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ABSTRACT

Motivation: Next-generation sequencing technologies sequence

viruses with ultra-deep coverage, thus promising to revolutionize

our understanding of the underlying diversity of viral populations.

While the sequencing coverage is high enough that even rare viral

variants are sequenced, the presence of sequencing errors makes it

difficult to distinguish between rare variants and sequencing errors.

Results: In this article, we present a method to overcome the limi-

tations of sequencing technologies and assemble a diverse viral

population that allows for the detection of previously undiscovered

rare variants. The proposed method consists of a high-fidelity

sequencing protocol and an accurate viral population assembly

method, referred to as Viral Genome Assembler (VGA). The pro-

posed protocol is able to eliminate sequencing errors by using in-

dividual barcodes attached to the sequencing fragments. Highly

accurate data in combination with deep coverage allow VGA to

assemble rare variants. VGA uses an expectation–maximization al-

gorithm to estimate abundances of the assembled viral variants in

the population. Results on both synthetic and real datasets show

that our method is able to accurately assemble an HIV viral popu-

lation and detect rare variants previously undetectable due to

sequencing errors. VGA outperforms state-of-the-art methods for

genome-wide viral assembly. Furthermore, our method is the first

viral assembly method that scales to millions of sequencing reads.

Availability: Our tool VGA is freely available at http://genetics.cs.

ucla.edu/vga/

Contact: serghei@cs.ucla.edu; eeskin@cs.ucla.edu

1 INTRODUCTION

Human immunodeficiency virus (HIV) exhibits high genomic

diversity within an infected host, which affects many clinically

important phenotypic traits such as escape from vaccine-induced

immunity, virulence and response to antiviral therapies (Lauring

and Andino, 2010). To accurately characterize an intra-host HIV

population, sequencing technologies must be sensitive enough to

detect and quantify rare variants (Henn et al., 2012; Tsibris et al.,

2009). Next-generation sequencing (NGS) technologies offer

deep coverage of genomic data in the form of millions of sequen-

cing reads (Metzker, 2009). While the sequencing coverage is

high enough to capture rare variants, the presence of sequencing

errors makes it difficult to distinguish between rare variants and

sequencing err0ors. Additionally, low viral population variability

(i.e. pairs of individual viral genomes that have small genetic

distance) and the presence of individual variants having low

abundance complicates accessing viral diversity and assembling

full-length viral variants.
The full picture of viral diversity in a population remains un-

discovered due to errors produced by sequencing platforms.

Current sequencing technologies use different underlying chem-

istry and offer trade-offs among throughput, read length and

cost (Metzker, 2009). While the current sequencing platforms

can potentially detect point-mutations, error rates may result in

false-positive single nucleotide variant (SNV) calls or wrong

genome variant sequences. Computational error correction tech-

niques are able to partially correct the sequencing error and pro-

vide an opportunity to discover highly expressed individual viral

genomes, but low abundant variants remain undiscovered.

Current methods (Astrovskaya, 2011; Mancuso et al., 2011;

Prosperi and Salemi, 2012; Zagordi et al., 2011, 2012) are not

able to differentiate true biological mutations from sequencing

artifacts, thus significantly limiting the possibility of a method to

assemble the underlying viral population.

In this article, we propose a method to overcome these limi-

tations by coupling a high-fidelity sequencing protocol (Kinde

et al., 2011) with an accurate method, referred to as Viral

Genome Assembler (VGA), to assemble a heterogeneous viral

population. High-fidelity sequencing protocol, known as Safe-

SeqS, has been applied to detect rare somatic mutations, but

its application on detecting rare viral mutations has been neg-

lected. Similar to Safe-SeqS we apply a special library prepar-

ation technique that eliminates sequencing errors during the de-

multiplexing step. The proposed protocol attaches individual

barcode sequences during the library preparation step for every

fragment, then amplifies each tagged fragment. Reads are clus-

tered according to the original fragment based on the attached

barcode. An error-correction protocol is then applied for every

read group resulting in a method that corrects errors inside the

group and produces a corrected consensus read. Highly accurate

data in combination with deep coverage allows for accurate es-

timation of the underlying diversity of a viral population.

Importantly, the low per-base sequencing cost of the Illumina

platform makes it realistic to greatly increase coverage to detect

ultra-rare variants. Our sequencing protocol introduces novel

challenges for virus assembly and we develop a novel assembly

approach for reconstructing and estimating the frequency of a
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large number of closely related viral variants. Our method does

not rely on the availability of a reference genome. This makes

our method applicable to newly emerged viruses in which

genome sequences are unknown.
The ability to discover rare viral variants makes our tool ap-

plicable for monitoring and quantifying an HIV population

structure to dissect its evolutionary landscape and study genomic

interaction. In particular, our approach allows for the discovery

of rare mutations and variants that are of particular interest be-

cause of their potential influence on drug resistance and treat-

ment failure (Liu et al., 2011; Palmer et al., 2006; Wang et al.,

2007).

2 METHODS

2.1 Overview

Advances in NGS and the ability to generate deep coverage data in the

form of millions of reads provide exceptional resolution for studying the

underlying genetic diversity of complex viral populations. However, errors

produced bymost sequencing protocols complicate distinguishing between

true biologicalmutations and technical artifacts that confound detectionof

rare mutations and rare individual genome variants. A common approach

is to use post-sequencing error correction techniques able to partially cor-

rect the sequencing errors. In contrast to clonal samples, the post-sequen-

cing error correction methods are not well suited for mixed viral samples

and may lead to filtering out true biological mutations. For this reason,

current viral assembly methods are able to detect only highly abundant

SNV, thus limiting the discovery of rare viral genomes.

Additional difficulty arises from the genomic architectures of viruses.

Long common regions shared across viral population (known as conserved

regions) introduce ambiguity in the assembly process. Conserved regions

may be due low-diversity population or due to recombination with mul-

tiple cross-overs. In contrast to repeats in genome assembly, conserved

regions may be phased based on relative abundances of viral variants.

Low-diversity viral populations in which all pairs of individual genomes

within a viral population have a small genetic distance from each other

may represent additional challenges for the assembly procedure.

We apply a high-fidelity sequencing protocol to study viral population

structure (Fig. 1). This protocol is able to eliminate errors from sequen-

cing data by attaching individual barcodes during the library preparation

step. After the fragments are sequenced, the barcodes identify clusters of

reads that originated from the same fragment, thus facilitating error cor-

rection. Given that many reads are required to sequence each fragment,

we are trading off an increase in sequence coverage for a reduction in

error rate. Prior to assembly, we utilize the de novo consensus reconstruc-

tion tool, Vicuna (Yang et al., 2012), to produce a linear consensus dir-

ectly from the sequence data. This approach offers more flexibility for

samples that do not have ‘close’ reference sequences available.

Traditional assembly methods (Gnerre et al., 2011; Luo et al., 2012;

Zerbino and Birney, 2008) aim to reconstruct a linear consensus sequence

and are not well-suited for assembling a large number of highly similar

but distinct viral genomes. We instead take our ideas from haplotype

assembly methods (Bansal and Bafna, 2008; Yang et al., 2013), which

aim to reconstruct two closely related haplotypes. However, these meth-

ods are not applicable for assembly of a large (a priori unknown) number

of individual genomes. Many existing viral assemblers estimate local

population diversity and are not well suited for assembling full-length

quasi-species variants spanning the entire viral genome. Available

genome-wide assemblers able to reconstruct full-length quasi-species vari-

ants are originally designed for low throughput and are impractical for

high throughput technologies containing millions of sequencing reads.

We introduce a viral population assembly method (Fig. 2) working on

highly accurate sequencing data able to detect rare variants and tolerate

conserved regions shared across the population. Our method is coupled

with post-assembly procedures able to detect and resolve ambiguity

raised from long conserved regions using expression profiles (Fig. 2F).

After a consensus has been reconstructed directly from the sequence data,

our method detects SNVs from the aligned sequencing reads. Read over-

lapping is used to link individual SNVs and distinguish between genome

variants in the population. The viral population is condensed in a conflict

graph built from aligned sequencing data. Two reads are originated from

Fig. 1. Overview of high-fidelity sequencing protocol. (A) DNA material

from a viral population is cleaved into sequence fragments using any

suitable restriction enzyme. (B) Individual barcode sequences are attached

to the fragments. Each tagged fragment is amplified by the polymerase

chain reaction (PCR). (C) Amplified fragments are then sequenced. (D)

Reads are grouped according to the fragment of origin based on their

individual barcode sequence. An error-correction protocol is applied for

every read group, correcting the sequencing errors inside the group and

producing corrected consensus reads. (E) Error-corrected reads are

mapped to the population consensus. (F) SNVs are detected and

assembled into individual viral genomes. The ordinary protocol lacks

steps (B) and (D)
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Fig. 2. Overview of VGA. (A) The algorithm takes as input paired-end reads that have been mapped to the population consensus. (B) The first step in

the assembly is to determine pairs of conflicting reads that share different SNVs in the overlapping region. Pairs of conflicting reads are connected in the

‘conflict graph’. Each read has a node in the graph, and an edge is placed between each pair of conflicting reads. (C) The graph is colored into a minimal

set of colors to distinguish between genome variants in the population. Colors of the graph correspond to independent sets of non-conflicting reads that

are assembled into genome variants. In this example, the conflict graph can be minimally colored with four colors (red, green, violet and turquoise), each

representing individual viral genomes. (D) Reads of the same color are then assembled into individual viral genomes. Only fully covered viral genomes

are reported. (E) Reads are assigned to assembled viral genomes. Read may be shared across two or more viral genomes. VGA infers relative abundances

of viral genomes using the expectation–maximization algorithm. (F) Long conserved regions are detected and phased based on expression profiles. In this

example red and green viral genome share a long conserved region (colored in black). There is no direct evidence how the viral sub-genomes across the

conserved region should be connected. In this example four possible phasing are valid. VGA use the expression information of every sub-genome to

resolve ambiguous phasing
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different viral genomes if they share different SNVs in the overlapping

region. Viral variants are identified from the graph as independent sets of

non-conflicting reads. Non-continuous coverage of rare viral variants

may limit assembly capacities, indicating that increase in coverage is

required to increase the assembly accuracy. Frequencies of identified vari-

ants are then estimated using an expectation–maximization algorithm.

Compared with existing approaches, we are able to detect rare population

variants while achieving high assembly accuracy.

2.2 Error correction

The proposed sequencing is able to eliminate errors from sequencing data

and produce highly accurate read sequences. It uses a high-fidelity

sequencing protocol that attaches individual barcodes during the library

preparation step. The barcodes are then used to identify reads originated

from the same fragment, allowing to access multiple sequencing data of

the same fragment. It follows that every sequenced position of the frag-

ment would have multiple independent evidence, suitably promoting

highly accurate consensus reads. By applying an error-correction proced-

ure of the protocol, we are able to address both sequencing and PCR

errors, which leads to high assembly accuracy.

2.3 Consensus construction

We build a consensus from paired-end reads using Vicuna (Yang et al.,

2012). Our sequencing method should not contain any particularly low

coverage region allowing reconstruction of population consensus for viral

sample. In the event that Vicuna produces multiple contigs rather than a

complete consensus, we use BLAST to merge contigs. We require 50nt

overlap to merge any pair of contigs. In the next step, the population

consensus is used as a reference genome to map reads. Building the ref-

erence genome from actual sequencing data rather than using an anno-

tated genome provides us with an accurate and unique mapping.

2.4 Read mapping

As with many viral population analyses, the first step of VGA is to map

the reads. We map reads onto the de novo consensus using InDelFixer

(Armin and Beerenwinkel, 2013) with default parameters. False read

alignments are filtered out using fragment length distribution inferred

from the mapping data. Assuming that the fragment length follows a

normal distribution (Hormozdiari et al., 2009), we only keep reads with

fragment length within three standard deviations from the mean. In total

1.2% of reads have been filtered out versus expected .3% according to the

three-sigma rule.

2.5 Viral population assembly

The combination of deep coverage with high accuracy provides an unpre-

cedented opportunity for estimating genomic diversity in a viral population.

The viral population assembly starts with determining pairs of mapped

reads conflicting with each other in the overlapping region. Following

Huang et al. (2011), we construct the conflict graphG=ðV;EÞ with vertices

corresponding paired-end reads, i.e. V=R, and edges connecting conflict-

ing pairs of paired-end reads.

Obviously, any true viral genome corresponds to a maximal independ-

ent set in the conflict graph (i.e. a maximal set of pairwise nonadjacent

vertices), although not every maximal independent set necessarily corres-

ponds to a true viral genome. We adopt a parsimonious approach requir-

ing to cover the conflict graph with the minimum number of maximal

independent sets. This problem is equivalent to MIN-GRAPH-

COLORING which is NP-hard. There exists many heuristics for solving

this problem [see, e.g. Johnson and Trick, 1996; Kubale, 2004] based on

greedy selection of a maximal independent set. Unfortunately, our

attempts to build even a single viral genome failed, as it is difficult to

arrange paired-end reads into a connected single path. Indeed, a greedy

algorithm runs out of any possible extension after just a few steps while

concatenating paired-end reads from left-to-right.

Instead, we apply an alternative ‘top–down’ approach of recursive

graph partitioning along the maximum cut (Max Cut) which has been

previously successfully applied for human haplotyping (Duitama et al.,

2012). Given a graph G=ðV;EÞ, the Max Cut problem asks for parti-

tioning of the vertices into two components V=V1 [ V2 maximizing the

total number of edges which have one endpoint in V1 and the other in V2.

The Max Cut problem though NP-hard is well approximated by a simple

0.5-approximation algorithm that randomly assigns vertex to one of the

two components (Mitzenmacher and Upfal, 2005). Our Max Cut heur-

istic starts with alternatively assigning left-to-right sorted mapped reads

to two components and then repeatedly moves one vertex at a time from

one component to another, improving the solution at each step, until no

more improvements of this type can be made.

Our coloring heuristic recursively partitions the conflict graph until

each component becomes independent. If reads of a given color com-

pletely cover the consensus genome, then the resulted sequence is ac-

cepted as the next viral genome. Otherwise, if assembled genome

contains gaps, we add non-conflicting reads from other color classes in

left-to-right order in attempt to fill the gaps. If all SNV positions are

covered, then a newly reconstructed viral genome is added to the set VG.
Finally, the genomes whose gaps cannot be filled with the above proced-

ure are dropped.

Algorithm 1: VGA Assembly Algorithm.

Input: Set of reads R aligned to the consensus genome

Build conflict graph G=(V,E) from set R

Recursively color G into color classes C using Max Cut

Initialize the set of complete viral genomes VG  1
for each color class ci 2 C do
Compute maximal independent set in G=ðV;EÞ containing ci
Assemble reads in ci into viral genome gi
if gi covers all positions in the consensus genome then

VG  VG[{gi}
end if

end for

Output: Set of complete viral genomes VG

2.6 Viral population quantification

In the final step of the workflow, an expectation–maximization algorithm

is used to infer the relative abundances of assembled viral quasi-species

similar to what is described in Eriksson et al. (2008). We extend the

previous EM and likelihood formulation to incorporate a prior probabil-

ity for the viral population and compute the maximum a-posteriori esti-

mate, rather than the MLE.

Let H be a random variable over the set of viral variant genomes H
=VG and let R be a random variable over the set of reads R. Let p½H�
�Dirð�; . . . ; �Þ be the prior probability of observing a given set of vari-

ants and denote ph=Pr ½H=h� to be the probability of observing a par-

ticular variant h. The probability of observing read r 2 R is given by

marginalizing over all variants

Pr ½R=r�=
X
h2H

Pr ½R=rjH=h� � ph

where

Pr ½R=rjH=h�=
1=Kh if r is consistent with h

0 otherwise

(
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and Kh is the number of reads consistent with h. We can now define the

log-posterior as

log Pr ½HjR�=
X
r2R

nr � log Pr ½R=r�+� �
X
h2H

log ph � CR

where CR is a constant and nr is the number of reads r. As this function is

non-convex and difficult to optimize, we solve the easier problem of

maximizing its lower-bound,X
r2R

X
h2H

nrh � log Pr ½R=rjH=h� � phð Þ+� �
X
h2H

log ph

where nrh is the expected number of reads r generated by variant h. The

EM algorithm computes this by

nrh=nr �
ph � Pr ½R=rjH=h�

Pr ½R=r� ;

and subsequently maximizes the log-posterior with the MAP estimate

given by

p̂h= �+
X
r2R

nrh

 !
= �+

X
r2R

nr

 !

3 RESULTS

3.1 Performance of VGA on simulated data

Because the ground truth is unknown for sequenced viral popu-

lations, simulations present a standardized way to assess the per-

formance of viral assembly tools. The proposed high-fidelity

protocol allows to correct sequencing errors, thus giving access

to highly accurate sequencing data. Post-sequencing error-cor-
rection techniques are available for reads obtained by regular

protocol offering the possibility to partially correct sequencing

errors trading off for real biological mutations. Grinder (Angly

et al., 2012) is used to generate reads from both the high-fidelity

and regular sequencing protocol. Reads are generated from both

real and synthetic viral variants with different sequencing par-

ameters and viral expression profiles. Grinder is a state-of-the-art

sequencing read simulator able to produce shotgun sequencing

data from a viral population with different expression profiles.

We mapped the simulated paired-end reads onto the consensus

using Mosaik. The consensus was constructed using Vicuna

(Yang et al., 2012), a de novo assembly tool able to produce a

linear consensus from deep paired-end sequencing data (see

Section 2.3 for details).

We use sensitivity and positive predictive value (PPV) to evalu-

ate the quality of viral genomes assembled by VGA. We consider

fully assembled viral genome without errors. Sensitivity is

defined as the portion of assembled quasi-species that match

true quasi-species, i.e. Sensitivity=TP=ðTP+FNÞ. Positive pre-

dictive value is defined as the portion of true sequences among

assembled sequences, i.e., PPV=TP=ðTP+FPÞ. Additionally,

we evaluate ability of our method to estimate population size

(i.e. number of viral genomes in the population). Accuracy of

population size prediction is defined as a ratio between estimated

and true population sizes. Finally, we use Jensen–Shannon di-

vergence (JSD) to measure the accuracy of frequency estimation.

Given two probability distributions, JSD measures the ‘distance’

between them, or in other words, the quality of approximation of

one probability distribution by the other distribution. It is

defined as the Kullback–Leibler divergence from distributions

P and Q to their mixture. Formally, the JSD between true dis-

tribution P and approximation distribution Q is given by the

formula

JSDðPjjQÞ=1

2
DKLðPjjMÞ+

1

2
DKLðQjjMÞ

where Kullback–Leibler divergence DKL is

DKLðPjjQÞ=
Xn
i=1

PðiÞlog PðiÞ
QðiÞ

and M=1
2 ðP+QÞ. The motivation for using JSD is a conse-

quence of KL divergence being undefined when assembly meth-

ods fail to reconstruct some variant i, hence forcing Q(i) to be 0.

JSD averts this by measuring the distance to the mixture, which

contains all true and called variants (TP and FP).
Our first simulated study compares the assembly accuracy

across different virus species. We focus on effect of read-length

and throughput on assembly quality for different types of

viruses. Paired-end reads of various length corresponding to

high-fidelity and regular sequencing protocols are simulated

from HIV and HCV populations assuming uniform and

power-law distributions. A power-law distribution (i.e. frequency

Fig. 3. Genomic architecture of 44 real HCV viral genomes from 1739-

bp-long fragment of E1E2 region. Length of longest common region

shared between any two viral genomes is represented by color

Fig. 4. Accuracy of population size prediction. Up to 200 viral genomes

were generated from the Gag/Pol 3.4 kb HIV region. The population

diversity is 5–10%. Viral genome abundances follow power-law and uni-

form distributions. Consensus error-corrected 1002bp paired-end reads

were simulated from HIV population
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of an individual viral genome is a power of the previous one)

corresponds to a population with several dominant variants and

many rare variants. The uniform distribution has equal frequen-

cies for all viral genomes. HCV population is presented by 1739-

bp-long fragment from the E1E2 region of 44 real HCV

sequences. HIV population consist of 10 real intra-host viral

variants mixture from 1.3-kb-long HIV-1 region, which included

pol protease and part of the pol reverse transcriptase (Zagordi

et al., 2010).
The genomic architecture across virus species was investigated

and its influence on assembly accuracy was studied. HCV virus

exhibits more complex genomic architecture with lower popula-

tion diversity and longer conserved regions (Fig. 3) than HIV.

Conserved regions were present in both viruses, although only

HCV contains conserved regions longer then 450bp. Conserved

regions longer then the average fragment length (450bp) may

introduce ambiguity in the assembly process due to a lack of

direct evidence of sub-genomes phasing across the conserved

region. We performed simulated sequencing experiment where

the average fragment amplification rate is 5, resulting in a five

time decrease in throughput due to the consensus error correc-

tion performed by the high-fidelity sequencing protocol. Also the

simulation experiments were adjusted to simulate a non-uniform

amplification rate. Non-uniform amplification rate results in dis-

carding fragments with insufficient amplification rate (53). From

real studies it is known that around 10% of fragments are ampli-

fied less than three times. Sequencing errors produced by the

regular protocol limited the ability of VGA to accurately assem-

ble a viral population. All assembled variants contained large

number of mismatches, additionally VGA significantly overesti-

mated population size.
As expected, short read lengths dramatically inhibit reconstruc-

tion, which is evidenced by VGA failing to produce any full-

length genomes when given 2� 36bp reads (Fig. 4). Because

common regions for distinct HCV viral genomes are significantly

longer than for HIV, it is not surprising that performance of VGA

is worse on HCV data—for 3 M 2� 150bp reads simulated from

44 1739-bp-long viral genomes, sensitivity is 50%, PPV is 80%.

Results on HCV data confirm that the lower mutation rate and

presence of conserved regions have a negative impact on the abil-

ity to accurately reconstruct individual viral genomes.

Surprisingly, increasing the read length for HIV from 100 to

150 bp yields no benefits for reconstruction accuracy suggesting

that 100 bp read length is enough to distinguish between HIV

viral variants with high mutation rate. Although further experi-

ments are needed to determine optimum read length, our simu-

lations suggest that 2� 100bp is recommended for small HIV

viral populations and 2� 150bp is recommended for medium

HCV population with complex genomic architecture.

We separately analyzed the ability of our method to estimate

the viral population size (i.e. number of genomic variants present

in the population). Non-continuous coverage limits the ability of

the method to assemble full-length viral variants. To evaluate the

accuracy of population size estimation, we compared the true

population size known from simulated data with estimated re-

sults. Continuous coverage of each individual viral genome pre-

sent in the sample has a strong impact on quality of population

assembly. The probability of non-continuous coverage increases

dramatically for viral genomes with low abundance. Thus, the

presence of coverage gaps for rare variants introduces additional

challenges in the assembly process, making rare genomes un-

reachable by assembly tools. The number of problematic gen-

omes can be reduced by increasing sequencing depth; however, it

does not guarantee complete elimination. While complete assem-

bly of all such genomes is unrealistic, it is still possible to estimate

the number of viral genomes present in the sample (population

size). The number of independent sets reported by VGA provides

us with an accurate population size estimation. Intuitively,

Fig. 5. Assembly accuracy estimation. Up to 200 viral genomes were

generated from the Gag/Pol 3.4 kb HIV region. The population diversity

is 3–20%. Viral genome abundances follow power-law and uniform dis-

tributions. Consensus error-corrected 2100bp paired-end reads were

simulated from HIV population

Fig. 6. Assembly accuracy estimation. Up to 200 viral genomes were

generated from the Gag/Pol 3.4 kb HIV region. The population diversity

is 3–20%. Viral genome abundances follow power-law and uniform dis-

tributions. Consensus error-corrected 2� 100bp paired-end reads were

simulated from HIV population

Fig. 7. Assembly accuracy estimation. Consensus error-corrected paired-

end reads of various lengths were simulated from a mixture of 10 real

viral clones from 1.3-kb-long HIV-1 region. Assembly accuracy as mea-

sured by PPV and sensitivity. Results are for 50000 reads, no improve-

ment was observed when increasing the number of reads
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predicting the population size of a large viral population with
many rare variants is more difficult than predicting for uniformly
distributed or small populations (Fig. 5). The predicted popula-

tion size may serve as an indication of insufficient coverage to
detect the full viral diversity present in the sample.
Deep coverage is a key for accurate estimation of underlying

viral diversity. One such platform capable of offering millions of
sequencing reads is Illumina HiSeq. The relatively short length of
the produced reads is compensated for by sequencing the same
fragment from both ends; therefore, producing coupled reads

separated by a ‘gap’, known as paired-end read. To our know-
ledge, VGA is the first method scalable to millions of short
paired-end sequencing reads able to produce full-length viral

variants spanning the entire viral genome. We explore the influ-
ence of sequencing depth on the reconstruction accuracy for
varying population structures (uniform and power-law distribu-

tions of viral genomes within the population). HIV-1 is known to
have greater genetic variability than any other known virus
(Ndungu and Weiss, 2012). The diversity among viral genomes

in an HIV population can vary from 3 to 20% depending on
regions (Martins et al., 1992; Yoshimura et al., 1996).
Heterogeneous viral samples were prepared by generating viral

populations from the Gag/Pol 3.4 kb HIV region. We simulated
variant abundances adhering to either a uniform or power-law
distribution. Not surprisingly, our simulations suggest that

increased sequencing depth has a direct positive effect on the
discovery of rare variants and improves the overall assembly
accuracy. Figure 6 shows the effect of coverage and population

size on assembly for reads of length 100 bp. Throughout all ex-
periments, VGA maintained a PPV value of 100%.
In addition to point mutations, genetic recombination facili-

tates rapid evolution and production of diverse HIV genomes.
Indeed, co-infected cells may produce recombinant viral progeny
at levels lower than mutation rates in an intra-patient environ-

ment (Neher and Leitner, 2010). Hence, simulated datasets must
account for both possible phenomena when determining the
quality of assembly. We utilize a simulation model able to inte-

grate both point mutations and recombination in the generated
viral population depending on the amount of diversity required.
A mixture of 10 real intra-host viral variants from 1.3-kb-long

HIV-1 form the basis population. In addition to point mutations,
our simulation model implicitly produces recombinant genomes
by first constructing the genotype (i.e. sequence of SNVs) for the

population. A random walk is performed over this genotype as
specified number of times. Any cross-over that occurs represents
a new recombination between the ‘left’ and ‘right’ original gen-

omes. Recombinations are implicitly produced, and no control is
imposed over number and length of the recombination. This
model produces highly recombinant data on average, posing

challenges for assembly and can be used to assess assembly qual-
ity. Simulation model incorporate mutation into the process by
selecting a position and nucleotide-swap uniformly at random.

Simulation results (Fig. 7) suggest that our method can accur-
ately assemble viral population in presence of recombinations
and point mutations, maintaining PPV of 100%.

Finally, we evaluate population quantification accuracy, i.e.
the accuracy of our method in predicting abundances of the
assembled variants. Taking the results from VGA on 10 real

HIV clones with 50000 reads and 2� 100bp, the JSD was

2.93e-05 for the Power-law and 0.001 for the Uniform-based
populations. This already small measure only decreases as the
size of the input grows.

3.2 Performance of existing viral assemblers on simulated

consensus error-corrected reads

We have evaluated the performance of ShoRAH (Zagordi et al.,
2011) and QuasiRecomb (Zagordi et al., 2012) for simulated

consensus error-corrected read data.
ShoRAH disregards pairing information of reads, but it is

scalable enough to handle up to 1 M reads. ShoRAH fails to

produce full-length viral genome but reliably spans 98% of the
consensus genome. It reasonably estimates the number of differ-
ent viral genome, but even the most accurate ShoRAH-

assembled viral genome differs from the closest true 1.3-kb-
long viral genome in five nucleotides.

QuasiRecomb is designed to handle paired-end read data and
manages to produce full-length viral genomes. Unfortunately it
can reliably process no more than 100 K reads. Also the number

of assembled distinct viral genomes is 10–200 times more than
the number of true distinct viral genomes. The most accurate

QuasiRecomb-assembled viral genome still differs from the clo-
sest true 1.3-kb-long viral genome in four nucleotides.
Unfortunately we could not compare our method with

QColors (Huang et al., 2011) assembly algorithm, which uses a
similar conflict graph to represent viral population. A CSP solver
is used by QColors for coloring the graph which may limit its

scalability to high-throughput datasets consisting of millions of
sequencing reads. Currently, QColors is not publicly available

(Upon querying for information on obtaining QColors, the au-
thors were informed that the original software was tightly
coupled for the analyses done in its original manuscript, and is

not currently available for general use.).

3.3 Performance of VGA on real HIV data

To further test the ability of VGA to accurately assemble a di-

verse natural occurring population and predict variant abun-
dance levels, we used an Illumina HiSeq HIV dataset, which

consisted of 15 M 2� 100bp paired-end reads with attached
barcodes. Next, the high-fidelity sequencing protocol able to
eliminate sequencing errors was applied resulting in 3.2 M con-

sensus error-corrected reads (further referred to as reads). The
reads were then used to build de novo population consensus using
Vicuna 1.3 (Yang et al., 2012). When run on our real data,

Vicuna produced four contigs of average length 1195bp. Each
contig was then run through BLAST to check for overlaps. Once

overlaps were found, the contigs were assembled into a final
consensus of length 4337bp.
Validation of de novo consensus. A de novo assembled consensus

was compared against reference-based consensus. To produce
reference-based consensus, we iteratively map reads onto the
HIV reference (Gag/Pol 3.4 kb HIV region) using InDelFixer.

InDelFixer iteratively changes the reference genome based on
the mapping of the current iteration. Also, we used InDelFixer

in single iteration mode to map reads onto the constructed de
novo consensus. De novo consensus is longer (4337bp) than the
reference-based consensus (3440 bp) and contained two regions

with extremely peaked coverage compared with the surrounding
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regions. Both regions were considered to be the result of technical
artifacts and removed from further consideration. After removing

both regions, the length of new de novo consensus becomes

3452 bp. We also filtered reads that belonged to regions with ex-

treme coverage. Finally we compared the number of reads

mapped to the reference-based consensus versus the de novo con-

sensus. A larger amount of reads mapped to the assembled con-
sensus, thereby highlighting the advantage of de novo procedure

for consensus construction over a reference-based.

From the de novo consensus, VGA assembled 32 full-length
viral genomes that differ from each other in 2145 SNVs. Among

known HIV sequences, Gag/Pol is the closest to the de novo

consensus. Each of the 32 full-length viral genomes do not con-

tain stop codons inside two known coding regions of Gag/Pol of

length 1520 and 1820bp, respectively. Alternatively, when VGA

is applied to all 15 M original uncorrected reads, 57 distinct viral
genomes are assembled among which 36 contain stop codons in

the two coding regions. This shows that a regular sequencing

protocol is unsuitable for viral genome reconstruction.

4 DISCUSSION

We have presented VGA, an accurate method for viral popula-
tion assembly from ultra-deep sequencing data. The proposed

algorithm is coupled with a high-fidelity sequencing protocol

able to eliminate errors from sequencing data. Deep coverage

in combination with highly accurate data allows our method to

accurately estimate the underlying diversity of a viral population.

In particular, it makes possible to distinguish true biological mu-
tations from sequencing errors, facilitating assembly of rare in-

dividual genomes. Our method condenses the viral population

into a conflict graph built from aligned reads. To distinguish

between viral variants, the conflict graph is colored into a min-

imal set of colors. Each color represents individual viral genomes

composed from the set of non-conflicting reads. An expectation-
maximization algorithm was used to estimate relative abundance

frequencies of assembled viral genomes.

To our knowledge, our method is the first viral assembly
method that scales to millions of paired-end sequencing reads.

Experiments on both real and synthetic HIV datasets generated

with various sequencing parameters and distribution assump-

tions suggest that VGA is able to assemble diverse viral popula-

tion from millions of paired-end reads. The ability of our method

to maintain 100% assembly accuracy makes it suitable for clin-

ical applications. In addition, the constant increase of sequencing
depth offered by high-throughput technologies provide us with

unprecedented resolution promising to increase number of dis-

covered ultra-rare viral variants in the population.
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