of FPP (0, 10, 20 mM), and calcium deposition was visualized and quantified by Alizarin Red
S staining. (E) Demineralized 1.5-month-old maxilla sections were stained without the primary antibody or with mouse IgG, a-FDPS,
a-GGPS1, or a-FDFT1 antibodies, *P < 0.05; **P < 0.01; ***P < 0.001 indicated significantly higher expression levels compared with
those in DMSO-treated PDLFs at each day point (B), non-treated PDLFs in either DMSO, troglitazone, or rosiglitazone treatment
group (C), and non-treated PDLFs (D). Tro Z troglitazone. Ros Z rosiglitazone. P Z pulp. D Z dentin. Pdl Z periodontal ligament
tissue. Ab Z alveolar bone. Scale bars correspond to 100 mm.

X. Wang, S. Suzuki, H. Yuan et al.

566



Figure 4 Correlation between OCN or COL1A1 and FDPS, GGPS1, or FDFT1 expression in human clinical periodontal tissue. Human
clinical periodontal tissues (18 samples from different patients) were collected, and the correlative expression levels of OCN or
COL1A1 with FDPS, GGPS1, or FDFT1 were examined. The high (r > 0.8 or r < �0.8) and weak correlations (0.2 < r < 0.4 or
�0.4 < r < �0.2) are indicated by green and orange lines, respectively.

Journal of Dental Sciences 20 (2025) 560e568
induced matrix mineralization and differentiation of PDLFs
(Fig. 3D). Further studies are necessary to investigate the
precise molecular mechanisms by which exogenous FPP and
its derived intermediates participate in the osteo/cemen-
togenic differentiation and matrix mineralization of PDLFs.

In conclusion, by applying a PPARg agonist to a murine
periodontal regeneration model and utilizing PDLFs express-
ing various isoforms of PPARg, we found that PPARg agonistic
actions facilitated periodontal tissue regeneration by specif-
ically activating the most abundant isoform, full-length
PPARg. FPP, but not GGPP, induced osteo/cementogenic
differentiation of PDLFs. Thus, in addition to the local appli-
cation of TZDs and FPP, precise control of the activities of
FDPS, GGPS1, and FDFT1 in periodontal ligament tissue could
be a novel therapeutic method for periodontal regeneration.
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