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ABSTRACT Rhodococcus erythropolis JCM 3201 can express several recombinant
proteins that are difficult to express in Escherichia coli. It is used as one of the hosts
for protein expression and bioconversion. Here, we report the draft genome se-
quence of R. erythropolis JCM 3201.

Rhodococci remarkably degrade various xenobiotics (1–3). The type strain of Rho-
dococcus erythropolis, JCM 3201, was originally isolated from soil as a degrader of

aromatics (4). A lysozyme-sensitive mutant of JCM 3201, strain L88, has been used as an
expression host of recombinant proteins that are difficult to express in Escherichia coli
(5–9). JCM 3201 is also useful to the host for bioconversion of chemicals such as vitamin
D3 to hydroxyvitamin D3 (10–12). To optimize these processes thorough metabolic
pathway engineering, its genomic information will be essential. The draft genome of
JCM 3201 was previously deposited with 67 contigs (GenBank accession number
BCRM00000000). However, this sequence lacks information about the numbers and
structural type of its chromosomes and plasmids.

To improve the genome assembly level, we resequenced the JCM 3201 genome. We
cultured the strain in LB broth containing 1% glycine, lysed cells with 2 mg ml�1

lysozyme, and extracted the genomic DNA by the phenol-chloroform method (13). We
prepared three libraries with the TruSeq DNA PCR-free library prep kit (Illumina), the
Nextera mate pair sample preparation kit (Illumina), and the DNA template prep kit
version 1.0 (PacBio). The genome was sequenced using (i) an Illumina HiSeq 2500
platform with 350-bp paired-end and 8-kbp mate pair libraries and (ii) a PacBio RS II
platform. The PacBio raw reads were filtered with SMRT Analysis version 2.3.0 with the
following parameters: minimum subread length, 500; minimum polymerase read qual-
ity, 0.80; and minimum polymerase read length, 100. We obtained 98,981 subreads and
assembled them with the Hierarchical Genome Assembly Process (HGAP) version 2 (14),
resulting in a 6.33-Mbp circular sequence with a mean coverage of 84-fold. The
paired-end and mate pair reads were filtered with Trimmomatic version 0.38 with the
parameters SLIDINGWINDOW:20:20 and MINLEN:50 (15), resulting in 14,661,238 and
9,431,622 reads, respectively. We assembled these reads using Velvet version 1.2.08 (16)
and obtained 52 contigs. Among these contigs, 12 did not match the circular PacBio
assembly, which showed the highest similarities to plasmid sequences of other R.
erythropolis strains (17). To confirm the possibility that these contigs were derived from
plasmid sequences, we examined their connectivity by PCR and finally obtained
another 85-kb circular sequence and a 241-kb linear sequence. Based on their sizes, we
predicted that these two sequences were plasmids. One end of the linear sequence
showed similarity to end sequences of linear plasmids in rhodococci. However, the
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other end did not, suggesting that this linear sequence might not be completed yet. To
polish the assembled sequences, we mapped the filtered paired-end reads to the initial
assembly using the Burrows-Wheeler Aligner MEM algorithm (BWA-MEM) version 0.7.12
with a seed length of 19 nucleotides (18) and corrected errors using the Genome
Analysis Toolkit (GATK) version 4.0.6.0 of variant filtration with default parameters (19).
We annotated the genes using DFAST (20).

The draft genome sequence of JCM 3201 contained two circular sequences and a
linear sequence with a length of 6,326,569 bp (62.4% G�C content), 84,587 bp (62.5%
G�C content), and 240,958 bp (61.2% G�C content), respectively. It contains 6,152
putative coding DNA sequences (CDSs), 12 rRNAs, and 53 tRNAs.

Data availability. The DDBJ/EMBL/GenBank sequence accession numbers for
this project are BHXB01000001 to BHXB01000003. The SRA accession numbers are
DRX143934 to DRX143936.
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