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ABSTRACT
Glioblastoma is the the most common primary brain tumor 
in adults. Onset of disease is followed by a uniformly 
lethal prognosis and dismal overall survival. While 
immunotherapies have revolutionized treatment in other 
difficult- to- treat cancers, these have failed to demonstrate 
significant clinical benefit in patients with glioblastoma. 
Obstacles to success include the heterogeneous tumor 
microenvironment (TME), the immune- privileged 
intracranial space, the blood–brain barrier (BBB) and local 
and systemic immunosuppressions. Monoclonal antibody- 
based therapies have failed at least in part due to their 
inability to access the intracranial compartment. Bispecific 
T- cell engagers are promising antibody fragment- based 
therapies which can bring T cells close to their target 
and capture them with a high binding affinity. They can 
redirect the entire repertoire of T cells against tumor, 
independent of T- cell receptor specificity. However, the 
multiple challenges posed by the TME, immune privilege 
and the BBB suggest that a single agent approach may be 
insufficient to yield durable, long- lasting antitumor efficacy. 
In this review, we discuss the mechanism of action of T- 
cell engagers, their preclinical and clinical developments 
to date. We also draw comparisons with other classes of 
multispecific antibodies and potential combinations using 
these antibody fragment therapies.

INTRODUCTION
Patients with glioblastoma have a poor prog-
nosis with a median survival of approximately 
16 months.1–3 Advances in survival have 
been minimal since the mid- 2000s, despite 
improvements in surgical techniques, radia-
tion therapy and the advent of therapies such 
as tumor- treating fields.2 Immunotherapy 
has been evaluated as one potential solution. 
Immune checkpoint inhibition (ICI) thera-
pies targeting programmed death- 1 (PD- 1) 
and its ligand, programmed death ligand- 1 
(PD- L1), have improved outcomes in malig-
nancies such as melanoma even when it has 
metastasized to the brain.4 However, similar 
outcomes have been elusive in glioblas-
toma, reflecting the complex mechanisms 
of immune suppression and evasion that it 
possesses.5 6

Currently, systemically delivered antibody- 
based immunotherapies approved for 

patients with cancer falls broadly into two 
categories. ICIs are monoclonal antibodies 
(mAbs) which inhibit immune checkpoint 
signaling. Bispecific antibodies tether tumor 
cells to T lymphocytes (cytotoxic T lympho-
cytes (CTLs)) to induce cytolysis, as well as 
activate innate immune pathways via non- 
specific binding to the tail region of the anti-
body (fragment crystallizable region, Fc).7 8 
To exert their therapeutic effect in glioblas-
toma, these therapies must transit the blood–
brain barrier (BBB) before reinvigorating 
immune cells that may have been rendered 
inert by the tumor microenvironment (TME). 
While some systemically administered anti-
bodies may be able to penetrate the BBB, the 
concentrations necessary to produce effects 
in the brain TME are unknown.9 This intra-
cranial bioavailability may therefore only 
reflect a small fraction of the total adminis-
tered dose.

One approach to bypass the BBB involves 
the direct administration of immunotoxins 
via convection- enhanced delivery (CED).10–12 
These are fusion proteins which consist of an 
antibody fragment that binds the target cell 
and a protein toxin fragment which induces 
cytolysis.13 14 However, this approach is inva-
sive and can be hampered by unequal drug 
distribution.15 16 A newer approach involves 
the use of a fusion protein that can be deliv-
ered systemically—bispecific T- cell engagers. 
These consist of two antigen- binding variable 
fragments that tether the tumor cells to CTLs 
but differ from their antibody parents in that 
they do not possess the constant (Fc). As they 
are smaller in size than traditional mAbs, 
they may more easily penetrate the BBB.17 18 
This small size also allows T cells to closely 
bind their target, resulting in a high- affinity 
immune synapse.19 Bispecific T- cell engagers 
also are highly potent, exerting a therapeutic 
effect at nanomolar concentrations.20 Bispe-
cific T- cell engagers can therefore potentially 
access this immune privileged compartment 
more readily while also exerting a highly 
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potent effect even at low concentrations. This combina-
tion makes it an ideal candidate for an immunotherapy- 
based approach in glioblastoma. However, glioblastoma 
is uniquely shielded from the immune system due to its 
location within the central nervous system (CNS). While 
this privilege is not absolute, a significant proportion 
of tumors have been noted to be devoid of any tumor- 
infiltrating lymphocytes (TILs) that can be redirected 
by bispecific T- cell engagers.21 22 In those tumors that do 
demonstrate invasion by TILs, they are often induced to 
be dysfunctional and anergic by the suppressive TME.23 
Isocitrate dehydrogenase (IDH) wild- type gliomas also 
lack a universally expressed tumor- specific antigen which 
may result in antigen escape and tumor regrowth, making 
targeting of precisely engineered therapies difficult.24–26

Heterogeneity and local immune suppression have also 
frustrated the use of bispecific T- cell engagers in other 
solid malignancies, and to date, these agents have only 
been approved by the US Food and Drug Administration 
(FDA) for the treatment of acute lymphocytic leukemia 
(blinatumomab, Amgen).27 28 In this review, we will discuss 
the current landscape for bispecific T- cell engagers in 
glioblastoma, as well as the challenges they face, and 
describe potential approaches to overcome these.

DESIGN AND MECHANISM OF ACTION
Bispecific T- cell engagers consist of two linked antigen- 
binding variable fragments devoid of the constant domain 
of their parent antibody. These fragments are linked 
by short flexible linker regions29 resulting in a small 
construct (approximately 55 kDa), which can bring CTLs 
into close proximity to the target cell, resulting in a high 
binding affinity.18 30 CD8+ CTLs, like all T cells, express 
variable T- cell receptors (TCRs) associated with invari-
able CD3 subunits. Bispecific T- cell engagers typically 
link tumor- associated antigens (TAAs) with the CD3ϵ unit 
of the TCR complex, thereby engaging T cells to form a 
synapse on the surface of the tumor cell. The T cell is acti-
vated, triggering cell death signaling pathways with the 
subsequent release of granzymes and perforins.31 Given 
that bispecific T- cell engagers engage the CD3ϵ unit, this 
means that they are not limited by TCR specificity and 
can potentially redirect the entire repertoire of T cells. 
This may also involve T cells that have reactivity against 
other tumor antigens, leading to epitope spreading. T- cell 
activation also results in the expansion of the CD8+ T- cell 
compartment, driven in the context of T- cell engagers by 
an increase in cytotoxic CD8+ T effector memory cells.32 
Importantly, this occurs in a TCR–peptide–major histo-
compatibility complex (MHC) independent manner, 
which avoids the potential for immunotherapy driven 
downregulation of MHC- I and immune escape.20 Further-
more, brain bispecific T- cell engager (BRiTE) has been 
shown to redirect local regulatory T cell (Treg) to kill 
glioblastoma tumor in vitro via the granzyme–perforin 
pathway, potentially overcoming a key element of the 
immunosuppressive microenvironment.33 34

Bispecific T- cell engagers offer immunotherapy in a 
manufacturing format which is both scalable and stan-
dardizable. In contrast to chimeric antigen receptor 
(CAR) T cells, T- cell engagers do not require initial 
lymphodepletion and ex vivo expansion of autologous 
cells which require transduction (that may potentially 
lead to variable yields).35 36 Owing to their relatively 
simple structure of a single- chain polypeptide, bispecific 
T- cell engagers can be batch manufactured in large quan-
tities using well- established commercial processes such as 
expression via Chinese hamster ovary cells (eg, as used 
for single- chain bispecific agents targeting CD19).37 38 
While this requires generating a construct that can be 
readily expressed, these T- cell engagers can be processed 
into a format without dosing variability, offering an ‘off- 
the- shelf’ form of immunotherapy.

Further, bispecific T- cell engagers have been shown to 
drive T cell- mediated cell kill both in vivo and in vitro 
at very low concentrations (10–100 pg/mL) and at low 
effector to target cell ratios (E:Ts) in hematological 
malignancies (<1:90).39 40 Single- chain bispecific anti-
body fragments have also been demonstrated in vitro 
to exhibit 100 000- fold superior antitumor cytotoxicity 
compared with conventional mAbs.19 41 However, it is 
important to note that in vitro data may not accurately 
reflect the characteristics of a therapeutic in vivo as 
retrospective work comparing potency between the two 
settings for antibodies have reported large discrepancies 
in binding behavior.42 Many in vitro potency assays are 
unable to fully account for interactions with the target in 
the steady state and therefore fully evaluate ligand–target 
kinetics.43 Nevertheless, the potential for a highly potent 
immunotherapy that can redirect the entire host reper-
toire of T cells and be manufactured in a consistent and 
scalable fashion is a highly attractive prospect. However, 
significant challenges remain which we will discuss in the 
following section.

DEVELOPMENT AND CHALLENGES FACING T-CELL ENGAGERS 
IN INTRACRANIAL MALIGNANCY
Choosing the right target: is one enough?
Developing a potent and effective T- cell engager therapy 
for intracranial malignancy faces many challenges 
(summarized in figure 1). The ideal CTL- based approach 
requires the identification of a universally expressed and 
specific tumor antigen, but this is an unrealistic expec-
tation for glioblastoma. While some subsets of glioma 
share clonal neoepitopes (IDH1- R132H) and have been 
targeted by vaccination in humans, this is presented in an 
MHC class II- restricted manner and does not elicit a CD8+ 
CTL response.44

One attractive target is epidermal growth factor receptor 
variant III (EGFRvIII), which is specific to glioblastoma 
and is not expressed in non- tumor tissue. Epidermal 
growth factor receptors (EGFRs) are involved in dereg-
ulated cancer signaling pathways, leading to atypical 
proliferation and growth of tumor cells.45 EGFRvIII is the 
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most common variant which is not presented in an MHC- 
dependent manner, but is present in only 20%–30% of 
patients and is not expressed in all tumor cells.46 Scott et 
al demonstrated that systemically delivered radiolabeled 
antibodies specific to EGFRvIII were taken up in high 
levels by tumors in patients with glioblastomas, indicating 
their ability to accumulate intracranially.47 However, it 
is notable that this effect was only seen in one of eight 
patients studied. This may reflect penetration of a radio-
labeled antibody through the diseased BBB. However, 
disruption of the BBB is not uniform in glioblastoma, 
and there may be regions of immune privileged tumor 
shielded by intact portions of barrier.48 Further work to 
determine optimal delivery of systemic bispecific T- cell 
therapy across intact and disrupted BBB is required.

First in- human trials of EGFRvIII- specific CAR T cells 
found that disease regression could be induced in a 
specific manner, with no off- target effects on wild- type 
EGFR.49 However, O’Rourke et al demonstrated antigen 
loss and a lack of persistent effector T- cell activity in 
patients treated with EGFRvIII CAR T cells.24 Brown 
et al similarly reported achieving efficacy in reducing 
disease burden when targeting the IL13Rα2 cell surface 
receptor but described antigen loss in post- treatment 
tumor samples taken from patients who had experienced 

recurrence.26 50 While the experience of using bispe-
cific T- cell engagers in clinical glioblastoma is limited, 
this effect has also been observed with hematological 
therapies where CD19- negative clones have developed 
following treatment with blinatumomab or anti- CD19 
CAR T cells.51–53 Tandem approaches targeting multiple 
TAAs are one potential strategy to overcome this obstacle. 
A tandem CAR targeting HER2 and IL13Rα2 has been 
shown to enhance survival and mitigate antigen escape 
in murine models of glioblastoma.54 However, targeting 
two or more TAAs may ultimately fail if even a small part 
of the tumor does not express this combination, and such 
an approach may also significantly increase the risk for 
off- target toxicity.

Another approach to address heterogeneity may be by 
inducing partial kill of a tumor, thereby driving antigen 
shedding by dying tumor cells (epitope spreading).55 56 
Concurrent local cytokine production/administration 
has been shown in vitro and in vivo to drive bystander cell 
killing, even if those cells in the vicinity are antigen nega-
tive.57 58 However, Krenciute et al described antigen escape 
still occurring in murine models of glioblastoma when 
IL13Rα2 CAR T cells were induced to express costimu-
latory interleukin (IL)- 15.59 Choi et al reported efficacy 
in heterogenous murine glioblastoma when using CAR- T 

Figure 1 Barriers to bispecific T- cell engager therapies in the intracranial environment. (A) First- generation bispecific T- cell 
engagers are small in size (approximately 55 kDa), which makes them prone to rapid clearance, giving them a short plasma 
half- life of approximately 2.5 hours.63 This limits their time to exert their therapeutic effect and can pose a challenge for clinical 
administration, necessitating continuous infusion strategies. Newer designs involve the use of additional Fc regions, full size 
antibody constructs or the addition of albumin- binding domains. However, these also increase the size of the construct and 
may affect trafficking dynamics at the BBB. (B) The BBB prevents the passive movement of cells and molecules that could 
potentially damage the central nervous system. While the small size of bispecific T- cell engagers makes them theoretically 
more able to cross the BBB compared with larger, full- sized monoclonal antibodies, the trafficking of effector T cells may be 
restricted by the BBB. (C) High levels of immunosuppression surrounding tumor may prevent or limit T- cell activation following 
T- cell engagement. (D) Tumor- infiltrating lymphocytes may become exhausted and anergic, which is driven in part by tumor 
cells expressing programmed death ligand- 1 along with myeloid- derived suppressor cells. (E) Glioblastoma lacks a uniformly 
expressed major histocompatibility complex- independent tumor- specific antigen which limits bispecific therapy as there may 
be selection pressure on those tumor cells expressing the target antigen, leading to outgrowth of antigen- negative cells. BBB, 
blood–brain barrier; TME, tumor microenvironment.
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cells specific for EGFRvIII but which are also designed 
to express a bispecific T- cell engagers targeting EGFR 
wild type. This intracranially administered drug could 
induce local cytotoxicity, with no EGFR bispecific T- cell 
engagers detected in the periphery.60 Further, bispecific 
T- cell engagement of CD3 to the target antigen results in 
an immune synapse more akin to the natural TCR–MHC 
peptide complex, resulting in secretion of cytokines and 
promoting differentiation of naïve T cells to lyse tumor 
cells, thereby driving a more diverse and efficient immune 
response.20 61 62

Potent but brief killer
Ensuring persistence of bispecific T- cell engagers to drive 
ongoing killing at the tumor site is another significant 
challenge. While the small size of bispecific T- cell engagers 
allows for them to bring CTLs into close proximity with 
the target cell, they tend to have a short half- life due to 
rapid renal clearance (approximately 2.5 hours63). This 
rapid clearance can limit drug accumulation, particularly 
in difficult to access compartments such as the brain. A 
half- life of just 2.5 hours requires dosing regimens that 
rely on continuous infusion, often requiring patients 
to have venous access port systems installed which carry 
their own associated risks.64 Furthermore, the small size 
can lead to drug stability and aggregation issues.65

Approaches to extend the half- life of bispecific T- cell 
engagers involve giving the construct a higher molecular 
weight, which would extend the elimination half- life and 
make this therapy deliverable via serial infusions while 
maintaining serum levels.66 These can involve construc-
tions that add a constant domain to the bispecific struc-
ture (as per AMG160 targeting PSMA for prostate cancer), 
or indeed reverting to full size bispecific antibodies such 
as approaches targeting ENPP3 in renal cell carcinoma 
(RCC), prostate cancer (via prostate specific membrane 
antigen (PSMA)) or a mixed valency 2+1 format bispe-
cific antibody targeting claudin- 6 in ovarian cancer.67–70

Half- life extended bispecific T- cell engagers are under 
investigation in a first- in- human phase I study involving 
patients with B- cell malignancies to evaluate safety and 
preliminary efficacy (NCT03571828).71 However, bispe-
cific T- cell engagers may transit the BBB more readily 
due to their small size. Half- life extension modules which 
increase the molecular weight by adding an Fc domain, 
or indeed full- size antibody constructs may hinder migra-
tion across the BBB.65 Other approaches use the addition 
of a variable fragment of a humanized albumin- binding 
antibody.72 Interestingly, the addition of human serum 
albumin (HSA) may also aid the transiting of small ther-
apeutics across the BBB, and its use in a combination 
format with bispecific therapies targeting intracranial 
malignancies may have a dual benefit.73

A hostile microenvironment
Glioblastoma is surrounded by a highly immuno-
suppressive stroma, in which regulatory T cells 
(CD4 +CD25+FOXP3), tumor- associated macrophages 

(TAMs) and myeloid derived suppressor cells are 
present.56 74 This environment can drive T- cell anergy 
and apoptosis as well as blunting the impact of innate 
natural killer (NK) cells. Glioblastoma expresses HLA- G, 
which inhibits activated NK cells and therefore down-
regulates their response.75 IDH mutant gliomas also 
demonstrate resistance to NK activity by epigenetically 
silencing activating receptor ligands.76 While NK cells can 
destroy glioma stem cells, phase III studies using NKs or 
lymphokine- activated killer cells have failed to improve 
immune response against immunologically ‘cold’ solid 
tumors.77 78

More recent attention has turned to addressing causes 
of T- cell failure in the TME. As mentioned previously, 
regulatory T cells are adept at inducing secondary T- cell 
failure via immunosuppressive molecular factors such 
as PD- L1 and CTLA- 4, LAG- 3, TIM- 3 and others.79 80 
However, it is notable that ICI as a monotherapy has failed 
to confer benefit in patients with glioblastoma.81 This 
may reflect multiple overlapping mechanisms of immune 
suppression that provide redundancy. Regulatory T cells 
inhibit the secretion of T- cell cytokines and proliferation 
by also exerting a downregulatory effect on the produc-
tion of IL- 2 and interferon-γ.82 Overproduction of IDO- 1 
by glioma not only recruits regulatory T cells but also has a 
metabolic impact on T- cell activity by reducing the amount 
of tryptophan available in the microenvironment.83 While 
there have been several studies evaluating the use of 
IDO- 1 inhibitors in glioblastoma, including combination 
approaches against PD- 1 and IDO- 1 (NCT03707457), 
phase III evaluations of IDO inhibition in other solid 
malignancies in the CNS (metastatic melanoma) have 
failed to demonstrate survival benefit.84 However, more 
recent mechanistic studies suggest that this failure may 
be due to incomplete blockade of protumorigenic meta-
bolic pathways. Enzymes such as IL- 4- induced- 1 have also 
been associated with downstream receptors activated by 
tryptophan catabolites and whose activity is undisturbed 
by IDO- 1 inhibition.85 86

Stromal cells in the microenvironment also produce 
highly immunosuppressive cytokines such as trans-
forming growth factor beta (TGF-β) and IL- 10.87 88 Pref-
erential production of lactate by tumors via anaerobic 
metabolism (known as the Warburg effect) can decrease 
CTL activity as well as migration potential.89 The tumor 
itself can drive T- cell dysfunction by producing hypoxia- 
inducing factor- 1 alpha (HIF- 1a) to promote angiogen-
esis and proliferation.90 91 Overexpression of HIF- 1a can 
also reduce the migration of CTLs via downregulation of 
CD62L, resulting in their failure to migrate to the tumor 
site.92 Taken together, the aforementioned mechanisms 
contribute to an ‘immune desert’ landscape, character-
ized by few, if any, infiltrating lymphocytes which bispe-
cific T- cell engagers can redeploy against tumor cells.93

Novel preclinical approaches include combinatorial 
inhibition of recognized drivers of T- cell exhaustion such 
as CTLA- 4, LAG- 3, TIM- 3, or IDO with bispecific T- cell 
engagers, or triggering costimulatory receptors such 
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as 4- 1BB, OX40, CD40, or CD27.94 More controllable 
constructs have also been demonstrated preclinically, 
with the use of switch receptor constructs targeting PD- 1 
expression, whereby adding CD28 domains can trans-
form a negative signal into a stimulatory one.95 Work is 
also under way exploring potential combinatorial cyto-
kine modulation approaches, such as those described in 
‘armored’ CAR T cells which are combined with IL- 12, 
IL- 15 or IL- 18 for enhanced effect.96–98 Should such 
approaches show promise, these could be translated to 
the T- cell engager format either as part of the construct or 
as an adjunct delivered via catheter directly to the tumor. 
Frewert et al described enhanced CTL activity when 
infusing IL- 1β or interferon-γ intratumorally, making this 
a logical combination with bispecific T cell engagers.99 
Antibody mediated blockade of lactate transporters may 
also aid in combating T cell dysfunction in the TME, as 
well as the use of constructs targeting fibroblast activation 
proteins or expressing heparinase to disrupt immunosup-
pressive stromal elements.89 100 101

PRECLINICAL DEVELOPMENT OF T-CELL ENGAGERS FOR 
GLIOBLASTOMA
Murine bispecific T- cell engagers targeting EGFRvIII and 
CD3ϵ were first described by Choi et al.102 When systemi-
cally administered, this construct was found to activate T 
cells to generate potent antigen- specific lysis of EGFRvIII 
expression gliomas in vitro (p<0.001) at very low concen-
trations (10 ng/mL) and at low E:Ts (1:2.5). While this 
ratio is lower than the previously mentioned <1:90 for 
CD19 agents, it is notable that bispecific T- cell engagers 
may benefit from lower E:T ratios in solid tumors due to 
the process of additive toxicity, as described by Weigelin 
et al in murine models of melanoma.103 Cytolysis of solid 
tumor cells may be induced by sequential ‘sublethal’ 
interactions between CTLs and tumor cells (such as gran-
zyme B- mediated damage to the nuclear envelope and the 
creation of double- stranded breaks in DNA).103 104 Bispe-
cific T- cell engagers may help to promote this effect on 
solid tumors by acting as a stabilizing contact which can 
increase these sublethal CTL interactions at the tumor 
site.35 103 Choi et al also reported that bispecific T- cell 
engager therapy could redirect Tregs in vitro to express 
granzymes and perforins, which may serve to induce 
further tumor cytolysis.34 Accordingly, the use of bispe-
cific T- cell engagers in murine models of intracranial 
glioma has been shown to achieve durable and complete 
cures in up to 75% of mice (p<0.05).102

Following this, a fully human T- cell engager was 
described by Gedeon et al.105 This fully human construct 
would avoid potential murine antibody- associated compli-
cations such as cytokine release syndrome, unpredict-
able dose–response relationships, and the formation of 
human anti- mouse antibodies, leading to rapid clearance 
of the bispecific T- cell engager from the serum.106–109 
This fully human bispecific T- cell engager again exhib-
ited specific binding, cytokine release, T- cell activation 

and proliferation, and in vitro and in vivo tumor cell 
lysis in murine models of orthotopically implanted 
glioma.63 Schaller et al subsequently conducted preclin-
ical studies to determine the minimum anticipated 
biological effect level and thus to establish a safe dose 
for first in- human trials (notably 1000- fold lower than 
prior in vivo dosages).110 This study determined that the 
theoretical human receptor occupancy was 0.17%, far 
below industry standard levels.111–113 An extended single- 
dose toxicity study in vivo using mice demonstrated no 
evidence of pathological findings related to the bispecific 
T- cell engager and no neurological toxicity was exhib-
ited.114 Detailed pharmacokinetic analysis demonstrated 
a relatively short half- life in keeping with other T- cell 
engagers with a half- life of 8 min and a terminal half- life 
of ∼2.5 hours.63

CLINICAL DEVELOPMENT OF EGFR T-CELL ENGAGERS FOR 
GLIOBLASTOMA
Currently, there are two EGFRvIII targeting T- cell 
engagers entering phase I trials for glioblastoma. AMG596 
is a bispecific T- cell engager (trademarked as BiTE) by 
AMGEN, which conducted a phase I open- label sequen-
tial dose- escalation and dose- expansion trial in humans 
(NCT03296696). The study evaluated safety, tolera-
bility and pharmacokinetics and pharmacodynamics 
of AMG596 in patients with both newly diagnosed and 
recurrent EGFRvIII- positive glioblastoma.115 Like blinatu-
momab, AMG596 is administered via a continuous intra-
venous infusion. This T- cell engager was to be trialed as 
both a monotherapy and in combination with AMG404, 
a proprietary mAb which blocks binding of the immune 
checkpoint programmed cell death protein-1 (PD- 1).116 
However, while this study began enrollment in April 
2018, it is unclear if ongoing development may progress 
due to portfolio prioritization.117 hEGFRvIII- CD3 bi- scFv 
(BRiTE) is another EGFRvIII bispecific construct which 
is entering phase I clinical trials (NCT04903795). This 
consists of anti- human mAb clones 139 (anti- EGFRvIII) 
and 28F11 (anti- CD3), both of which have been used 
safely in the clinical environment previously.118–120 This 
will be trialed as both a monotherapy and in combina-
tion with peripheral T- cell infusion. As described, late- 
stage tumors frequently evade immune response due to 
inducing T- cell anergy and apoptosis. Increased numbers 
of intratumoral CD8+ CTLs have also been associated with 
favorable outcomes in patients with glioblastoma.121–123 
Concomitant administration of stimulated CTLs may 
therefore synergistically enhance the efficacy of this treat-
ment.124 The migration of T- cell engagers across the BBB 
may also be facilitated by activated T cells which adhere to 
the brain microvascular endothelium and subsequently 
cross by diapedesis.125 Concurrent administration of acti-
vated T cells could therefore enhance the trafficking of 
bispecific T- cell engagers into the intracranial compart-
ment, increasing their density at the tumor site and thus 
the therapeutic effect. However, this approach requires 
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careful monitoring of toxicity, as the release of inflam-
matory cytokines in the CNS has been associated with 
immune effector cell- associated neurotoxicity syndromes 
(ICANS). This condition manifests as a spectrum of symp-
toms ranging from lethargy and confusion to seizure 
and coma.126 ICANS has been observed as a potential 
side effect for bispecific T- cell engagers even without a 
brain- specific target. Blinatumomab (specific for CD19) 
has been found to systemically activate T cells which then 
subsequently cross the BBB in a non- specific manner. It is 
theorized that these T cells may then encounter sporadic 
CD19 expressing target cells in the CNS and then release 
inflammatory cytokines such as IL- 6 and IL- 1β, which can 
disrupt the BBB further, allowing for greater ingress of 
proinflammatory cytokines.125 Importantly, this toxicity 
can be abrogated by the administration of agents such as 
natalizumab, which prevents T- cell migration across the 
BBB.125

EGFR biarmed activated T cells (EGFR BATs) is a 
separate CD3 bispecific approach under investigation 
targeting EGFRwt. EGFR BATs are T cells that have been 
coated with cetuximab (a bispecific antibody targeting 
EGFRwt) and treated with OKT3 to stimulate them.127 
This approach is currently undergoing phase I clinical 
trials for safety and toxicity in patients with newly diag-
nosed glioblastoma alongside standard of care treatment 
(NCT03344250). Despite targeting EGFRwt, which is 
expressed at several sites around the body, preliminary 
data report no dose- limiting toxicity of the four patients 
treated in the first- dose tier.128 A summary of these 
approaches is shown in table 1.

FUTURE APPROACHES
Given the plethora of targets, agents and obstacles for 
bispecific T- cell engagers in glioblastoma, it is under-
standable that new approaches are already under preclin-
ical development (overview shown in figure 2). These 
consist of both an expansion of the bispecific T- cell 
engager construct, with more potential antigen targets 
incorporated, or by combining bispecific T- cell engager 
therapy with checkpoint inhibitors simultaneously. Given 
the early stage of preclinical development for many of 

these approaches, we will discuss the initial findings from 
multiple malignancies, which may offer insights for future 
directions in glioblastoma.

Checkpoint inhibitory T-cell engagers (CiTEs) and 
simultaneous multiple interaction T-cell engagers (SMiTEs)
CiTEs offer immune checkpoint blockade in the area of 
interest only by tethering immune checkpoint domains 
to classical bispecific T- cell engager construct, reducing 
the chance for on- target, off- tumor effects.129 SMiTEs 
consist of two separate bispecific T- cell engagers targeting 
separate antigens. These have been used to target both 
CD3, to induce the lytic synapse as described previously, 
and CD28, to induce a costimulatory signal for engaged 
T cells. Such constructs have been designed using a 
CD3- TAA×anti- PD- L1- CD28 format to further enhance 
their activation and overcome potential anergy in a local 
fashion.130 Although CD28 stimulation can have delete-
rious off- target effects, its combination with a bispecific 
T- cell engager specific to the tumor site may help to 
ensure specificity and prevent systemic toxicity.131

Trispecific T-cell engagers (TRiTEs)
Other similar approaches involving CD28 include TRiTEs, 
which have been found to suppress myeloma growth in a 
humanized mouse model while also stimulating memory/
effector T- cell proliferation and reducing Treg cell numbers 
in primates.132 Bispecific T- cell engagers have also been 
engineered to include cytokines such as IL- 12 to enhance 
their activity. Do et al described a nanoparticle- based 
assembly and screening approach before using a modular 
platform to incorporate the cytokine of interest.133 They 
reported that the optimally lytic architectures favor high 
αCD3 to αTAA ratios, and these are improved linearly by 
increasing IL- 12. Given that many current structures offer 
a 1:1 binding ratio of CD3 to TAA, it may be that combi-
natorial structures can increase the binding avidity and 
enhance effect. The wide variety of potential targets, both 
in terms of ICI and selecting for other TAAs or cytokine 
inclusion, may also make simultaneous engagement an 
attractive proposition for addressing glioblastoma hetero-
geneity and overcoming immune escape. Another TRiTE- 
like approach is the trispecific T- cell activating construct 

Table 1 EGFR targeting T cell engagers for glioblastoma in clinical trials

Therapeutic Target Format and engineering Disease area Status (selected trials)

MDX- 447 EGFRxFcγRI Bispecific antibody with activated 
monocytes

Recurrent glioblastoma Completed 
(NCT00005813)

AMG596 
(Amgen)

EGFRvIIIxCD3 Bispecific T- cell 
engager±pembrolizumab (anti- PD- 1)

New and recurrent 
glioblastoma

Phase I (NCT03296696)

BRiTE EGFRvIIIxCD3 Bispecific T- cell engager New and recurrent 
glioblastoma

Phase I (NCT04903795)

EGFR BAT EGFRxCD3 EGFR biarmed activated T cells 
(cetuximab and OKT3) with SOC (TMZ/
RT)

New glioblastoma Phase I (NCT03344250)

BRiTE, brain bispecific T- cell engager; EGFR, epidermal growth factor receptor; EGFRvIII, epidermal growth factor receptor variant III.
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(TriTAC) platform, which contains three domains that 
target a TAA, CD3, and HSA. The authors demonstrated 
that TriTACs have good solid tumor penetrance due to 
their small size yet have an extended half- life due to HSA 
binding activity.134

Novel delivery approaches
As discussed previously, treatment penetrance into solid 
malignancies remains a particular challenge. Oncolytic 
viruses which deliver therapeutic transgenes can induce 
local expression of bispecific T- cell engagers and there-
fore stimulate tumor- resident T cells.135 136 Scott et al 
developed both a bispecific and trispecific T- cell engager 
expressing adenovirus and demonstrated they could also 
be used to deplete immunosuppressive TAMs in vitro.137 
This was further developed resulting in an oncolytic virus 
format which simultaneously produced IL- 12, an anti- 
PD- L1 antibody and a bispecific T- cell engager. In combi-
nation with CAR T- cell therapy, this format was able to kill 
multiple cancer cell lines expressing target antigen while 
inducing more durable responses against orthotopically 

implanted tumors.138 Oncolytic viruses such as adenovirus 
can also kill directly by oncolysis, which may further result 
in neoantigen release from within lysed cells. Their subse-
quent presentation by antigen- presenting cells could act 
as an in situ vaccine, enhancing the specific immune 
response further.139

Examples of combination therapies of CAR T cell and 
bispecific T- cell engagers are currently under preclinical 
evaluation in EGFRvIII expressing glioblastoma. Choi et 
al developed a bicistronic gene construct that enables 
coexpression of an EGFRvIII- directed CAR, which also 
secreted a bispecific T- cell engager targeting wild- type 
EGFR. These CAR T cells secreted bispecific T- cell 
engagers which successfully generated T- cell responses 
against EGFR wild type within the local tumor environ-
ment only in addition to EGFRvIII targeted tumor lysis by 
CARs.49 This resulted in successful clearance of heteroge-
neous glioblastoma in vivo, and the EGFR- targeting bispe-
cific T- cell engager was only expressed in the local tumor 
environment, with no systemic detection.60

Figure 2 Bispecific T- cell engager constructs and future directions. The ‘classical’ T- cell engager structure, consisting of two 
antigen- binding variable fragments, devoid of the Fc domain of their parent antibody, linked by a short flexible linker region. It 
tethers the epsilon subunit of the T cell to EGFRvIII expressing tumor cells, activating the T cell, which then releases granzymes 
and perforins, resulting in tumor cell death. This approach is currently being evaluated in phase I clinical trials (NCT04903795 
and NCT03296696) (B) CiTEs include the extracellular domain of a checkpoint inhibitor (such as PD- 1) fused to a traditional 
T- cell engager scaffold. This allows for synergistic checkpoint blockade alongside T- cell tethering and activation and has 
demonstrated enhanced efficacy in vitro and in vivo in acute myeloid leukemia (AML).129 (C) SMiTEs are constructed from two 
separate classical T- cell engagers which target separate antigens. These can offer costimulation of tethered T cells and provide 
regional checkpoint blockade while also offering the traditional lytic effects formed by the tumor–T cell synapse. (D) TRiTEs can 
tether T cells to the tumor while also delivering costimulatory signals (eg, via interaction with CD28). (E) CAR T cells which can 
be engineered to secrete T- cell engagers have been described by Choi et al, who developed a bicistronic construct that resulted 
in expression of a CAR specific for EGFRvIII, which could also secrete T- cell engagers specific for EGFR wild type, which would 
only have effect in the local tumor environment. These demonstrated promising efficacy against heterogeneous mouse models 
of glioblastoma.60 (F) DART proteins are a novel take on the bispecific construct, where two variable fragment chains are linked 
by disulfide bonds and non- covalent forces, which may result in greater stability and enhanced cytotoxicity.142 CAR, chimeric 
antigen receptor; CiTE, checkpoint inhibitory T- cell engager; DART, dual- affinity retargeting; EGFR, epidermal growth factor 
receptor; SMiTE, simultaneous multiple interaction T- cell engager; TCR, T- cell receptor; TRiTE, trispecific T- cell engager.
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Of note, this effect was only seen when CAR- T therapy 
was delivered either intracerebrally or intraventricu-
larly but lost if peripherally given. Similar intracranial 
approaches are also described by Gardell et al, who directly 
delivered a retrovirally modified macrophage which could 
secrete a bispecific T- cell engager specific for EGFRvIII 
to murine models of glioma. These macrophages could 
persist in the solid tumor, secreting both the bispecific 
T- cell engager therapy and IL- 12, enhancing the T- cell 
response.140 However, as stated previously, while these 
approaches using CED bypass the BBB, these generally 
require an invasive procedure and can be hampered by 
uneven drug distribution/coverage at the tumor site.15 16

Targeting other TCRs
Other experimental approaches involve modifying 
the structure of bispecific T- cell engagers to target 
other receptors. γ-δ T- cell engagers have been demon-
strated to bind to a homogenous effector T- cell popu-
lation with low levels of immune checkpoint molecule 
expression.141 Several of these constructs targeting 
non- CD3 TCRs, in combination with immune check-
point blockade, are under evaluation (tumorous PD- L1 
(NCT03917381), FAP (EudraCT 2017- 000292- 83), 4- 1BB, 
LAG- 3 (NCT04140500), and TIM- 3 (NCT03752177)). 
Another modified approach includes that of dual- affinity 
retargeting (DART) proteins. These consist of bispecific 
diabodies with two variable fragment chains assembled by 
means of disulfide bonding and non- covalent forces. This 
results in a construct which can provide dual antigen- 
binding sites but may offer greater stability and enhanced 
redirection of T- cell killing towards tumor cells.142 Indeed, 
enhanced cytotoxicity when compared with traditional 
bispecific T- cell engagers has been observed in preclin-
ical models, and DARTs are capable of redirecting NK 
cells and T cells in preclinical models of both hemato-
logical malignancies (anti- CD16- CD32B DART or anti- 
CD19- CD3 DART duvortuxizumab (MGD011) and solid 
tumors (glycoprotein A33- expressing gastrointestinal 
cancer cells (gpA33;MGD007)).142–145

In glioblastoma, alongside bispecific T- cell engagers, 
bifunctional antibodies targeting EGFR and TGF-β are 
undergoing evaluation (BCA101). This seeks to abrogate 
the potential for TGF-β to induce regulatory T cells in the 
context of EGFR- driven malignancies (including glioblas-
toma). BCA101 is currently under evaluation in a phase 
I trial in advanced solid tumors refractory to standard 
of care as either a monotherapy or in combination with 
pembrolizumab, an FDA- approved mAb targeting PD- 1 
(NCT04429542).146 CDX- 527 is another bispecific anti-
body under investigation for safety, tolerability and activity 
in multiple solid tumors (NCT04440943). This approach 
seeks to block the binding of PD- L1 while also including 
an agonist anti- CD27 domain. CD27 is a member of the 
tumor necrosis factor receptor family, and its blockade 
can enhance the immune response while reducing the 
number of Tregs in the local TME.147 148 This synergistic 
effect results in increased CD8+ T- cell expansion and 

effector function.149 150 These novel approaches currently 
under evaluation in glioblastoma are shown in figure 3.

CONCLUSIONS
T- cell engagers are a specific and potent antitumor 
therapy which can overcome the barriers faced by 
traditional immunotherapy constructs when accessing 
immune privileged compartments such as the brain. 
However, significant challenges remain, such as the 
outgrowth of antigen- negative cells and the profoundly 
immunosuppressive microenvironment which negates 
T- cell function. For bispecific T- cell engagers to succeed, 
combination approaches will be required, possibly with 
ICI or cytokines, which may reinvigorate the immune 
response. As development of these molecules continues, 
it may be possible to merge these constructs into a single 
agent, although this may also enlarge its size and hamper 
its ability to cross the BBB. Although the short half- life of 
bispecific T- cell engagers does not pose an insurmount-
able clinical challenge, the need for a continuous infu-
sion system makes this a complex therapy to administer 
at present, and more invasive administration systems will 
always carry a higher risk of morbidity. Other approaches 
to extending the half- life of bispecific T- cell engagers 
such as the addition of large stabilizing proteins may also 
be of value, but their effect on BBB migration dynamics 
must be carefully considered. While there are potential 
mechanisms to enhance trafficking across the BBB, our 
understanding of the exact mechanism and the degree 
of carriage into the CNS is not yet fully understood. Work 
to identify novel MHC independent antigens which are 
more universally expressed or whether partial killing can 
drive epitope spreading may also offer a way to overcome 
tumorous heterogeneity. Combinatorial approaches that 
can penetrate tumors, negate exhaustion, and drive the 
presentation of neoantigens to local T cells are likely to 
have the best chance of inducing efficacious and durable 
antitumor responses. Combination immunotherapies, 
however, bring their own challenges in determining the 
degree of attribution of individual components to effi-
cacy and the potential for additive or synergistic toxici-
ties. As greater numbers of T- cell engaging therapies in 
varying formats enter clinical trials in glioblastoma, the 
precise strategy and utility of these promising therapies 
will become more apparent.

IMPORTANCE OF THE REVIEW
We summarize the development of bispecific Tcell 
engagers in glioblastoma, including preclinical and clin-
ical development to date. We explore future designs for 
Tcell engagers that may help to improve their efficacy 
and address unique aspects of Tcell engagers, such as 
their short half- life. Research using similar approaches 
with bispecific or multispecific antibodies is also eluci-
dated. The unique challenges faced when using immu-
notherapy within the brain are contextualized with how 
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Tcell engagers may specifically address the hurdles facing 
development of effective immunotherapy in glioblastoma.
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