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Background: Mitophagy has been found to play a significant part in the cancer

process in a growing number of studies in recent years. However, there is still a

lack of study on mitophagy-related genes’ (MRGs) prognostic potential and

clinical significance in hepatocellular carcinoma (HCC).

Methods: We employed bioinformatics and statistical knowledge to examine

the transcriptome data of HCC patients in the TCGA and GEO databases, with

the goal of constructing a multigene predictive model. Then, we separated the

patients into high- and low-risk groups based on the score. The model’s

dependability was determined using principal components analysis (PCA),

survival analysis, independent prognostic analysis, and receiver operating

characteristic (ROC) analysis. Following that, we examined the clinical

correlations, pharmacological treatment sensitivity, immune checkpoint

expression, and immunological correlations between patients in high and

low risk groups. Finally, we evaluated the variations in gene expression

between high- and low-risk groups and further analyzed the network core

genes using protein-protein interaction network analysis.

Results: Prognostic models were built using eight genes (OPTN, ATG12,

CSNK2A2, MFN1, PGAM5, SQSTM1, TOMM22, TOMM5). During validation,

the prognostic model demonstrated high reliability, indicating that it could

accurately predict the prognosis of HCC patients. Additionally, we discovered

that typical HCC treatmentmedicines had varying impacts on patients classified

as high or low risk, and that individuals classified as high risk aremore likely to fail
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immunotherapy. Additionally, the high-risk group expressed more

immunological checkpoints. The immunological status of patients in

different risk categories varies as well, and patients with a high-risk score

have a diminished ability to fight cancer. Finally, PPI analysis identified ten

related genes with potential for research.

Conclusion: Our prognostic model had good and reliable predictive ability, as

well as clinical diagnosis and treatment guiding significance. Eight prognostic

MRGs and ten network core genes merited further investigation.

KEYWORDS

hepatocellular carcinoma, mitophagy, prognosis, tumor microenvironment,
chemotherapy, targeted therapy, immune checkpoint

Introduction

Primary liver cancer is the second most frequently occurring

malignant tumor disease on a global scale, second only to lung

cancer in terms of incidence. The two primary types of liver

cancer are hepatocellular carcinoma (HCC) and intrahepatic

cholangiocarcinoma (ICC), with hepatocellular carcinoma

being the more common pathological type (comprising 75%–

85% of cases) (Wallace et al., 2015; Sayiner et al., 2019; Sung et al.,

2021). Any factor that contributes to hepatic cirrhosis is a

significant risk factor for hepatocellular cancer. Alcoholism

and hepatitis C virus infection are the most common in

European and American countries, while hepatitis B virus

infection is the most common in Asian countries (Massarweh

and El-Serag, 2017; Carcinoma, 2021; Shi et al., 2021).

Additionally, aflatoxin, non-alcoholic fatty liver disease,

polycyclic aromatic hydrocarbons in cigarettes, and

medication poisoning (e.g., aristolochic acid) have been

established as significant risk factors for HCC (Nixon, 1990;

Chen et al., 2002; Degasperi and Colombo, 2016; Lu et al., 2020).

Surgical resection is the primary therapeutic option for HCC.

Chemotherapy, radiation, immunotherapy, and tranarterial

embolization (TAE) are other treatment options (Adam, 2003;

Aitken and Hawkins, 2014; Xu et al., 2018; van Rosmalen et al.,

2019). Despite in-depth investigations, the prognosis of HCC

patients remains dismal and unpredictable due to the high

heterogeneity of the disease (Li and Wang, 2016; Ma et al.,

2019; Losic et al., 2020). The Barcelona Clinical Staging

System (BCLC), which evaluates the prognosis of patients by

examining characteristics such as tumor size, number, and

physical state, is currently the most widely used method for

predicting the prognosis of HCC patients (Mauro and Forner,

2022; Reig et al., 2022). Furthermore, several biomarkers have

been gradually discovered to be effective in determining the

prognosis of HCC patients (Gao et al., 2020; Nault and

Villanueva, 2021). However, long-term clinical experience has

shown that they are not always correct. As a result, finding new

prognostic prediction methods is still an important task in HCC

research at the moment, not only to better understand the

potential adverse outcomes of patients so that unnecessary

overtreatment can be avoided, but also to generate new ideas

for future research on HCC mechanisms.

Autophagy is a multistage process that occurs in eukaryotic

cells. Its primary function is to transport intracellular

components to lysosomes for degradation (Parzych and

Klionsky, 2014; Klionsky et al., 2021). This function is critical

for energy metabolism, stress defense, differentiation, and

development (Mizushima et al., 2008; Kim and Lee, 2014;

Levine and Kroemer, 2019). We now have adequate evidence

to demonstrate that autophagy is involved in a variety of human

illnesses, most notably cancer (Scrivo et al., 2018; Poillet-Perez

and White, 2019; Wen et al., 2021). Mitophagy is an autophagic

process that occurs in mitochondria, as well as a process by which

mitochondria clear defective mitochondrial proteins (Montava-

Garriga and Ganley, 2020; Belousov et al., 2021). Mitochondrial

DNA and protein are susceptible to mutation and folding

mistakes as a result of being exposed to high quantities of

reactive oxygen species, resulting in alterations in

mitochondrial function. Thus, mitochondrial autophagy is a

mechanism by which mitochondria regulate their own

amount and function (Ashrafi and Schwarz, 2013; Yan et al.,

2019). On the basis of previous research on autophagy,

researchers sought to determine whether mitophagy played a

similar role in human diseases, and the study’s findings

confirmed their hypothesis that mitophagy did play a distinct

role in the occurrence of cardiovascular system diseases, nervous

system diseases, and tumor diseases (Bravo-San Pedro et al.,

2017; Lou et al., 2020; Panigrahi et al., 2020). Thus, we have

grounds to wonder whether hepatocellular cancer likewise

exhibits an aberrant increase in mitochondrial autophagy. Is

mitophagy related to the prognosis of HCC? Given the scarcity of

previous research on mitophagy and hepatocellular carcinoma,

we carried out this study to see how mitophagy-related genes

were expressed and how they affected prognosis in HCC patients.

Our study collected transcriptome and clinical data from

HCC patients using public databases such as TCGA and GEO

and conducted in-depth and extensive analysis to develop a risk

model for HCC prognosis based on mitophagy-related genes. To
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demonstrate that our model is scientific, dependable, and stable,

we validated it using a number of validation approaches.

Additionally, we undertook a more thorough analysis of this

prognostic model to determine its link to clinical risk variables

and tumor-specific immune function. In conclusion, our study

was trustworthy, has clinical relevance, and could provide a new

direction for future research on HCC and mitophagy.

Materials and methods

Acquisition of research data

The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) databases were used to obtain transcriptome

and clinical data for all patients in this study. The TCGA data are

from the TCGA platform hepatocellular carcinoma data (TCGA-

LIHC), and the GEO data are from the GSE54236 microarray

data. Additionally, we processed patient clinical data. For

analysis, we extracted basic data (age, gender), survival data

(survival time/month, survival status), and pathology data

(grade, stage, and T, N, M stage) from patients in the TCGA

cohort. In the GEO cohort, only survival data was selected for

analysis (survival time and survival status). Finally, the patients

in the TCGA database serve as a training set for developing the

prognosis model, while the patients in the GEO database serve as

a validation set for developing and validating the prognosis

model.

We searched the Gene Set Enrichment Analysis (GSEA)

database for all mitophagy-related genes (MRGs).

Furthermore, we performed annotations on the final selected

gene functions and biological processes using the online

databases The Human Protein Atlas (HPA) and The Database

for Annotation, Visualization and Integrated Discovery

(DAVID).

Construction of prognostic models

We used R software to analyze the data after we completed

the data download and collation. We first used the “limma”

package to compare the expression of MRGs in tumor and non-

tumor patients in the TCGA and GEO cohorts, and the

intersection was determined by the screening results of the

two groups. We set the filter standard to FDR <0.75 (the log

function calculation results based on the difference multiple of

two were performed, and the positive and negative values

represented the up-regulation or down-regulation of genes,

and the value represented the ratio of the two groups of

expression levels). The selected gene expression was then

combined with clinical data, and we used the single factor

COX regression analysis of ‘survival’ package to screen for

prognostic related genes (the standard is that p value was less

than 0.05 or the confidence interval of HR does not contain 1).

The construction of the prognostic model consisted of a training

set (TCGA cohort) and a validation set (GEO cohort). The

prognostic genes co-expressed by TCGA and GEO were

extracted. Finally, we used the “glmnet” package to plug the

prognostic genes into the Least absolute shrinkage and selection

operator (LASSO) regression to build the prognostic model, and

the prognostic model genes were multiplied by the coefficient to

get the risk score formula.

The reliability of the prognostic model was
verified by multiple methods

After developing a prognostic model, it is necessary to

validate it in order to demonstrate its dependability in

predicting prognosis. The prognostic models were verified in

TCGA and GEO cohorts, respectively. For further analysis, we

divide the TCGA and GEO cohorts into high- and low-risk

groups using the risk score algorithm. Principal component

analysis (PCA) is a method for reducing the dimension of a

dataset by capturing the primary features and ignoring

superfluous repeated elements. Two groups of patients were

analyzed using PCA, and the model was validated using

observation point separation or fusion. Subsequently, we

analyzed the overall survival (OS) and progression-free

survival (PFS) of the two groups of patients based on the

product-limit method (KM method) to observe whether there

were significant differences in survival between the two groups.

Independent prognostic analysis is a method that uses single-

factor and multi-factor COX regression analysis to determine

whether the prognostic model is independent of various other

clinical traits and to predict prognosis. The difference between

univariate COX regression analysis and multivariate

regression analysis is whether the interaction between risk

score and other clinical case factors is considered. Receiver

operating characteristic (ROC) curve can reflect the trend of

sensitivity (FPR) and specificity (TPR) of prognostic models

when selecting different thresholds, and the area under the

curve is called Area under roc Curve (AUC). ROC curve and

AUC play a qualitative and quantitative analysis on the

prognosis model, respectively. Therefore, we finally use

ROC and AUC to evaluate the predictive ability of the

prognostic model. When AUC fluctuates in the range of

0.5-1, it is considered that the model has good prediction

accuracy.

Further exploration on prognostic model

Following validation of the prognostic model’s reliability, we

further investigated its potential guiding relevance in clinical

diagnosis and treatment, immunological infiltration, and so on.
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To assess the prognosis model’s utility in clinical diagnosis

and treatment, we first determined whether clinically relevant

variables (such as age, gender, grading, staging, and T, N, M

stage) of TCGA patients were significantly different across risk

groups, and then created a boxplot of clinical variables with

statistically significant differences. Then, we used the

“pRRophetic” package to investigate the drug sensitivity of

regularly used HCC medications, to observe their potential

therapeutic effects in high and low-risk groups, in order to

recognize chemotherapeutic agents with increased sensitivity

to low-risk groups. Additionally, we evaluated the expression

of immunological checkpoints in patients belonging to various

risk groups. Ultimately, we investigated the immune treatment of

patients with varying risk groups to determine whether there is a

FIGURE 1
flow chart.
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higher probability of immune escape during immunotherapy in

patients with a high-risk score compared to patients with a low-

risk score, giving rise to the failure of immunotherapy.

In the end, the gene expression levels between the high and

low-risk groups were analyzed again, and the differentially

expressed genes were enriched and analyzed for protein

interaction. The String online site was used for PPI analysis,

and then the ’Cytoscape ’ software was used to screen out the hub

genes in the network and visualize them. We chose the top

10 core genes and conducted single-gene clinical correlation,

TABLE.1 All mitophagy-related genes and the biological functions of their encoded proteins.

Gene Protein Biological process

CDC37(73) Cell division cycle 37 Regulating cell cycle

HDAC6(74) Histone deacetylase 6 Autophagy, Transcription, Transcription regulation

HUWE1(75) HECT, UBA and WWE domain containing E3 ubiquitin protein
ligase 1

Biological rhythms, Differentiation, DNA damage, DNA repair, Ubl conjugation
pathway

MFN2(76) Mitofusin 2 Apoptosis, Autophagy, Unfolded protein response

OPTN(77) Optineurin Autophagy, Host-virus interaction, Immunity, Innate immunity

PINK1(78) PTEN induced kinase 1 Autophagy

PRKN(78) Parkin RBR E3 ubiquitin protein ligase Autophagy, Transcription, Transcription regulation, Ubl conjugation pathway

TOMM7(79) Translocase of outer mitochondrial membrane 7 Protein transport, Transport

VPS13C(80) Vacuolar protein sorting 13 homolog C Mitochondrial respiration

ATG12(81) Autophagy related 12 Autophagy, Host-virus interaction, Ubl conjugation pathway

ATG5(82) Autophagy related 5 Apoptosis, Autophagy, Host-virus interaction, Immunity

CSNK2A1 Casein kinase 2 alpha 1 Apoptosis, Biological rhythms, Cell cycle, Transcription, Transcription regulation,Wnt
signaling pathway

CSNK2A2 Casein kinase 2 alpha 2 Apoptosis, Cell cycle, Transcription, Transcription regulation, Wnt signaling pathway

CSNK2B(83) Casein kinase 2 beta Wnt signaling pathway

FUNDC1(84) FUN14 domain containing 1 Autophagy

MAP1LC3A(85) Microtubule associated protein 1 light chain 3 alpha Autophagy, Ubl conjugation pathway

MAP1LC3B(84) Microtubule associated protein 1 light chain 3 beta Autophagy, Ubl conjugation pathway

MFN1(86) Mitofusin 1 GTP-binding, Nucleotide-binding

MTERF3 Mitochondrial transcription termination factor 3 Ribosome biogenesis, Transcription, Transcription regulation

PGAM5(87) PGAM family member 5, mitochondrial serine/threonine protein
phosphatase

Necrosis

RPS27A Ribosomal protein S27a Ribosomal metabolism

SQSTM1(88) Sequestosome 1 Apoptosis, Autophagy, Differentiation, Immunity

SRC(89) SRC proto-oncogene, non-receptor tyrosine kinase Cell adhesion, Cell cycle, Host-virus interaction, Immunity

TOMM20(90) Translocase of outer mitochondrial membrane 20 Protein transport, Transport

TOMM22(83) Translocase of outer mitochondrial membrane 22 Protein transport, Translocation, Transport

TOMM40(91) Translocase of outer mitochondrial membrane 40 Ion transport, Protein transport, Transport

TOMM5 Translocase of outer mitochondrial membrane 5 Protein transport, Transport

TOMM6 Translocase of outer mitochondrial membrane 6 Protein transport, Transport

TOMM70(91) Translocase of outer mitochondrial membrane 70 Host-virus interaction

UBA52(92) Ubiquitin A-52 residue ribosomal protein fusion product 1 Ribosomal metabolism

UBB Ubiquitin B Ribosomal metabolism

UBC(93) Ubiquitin C Ribosomal metabolism

ULK1(94) Unc-51 like autophagy activating kinase 1 Autophagy

VDAC1(88) Voltage dependent anion channel 1 Apoptosis, Host-virus interaction, Ion transport, Transport

All genes have been proved to be closely involved in mitophagy-related pathways. Gilad Twig et al. (Twig et al., 2008) marked and tracked mitochondria through fusion and fission, and

finally identified nine genes closely related to mitophagy: HDAC6, HUWE1, OPTN, CDC37, PRKN, TOMM7, VPS13C, PINK1,MFN2. ATG5, TOMM22, MAP1LC3A,MFN2, TOMM40,

MAP1LC3B, RPS27A, ATG12, UBC, TOMM70, MTERF3, PINK1, SQSTM1, UBB, MFN1, TOMM20, TOMM5, PRKN, TOMM7, VDAC1, TOMM6, UBA52. SQSTM1 selectively

removes damaged mitochondria through PINK1-PRKN pathway and subsequently participates in the process of mitophagy through lysosome catabolism (https://reactome.org/

PathwayBrowser/#/R-HSA-5205685). ATG5, FUNDC1, CSNK2A2, CSNK2A1, MAP1LC3A, MAP1LC3B, ATG12, ULK1, SRC, CSNK2B, CSNK2B, CSNK2B, CSNK2B, CSNK2B,

CSNK2B, CSNK2B, CSNK2B, PGAM5 associates cell differentiation signals and mitochondrial function markers with scaffold proteins by participating in receptor-mediated mitophagy

pathway, thereby further recruiting other autophagy proteins to form autophagosomes. Mitochondria destruction and recovery (https://reactome.org/PathwayBrowser/#/R-HSA-

8934903).
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single-gene survival correlation, and single-gene immunological

correlation analyses. This is a continuation of the model’s study

and examination of the prognostic model’s function. This model

can be used to identify additional genes having a high value

in HCC.

Web address of online website

TCGA: https://www.cancer.gov/about-nci/organization/ccg/

research/structural-genomics/tcga

GEO: https://www.ncbi.nlm.nih.gov/geo

HPA: https://www.proteinatlas.org

DAVID: https://david.ncifcrf.gov

STRING: https://cn.string-db.org

Statistical analysis
All statistical results were statistically significant when

p < 0.05.

Results

The data of MRGs in patients from TCGA
and GEO cohorts

Figure 1 depicted the flow chart for this study. Detailed

scripts could be seen in the Supplementary Data Sheet S2. Four

hundred and twenty-four transcriptome data were obtained by

TCGA in total. (FPKM adjusted), including 374 HCC tissue data

and 50 normal tissue data. In GEO, one hundred and sixty-one

HCC and normal tissue data were gathered from the same patient

in total. Preliminary processing of patient data included gene

annotation, deletion of missing data, and survival data shorter

than 30 days. Additionally, to analyze gene mutations in tumor

tissues, we downloaded the HCC genemutation data fromTCGA

and selected the mutation data processed using the “varscan”

software.

The GSEA database was searched for the term “mitophagy”

and four gene sets were obtained. After deleting duplicate results,

a total of 34mitophagy-related genes was identified (Table 1). For

future study, the MRGs expression levels in patients from the

TCGA and GEO cohorts were retrieved. All 34 MRGs could be

extracted for the levels of expression in TCGA cohort, while the

GEO cohort could extract for 27 corresponding genes.

Screening of DEGs and construction of
prognostic model

Differential expression analysis of 34 MRGs revealed that a

total of 23 genes were differentially expressed across HCC and

normal tissues in the TCGA cohort. The heatmap clearly

demonstrated that these 23 genes were expressed at much

greater levels in HCC tissues than in normal tissues

(Figure 2A), and the volcano map demonstrated that these

23 genes were likewise up-regulated in HCC tissues

(Figure 2B). Following that, we integrated the differential gene

expression data with clinical data and utilized single-factor cox

regression analysis to determine the link between differential

genes and the prognosis of HCC patients. The result of univariate

cox regression analysis demonstrated that 16 MRGs were

positively connected with the prognosis of HCC and

negatively correlated with the prognosis of HCC (Figure 3A).

Following that, we examined the mutations in these

16 prognostic genes in tumor tissues. It is obvious that the

mutation rates of these 16 genes in HCC tissues are modest;

even HUWE1, which has the highest mutation rate, is just 2%

(Figure 3B), and only TOMM22 and HUWE1 show an

indigenous co-mutation connection, implying that either of

the two mutations will cause the other (Figure 3C).

Finally, we incorporated these 16 genes into the LASSO

regression analysis and finally obtained a prognostic model

(Figures 3D,E). The prognostic model was constructed using a

total of eight genes. Table 2 contains the gene name and LASSO

coefficient. We examined the immunohistochemistry expression

of seven genes (CSNK2A2 was not identified) in normal human

tissues and HCC tissues from the HPA database and discovered

that the majority of genes were overexpressed in HCC tissues

(Figures 4A–G). Thus, risk score formula was as followed:

Risk Score � TOMM22 expression × 0.373 +MFN1 expression × 0.310
+PGAM5 expression × 0.292 + TOMM5 expression × 0.181
+SQSTM1 expression × 0.156 + OPTN expression × 0.122
+ATG12 expression × 0.040 + CSNK2A2 expression × 0.034

Validation of prognosticmodels by various
methods

After the establishment of the prognostic model, we carried out a

rigorous validation to ensure that it was capable of accurately

predicting the prognosis of all HCC patients. According to our

risk scoring formula, patients were divided into high-risk and low-

risk groups. We first performed PCA analysis, and the results

indicated that regardless of whether the patients were in the

TCGA or GEO cohort, we were able to easily distinguish between

patients in the high-risk and low-risk groups (Figures 5A,B). Then,

we analyzed the survival of patients classified into various risk groups.

The results indicated that patients with high risk had significantly

worse overall survival (OS) and progression-free survival (PFS) than

those with low risk in the TCGA cohort (Figures 5C,D), confirming

the predictive ability of our prognostic model. Following that, the risk

score was subjected to independent prognostic analysis, and the

relationship between the risk score and prognosis of patients were

analyzed using single factor analysis and multi-factor analysis,
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respectively. Without taking other clinical parameters into account,

the univariate COX regression analysis revealed that patients with a

high-risk score had significantly worse OS than those with a low-risk

score (Figure 5E). However, patients’ clinical situations are frequently

rather complex, and their prognosis is also affected by a variety of

circumstances. As a result, we examine the link between clinical

parameters and patient risk scores and repeat the multivariate COX

regression analysis. The results continue to indicate that patients’ risk

scores are considerably adversely connected with their prognosis

(Figure 5F), and both of these correlations are statistically significant.

Finally, we determined the reliability of our prognostic model by

plotting the receiver operating characteristic curve and calculating the

area under the curve (AUC). The area under the receiver operating

characteristic curve was 0.799, 0.660, and 0.661 for 1, 2, and 3 years,

respectively. As a result, our prognostic model is effective at

predicting patients’ prognoses, particularly for the first year

(Figure 5G). The receiver operating characteristic (ROC) curve of

the prognostic model and other clinical parameters were observed.

The prognostic model outperformed other established prognostic

factors by a significant margin (Figure 5H).

The guiding significance of prognosis
model for clinical diagnosis and treatment

We investigated the role of prognostic risk models in clinical

practice and examined if there were differences in clinically

relevant variables (such as age, gender, age, grade, stage, T, N,

M, and so on) between patients classified as high or low risk. The

findings indicated that there was no statistically significant

difference in risk scores between patients aged 65 years and

younger and those aged 65 years or older. Additionally, no

significant variation in risk scores was observed across

individuals with different genders and M (metastasis).

However, risk scores for distinct T (primary tumor), N

(regional lymph node), Stage, and Grade patients were

significantly varied. For example, the risk score of T3 patients

could be more than that of T1 and T2 patients, N1 patients might

have a higher risk score than N0 patients, patients in Stage II

could have a higher risk score than patients in Stage I, and

G3 patients could have a higher risk score than G1 and

G2 patients (Figures 6A–D). Following that, we created a

clinical correlation heatmap to visualize it (Figure 6E).

Therefore, we proved that the prognosis model has a strong

correlation with clinical pathological factors such as T, N, Stage

and Grade.

Immunotherapy is the latest treatment for HCC patients,

which is usually combined with traditional chemotherapy

methods to achieve better efficacy. However, due to tumor

heterogeneity, not all patients are sensitive to immunotherapy.

Therefore, we finally evaluated the sensitivity of patients to

immunotherapy under different risk scores. Our findings

indicated that patients with a low-risk score responded more

readily to immunotherapy, and the possibility of tumor immune

FIGURE 2
Extraction of differentially expressed mitophagy-related genes (A) A total of 23 genes related to mitophagy were differentially expressed
between HCC tissues and normal tissues. In the heatmap, the front half of the transverse axis represented normal tissue, and the latter half
represented tumor tissue. Red mean high gene expression, blue mean low gene expression; (B) Volcanic map of the expression of thirty-four MRGs
in HCC tissues. The expression of red genes was up-regulated in HCC tissues, and the expression of black genes was not significantly changed
in HCC tissues.
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escape was lower. Such patients would get better remission after

immunotherapy in clinical treatment (Figure 6F). Additionally,

we examined immune checkpoint expression in different risk

groups. Common immune checkpoints in HCC including PD1,

CTLA4, CD40, CD44, CD80, and CD86 were significantly

increased in high-risk groups of patients (Figure 6G). Drug

therapy (both conventional chemotherapy and targeted

therapy) is a critical component of HCC treatment. In order

to explore the risk score and the guiding significance for HCC

drug treatment, we selected common therapeutic drugs for HCC

for sensitivity and correlation analysis, and listed the drugs with

therapeutic value. The analysis revealed a positive correlation

between the sensitivity of Camptothecin and Erlotinib and the

patient’s risk score, but a negative correlation between the

sensitivity of other drugs and the patient’s risk score (Figures

7A–I). Therefore, Camptothecin and Erlotinib may be more

effective in treating patients with high-risk scores, whereas the

other drugs may be more effective in treating patients with low-

risk scores.

Relationship between the immune
microenvironment and the prognosis
model

We conducted a cluster analysis on the infiltrated immune

cells in HCC tissues and divided them into four subgroups (C1 -

C4). Immune typing based on CIBERSORT method, according

to the expression of immune-related genes in the expression

matrix to identify the corresponding functions of immune cells

(such as wound healing, inflammation, etc.), clustering analysis.

The results showed that compared with other immune subtypes,

FIGURE 3
Gene mutation analysis and establishment of prognostic model (A) The result of Single factor COX regression The inclusion criteria were that
the p value was less than 0.05 and the HR confidence interval did not include 1; (B) Waterfall map of gene mutation. (C) Co-mutation of
16 prognostic-related genes. Green represented that the mutation of one gene would promote the mutation of another gene. Brown indicated that
one genemutation inhibits another genemutation; (D–E) The LASSON regression punished all variables. The coordinates at the lowest point of
the red line in Figure D were the penalty values. A dotted line was drawn at the corresponding penalty value in Figure F, and all the independent
variables that had great influence on the dependent variables were selected (each curve represents the change trajectory of each independent
variable coefficient).

TABLE.2 Eight genes for prognostic model and their risk coefficient.

Gene Coefficient

TOMM22 0.373,206

MFN1 0.310,108

PGAM5 0.291,848

TOMM5 0.180,964

SQSTM1 0.155,536

OPTN 0.122,111

ATG12 0.040225

CSNK2A2 0.033673
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FIGURE 4
Immunohistochemical results of eight genes in tumor tissues and normal tissues (A–G) The immunohistochemical expression of eight genes in
normal tissues and HCC tissues in HPA online database. N: normal tissue, T: HCC tissue. (A) ATG12; (B)MFN1; (C)OPTN; (D) PGAM5; (E) SQSTM1; (F)
TOMM5; (G) TOMM22.

FIGURE 5
Validation of Prognostic Model Reliability by Several Methods (A–B) PCA analysis showed that patients with different risk scores could be well
distinguished in the model. Blue points represented low risk group, and red points represented high risk score group; (A) training set (TCGA cohort).
(B) validation set (GEO cohort) (C–D) Survival analysis based on Kaplan-Meier methodwas performed on the total survival time and progression-free
survival time of patients with different risk scores. The horizontal axis under the image refers to the number of surviving patients in different
years; (C) training set (TCGA cohort). (D) validation set (GEO cohort) (E–F) The prognostic model and common clinical features were analyzed by
univariate or multivariate COX regression. HR value represents that the probability of death in the high-risk group per unit time was a multiple of that
in the low-risk group. (G) The area under the ROC curve was used to evaluate the accuracy of the prognostic model. Red, yellow and green lines
represent the 1 - year, 2 - year and 3 - year survival of patients, respectively. AUC >0.5 indicates that the prognostic model is meaningful, and the
closer to one indicates that the accuracy of the prognosticmodel is higher. (H) This ROC curve compared the ability of clinical characteristics and risk
score to predict the prognosis of patients. The area under the red curve represented the prediction ability of risk score.
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C1 patients might have a higher risk score, implying that

increased immune cell infiltration in the C1 subgroup may

predict poor patient prognosis and that immune cells may

play a role in the prognosis of HCC patients (Figure 8A).

Therefore, we further analyzed the difference of immune cells

infiltrated by HCC tissues in different risk groups. (logFC = 1.5,

p < 0.05) The infiltration of memory B cell, CD8 + T cells and

M0 macrophages was significantly different in patients with

different risk groups, according to the findings (Figure 8B).

This suggests that changes in the infiltration of these three

kinds of immune cells may contribute to the increased risk

score of patients, as an important auxiliary cell in the tumor

immune microenvironment promotes the malignant progression

of tumors. Changes in infiltrated immune cells were bound to

lead to changes in immune function, so we finally analyzed the

immune function of patients with different risk scores. The

results indicated that patients in the high-risk group had

decreased cytolytic activity, type I/II IFN response, and type I

MHC function, while patients in the low-risk group had

increased type I MHC function (Figure 8C), implying that the

immune microenvironment of patients in different risk groups

had changed, affecting the prognosis of HCC patients to varying

degrees.

Gene mutation among different risk
groups

According to our analysis, a total of 21 out of 362 tissues were

detected with mutations, and a total of 12,084 genes in the

mutant tissues showed different degrees of mutations. We

chose the top twenty genes with the highest mutation

frequency to determine whether they expressed differently in

high- and low-risk groups. Four of the top twenty most

frequently mutated genes (TP53, LRP1B, OBSCN, DOCK2)

were found to have differential expression between high and

FIGURE 6
Differences in clinical features and efficacy of immunotherapy among patients with different risk scores (A–D) Risk score was correlated with T,
N, Stage and Grade; (E) The expression of prognostic related genes in clinical factors and different risk groups; (F) The violin chart of patients’
response to immunotherapy in high and low-risk groups. Blue represented low-risk group, red represented high-risk group; (G) Expression of
immune checkpoints in two risk subgroups. * represented p < 0.05, ** represented p < 0.01, and *** P represented <0.001.
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low risk groups (Figures 9A–D), suggesting that the mutations in

these four genes may contribute to an increased risk score for

prognosis.

Enrichment analysis of DEGs between
different risk groups

In order to further investigate the differences among patients

with different risk groups under our prognostic model typing, we

analyzed the gene expression among patients with high and low

risk scores and obtained 756 DEGs. The DEGs were analyzed for

GO and KEGG enrichment. According to the GO enrichment

analysis, the primary enrichment function of DEGs was mitotic

nuclear division, nuclear division, and so on (Figure 10A). KEGG

enrichment analysis revealed that DEGs were primarily enriched

for functions related to the cell cycle, cellular senescence, and

ECM receptor interaction (Figure 10B). In addition, we used

Gene Set Variation Analysis (GSVA) to determine which

pathways or functions were up-regulated or down-regulated in

high and low-risk groups. Heatmap was used to visualize the

analysis results. The heatmap showed that compared with the

patients in the low-risk group, the renin-angiotensin system,

complement and coagulation cascade reactions in the high-risk

group were significantly inhibited, while the vesicle transport

function and Rig-I-like receptor were significantly activated.

(Figure 10C).

PPI analysis of DGEs

In order to analyze the interaction between genes and find

valuable core genes, we screened differentially expressed genes

for protein interaction analysis on STRING online website, and

FIGURE 7
The treatment sensitivity analysis of HCC clinical commonly used drugs in patients with different risk scores (A–I) Correlation and sensitivity
between different risk scores and drug treatment effect; (A) Sorafenib; (B) Sunitinib; (C) Brivanib; (D)Doxorubicin; (E) 5-Fluorouracil; (F)Cisplatin; (G)
Gemcitabine; (H) Erlotinib; (I) Camptothecin.
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selected strongly associated genes according to the standard of

high confidence = 0.9 (Figure 11A). Subsequently, the core genes

were analyzed and visualized in Cytoscape software, and

10 network core genes were finally selected (Figure 11B). We

performed single-gene survival analysis of these 10 core genes.

Survival analysis revealed a negative correlation between these

ten genes and patient prognosis (Figures 12A–J). Then, we

repeated the clinical and immune correlation analyses on

these ten genes. The results indicated that the expression

levels of the majority of genes were not related to the

patients’ age, gender, or M, but increased in correlation

with the T, N, Stage, and Grade levels (Figures 13A–G).

Additionally, the expression of core genes was positively

correlated with the infiltration of CD4 + T memory cells

and T follicular helper cells in the majority of high-risk

groups (Figures 12H–L).

FIGURE 8
Differences in immune status among patients with different risk scores (A) Cluster analysis was performed on the immune cells infiltrated by
HCC tissues in patients with different risk groups. (B) The number of CD8 + T cells in HCC tissues of patients in the high-risk group was significantly
decreased, and the number of M0macrophageswas significantly increased (memory B cells were not discussed due to too few cells); (C)Changes of
immune function in patients with high-risk group. * represented p < 0.05, *** represented p < 0.001.
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Discussion

Researchers discovered several decades ago that cancer cells

were more likely to continue energy metabolism via glycolysis

even under aerobic settings, a phenomenon dubbed the Warburg

effect. This impact is regarded as strong evidence for a link

between cancer and mitochondrial malfunction (Koppenol et al.,

2011; Zong et al., 2016). Subsequent studies discovered

widespread alterations in mitochondrial genes in tumor

tissues, implying that mitochondrial production and metabolic

activities were changed. Retrograde signals between

mitochondria and tumor cells govern this process (Wallace,

2012). Due to the presence of reactive oxygen species and

other variables in the mitochondrial environment,

mitochondria are readily damaged or even altered. These

damaged mitochondria are repaired or cleared by Mitophagy.

Mitophagy is a highly specific quality control process that has

been linked to a variety of physiological processes, including early

embryonic development, cell differentiation, inflammation, and

apoptosis (Onishi et al., 2021). If the function of mitophagy was

aberrant, damaged and mutant mitochondria survive, encouraging

the emergence and progression of malignancies (Chang et al., 2017).

Our research focused on the link between HCC and mitophagy, as

well as the expression of MRGs in HCC patients and predictive

genes. We created a prognostic model with the aid of LASSO

regression. The model’s reliability was then confirmed, and its

potential was investigated. Finally, we demonstrated that the

model had clinical use.

FIGURE 9
Correlation analysis between top 20 mutation genes and risk score: According to the expression level of mutant genes, patients in the TCGA
cohort were divided into high-expression group and low-expression group, and whether there was difference in the risk score between the two
groups was compared. (A–D) Analyze whether the top 20 genes with the highest mutation frequency are associated with the risk score. Patients with
high expression of TP53, LRP1B, OBSCN and DOCK2 had higher risk scores. Green meant low expression of this gene, red meant high
expression of this gene. 0: No mutation, 1: mutation.
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FIGURE 10
Enrichment analysis of DEGs among patients with different risk scores (A,B) GO and KEGG enrichment analysis was performed on genes
differentially expressed among patients in different risk groups. The left half of the circle diagramwas the gene item, and the right was the annotated
function item; (C) GSVA analysis could analyze the pathways between patients with different risks, and the results were shown in the heatmap. Blue
meant the pathway down, red meant the pathway up. The blue horizontal axis above the figure represented the low-risk group, and the red
horizontal axis represented the high-risk group.
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In addition to participating in the regulation of

mitochondrial autophagy function, previous studies have

confirmed that mitochondrial autophagy-related gene sets are

related to other pathophysiology of HCC. CDC37 can promote

HCC progression by regulating cell cycle (Wang et al., 2015).

CSNK2B promoted HCC cell proliferation, migration and

angiogenesis (Xiao et al., 2020). MAP1LC3A can prevent iron

death of hepatic stellate cells in HCC (Zhang et al., 2020a).

MFN1 can change the glucose metabolism level of HCC (Zhang

et al., 2020b). PGAM5 expression induced chemotherapy

resistance by enhancing Bcl-xL signal (Cheng et al., 2018).

RPS27A, SRC are associated with HBV-related HCC (Fatima

et al., 2012; Hu et al., 2021). Other genes were not found to be

associated with other specific HCC subtypes. In additionally,

FIGURE 11
Searching network core genes by PPI analysis (A) PPI analysis of differentially expressed genes between different risk groups was performed on
STRING onlinewebsite (high confidence = 0.9); (B) The PPI analysis results were imported into Cytoscape software to search for network core genes,
which were marked in non-blue.

FIGURE 12
Single gene survival analysis of network core genes: (A–J) Single-gene survival analysis was performed on the top 10 network core genes. Red
lines represented high-risk group, blue lines represented low-risk group.
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MFN2 was found to have heterozygous loss in HCC patients (Qu

et al., 2013). Chang Hyeok An et al. found that somatic mutation

and loss of ATG5 gene expression may play a role in the

pathogenesis of gastrointestinal cancer by changing autophagy

and apoptosis cell death (An et al., 2011). SRC-mediated co-

activation of anti-tumor target genes inhibits MYC-induced liver

cancer (Suresh et al., 2017).

This prognostic model consists of eight MRGs, namely

OPTN, ATG12, CSNK2A2, MFN1, PGAM5, SQSTM1,

TOMM22, and TOMM5. Existing studies have shown that

ATG12 promotes HCC by participating in a variety of long

non-coding RNAs (Li et al., 2019; Wei et al., 2019), and

MFN1 reduces oxygen consumption and ATP production in

HCC cells by promoting mitochondrial fusion (Li et al., 2020).

PGAM5 can inhibit BAX and cytochrome C-mediated apoptosis

signal transduction by stabilizing Bcl-xl to obtain chemotherapy

tolerance for HCC (Cheng et al., 2018). SQSTM1 was found to

bind to p62 to form a cohesive protein, binding to and isolating

Kelch-like ECH-associated protein 1 (Keap1) to prevent

NRF2 degradation (Feng et al., 2021). At the moment, no

study exists on the mechanism through which OPTN,

CSNK2A2, TOMM22, and TOMM5 promote HCC. Existing

research supports our conclusion that the eight MRGs in the

prognostic model contribute to the formation and progression of

HCC and can be used in combination as a risk factor for poor

prognosis in HCC.

Our findings have significant clinical and pathological

implications. There was no statistically significant difference in

risk scores between patients of different ages, genders, andM, but

risk scores frequently increased as the level of T, N, Grade, and

Stage increased, suggesting that these eight genes affected some

behaviors of tumor tissues such as tumor proliferation, lymph

node metastasis, and had nothing to do with vascular metastasis.

Systemic pharmacological therapy, including conventional

FIGURE 13
Analysis of clinical and immune correlation of core network genes (A–G)Clinical correlation analysis was performed on 10 core network genes,
including gender, age, TNM stage, Stage and Grade (CDK1 analysis was shown only, other result could be seen in supplementary documents (Data
Sheet 1); (H–L) Immunocyte infiltration of 10 core genes in the network was analyzed (only the results of the first five genes were shown, other result
could be seen in supplementary documents (Data Sheet 2). * represented p < 0.05, ** represented p < 0.01, *** represented p < 0.001.
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chemotherapy and immunotherapy, is critical in the clinical

treatment of HCC. We assessed the drug sensitivity of

251 medicines included in the “pRRophetic” package and

identified and demonstrated the therapeutically available

medications for the treatment of HCC (Carcinoma, 2021).

The routinely used cytotoxic chemotherapeutic agents for

HCC, such as Doxorubicin (Abou-Alfa et al., 2016), 5-

Fluorouracil (Lyu et al., 2022), Cisplatin (Aramaki et al.,

1990), Gemcitabine (Zhu et al., 2006) were considerably more

sensitive to treatment in individuals with low risk scores

compared to those with high risk scores. On the other hand,

other medications, such as Camptothecin (Rowinsky et al., 2000)

demonstrated efficacy in high-risk individuals. Since the FDA

approved the first targeted medication, sorafenib, in 2007 for

advanced HCC, targeted therapy has become an integral aspect of

HCC treatment. The drug sensitivity analysis of the first-line

medication Sorafenib (Cheng et al., 2009) for advanced HCC

revealed that individuals with a low-risk score had considerably

higher treatment sensitivity than those with a high-risk score.

Additionally, we added additional small molecule inhibitors for

HCC treatment, including Sunitinib (Cheng et al., 2013),

Brivanib (Johnson et al., 2013), and Erlotinib (Zhu et al.,

2015) Sunitinib and Brivanib had greater sensitivity in low-

risk patients, while Erlotinib shown more benefit in high-risk

patients. Finally, we assessed the probability of treatment failure

due to immune escape in immunotherapy-treated HCC patients.

Treatment failure occurred at a significantly higher rate in the

high-risk group than in the low-risk group. These have important

reference value for clinical drug therapy of HCC.

Immune checkpoints are molecules that protect the human

immune system from inflammatory damage caused by T cell

activation that is too strong. Tumor cells take advantage of this

feature of the human immune system to suppress immune

responses by overexpressing immune checkpoint molecules,

allowing the immune system to escape (Diesendruck and

Benhar, 2017; Lim et al., 2017). As discussed previously, the

most frequently used targeted therapies for HCC, such as

sorafenib, are selective inhibitors of the immunological

checkpoint protein programmed death receptor-1 (PD-1,

encoded by PDCD1 (Palamarchuk et al., 2022). Therefore, we

examined immune checkpoint expression in individuals

belonging to various risk groupings. Almost all immune

checkpoint expression levels were significantly higher in the

high-risk group, indicating not only that the tumors in

patients with high-risk scores were more malignant, but also

that patients with high-risk scores were better candidates for

targeted immune checkpoint drugs like sorafenib.

The tumor immune microenvironment (TME) is a dynamic

system composed of cancer cells, a complex cytokine

environment, extracellular matrix, and immune cell subsets

(Fu et al., 2019), which has been shown in recent years to

play a critical role in the progression of tumors. Immune cells,

as a critical component of TME, not only fail to play an anti-

tumor role when tumor cells and cytokines secreted by them are

present, but also inhibit the body’s immune response against

tumor cells (Lu et al., 2019; Oura et al., 2021). As a result, we

examined the extent to which immune cells infiltrated tumor

tissue in our investigation. We observed a decrease in CD8 +

T cells and an increase in M0 macrophages in patients with a

high-risk score. CD8 + T cells directly contributed to tumor

eradication through the secretion of perforin, granzyme, and

TNF or through their binding to Fas-FasL in tumor tissues, and

their expansion may help patients live longer (Moreno-Cubero

and Larrubia, 2016; Oura et al., 2021). M0 macrophages are a

type of non-polarized macrophage that lacks anticancer activity.

In addition, we also found that the function of Cytolytic activity,

Type I IFN Reponse, Type II IFN Reponse decreased and the

function of MHC class I increased slightly in patients with high-

risk scores. This all indicated that patients with a high-risk score

had a weakened ability to fight cancer.

After further examination of the prognostic model, we

discovered that the differential genes of distinct risk groups

contain a large number of significantly related core genes.

Clinical connection, survival analysis, and immunological

correlation all indicate that these core genes are extremely

valuable HCC-related genes. Thus, in addition to the eight

MRGs, these network core genes need additional investigation

into their mode of action in HCC.

We noted that four previous articles were similar to our

research, and we analyzed the similarities and differences

between them. These four articles were roughly the same as

our research in the overall research method, and all the subjects

were hepatocellular carcinoma. But the largest difference was the

selection of genes. The mitophagy-related genes selected by Tao

Zhang et al. referred to genes that played an important role in

mitochondrial metabolism, but we mainly focused on genes that

played a key role in mitochondrial autophagy. Shengwei Shen

et al. selected autophagy-related genes as the research object.

However, the range of autophagy was large, and mitophagy was

only a special type. Junbin Yan et al. selected apoptosis-related

genes, apoptosis was a kind of programmed cell death, which was

related to the changes of cell morphology and structure, and was

related to mitophagy but not coincide. Finally, the research object

of Hao Chen et al. was completely consistent with us, but the

research methods were completely different. Firstly, the patients

were divided into two groups according to the median immune

score in their studies, and the MRGs between the two groups

were searched for to construct the prognosis model. We chose

MRGs that were differentially expressed between normal tissues

and tumor tissues which were related to the prognosis of HCC

patients, and used them to construct the prognosis model

according to the different expression levels. Therefore,

although the four studies were similar to our research, the

final prognosis models were not the same. In summary, our

research was not repeat the previous steps, but also had great

innovation.
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This study has limitations of its own. To begin, there is no

experimental validation, which diminishes the credibility of our

findings. In addition, the “pRRophetic” package was developed

and maintained by Paul Geeleher et al. (Lee et al., 2010; Joo et al.,

2011; Geeleher et al., 2014; Nezich et al., 2015; Chen et al., 2016;

Lesage et al., 2016; Di Rita et al., 2018; Kravic et al., 2018; Setz et al.,

2018; Sekine et al., 2019; Yao et al., 2019; Inokuchi et al., 2021; Towers

et al., 2021; Yao et al., 2021); (Twig et al., 2008; Geisler et al., 2010;

Bertolin et al., 2013; Fu et al., 2020; Yan et al., 2020; Yang et al., 2020;

Iorio et al., 2021;Ma et al., 2022; Shang et al., 2022; Zheng et al., 2022)

in 2014 as a tool for predicting clinical chemotherapy responses from

tumor gene expression levels. However, as we know, the pRRophetic

package has not been updated since 2017, so a considerable number

of new drugs with good clinical efficacy and potential, such as PD-1/

PD-L1 receptor blockers, have not been included in drug sensitivity

analysis, whichmakes it impossible to predict the clinical efficacy and

the possibility of drug resistance of these new drugs to guide clinical

treatment.

Conclusion

In conclusion, we investigated the association between

mitochondrial autophagy-related genes and HCC prognosis

and developed an eight-gene prognostic model. This

prognostic model was highly predictive of the prognosis of

HCC patients and could be used to guide clinical diagnosis

and treatment. In addition, our study supports a more in-

depth study of the mechanisms of these eight mitochondrial-

related genes and 10 network core genes in HCC.
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