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Breast cancer development and progression rely not only on the proliferation of neoplastic
cells but also on the significant heterogeneity in the surrounding tumor microenvironment.
Its unique microenvironment, including tumor-infiltrating lymphocytes, complex myeloid
cells, lipid-associated macrophages, cancer-associated fibroblasts (CAFs), and other
molecules that promote the growth and migration of tumor cells, has been shown to play a
crucial role in the occurrence, growth, and metastasis of breast cancer. However, a
detailed understanding of the complex microenvironment in breast cancer remains largely
unknown. The unique pattern of breast cancer microenvironment cells has been poorly
studied, and neither has the supportive role of these cells in pathogenesis been assessed.
Single-cell multiomics biotechnology, especially single-cell RNA sequencing (scRNA-seq)
reveals single-cell expression levels at much higher resolution, finely dissecting the
molecular characteristics of tumor microenvironment. Here, we review the recent
literature on breast cancer microenvironment, focusing on scRNA-seq studies and
analyzing heterogeneity and spatial location of different cells, including T and B cells,
macrophages/monocytes, neutrophils, and stromal cells. This review aims to provide a
more comprehensive perception of breast cancer microenvironment and annotation for
their clinical classification, diagnosis, and treatment. Furthermore, we discuss the impact
of novel single-cell omics technologies, such as abundant omics exploration strategies,
multiomics conjoint analysis mode, and deep learning network architecture, on the future
research of breast cancer immune microenvironment.
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INTRODUCTION

Breast cancer is the most frequent cancer and the leading cause of cancer-related death in women
worldwide. Breast cancer progression is a complex process that coordinates the crosstalk between
tumor cells and the components of tumor microenvironment (TME) (1). Breast TME as tumor
components can dynamically program tumor growth (1). Tumor microenvironment generally
includes immune cells, stromal cells, blood vessels, and extracellular matrix (ECM). Most of the
stromal cells and immune cells experience some changes and play roles in both the suppression and
org April 2022 | Volume 13 | Article 8688131
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progression of tumor (2, 3). In breast cancer, some TME
components can modulate immune cells to counteract their
intrinsic antitumor activity. For example, neutrophils exhibit
tumor cytotoxicity during early disease stages, whereas in high
burden tumor, they can be reprogramed to promote disease
progression and dissemination (4). Therefore, breast TME is
essential for the survival and immunosuppression of tumor cells.

Tumor environment supports tumor cell survival and
evolution in the face of various tumor-adverse interventions
(5), and destruction of the TME homeostasis can force tumor cell
apoptosis and activate the T-cell-mediated cytotoxicity (6–8).
TME can also modulate angiogenesis, cytokine secretions, and
immune cell recruitment (9, 10).

Traditionally, biological experiments for TME analysis such
as immunohistochemistry (IHC), immunofluorescence (IF), the
emerging cytometry by time-of-flight (CyTOF) (11), or latest
multiplexed ion beam imaging by time-of-flight (MIBI-TOF)
(12) could only target certain cell populations preventing a
holistic analysis of the highly heterogenous TME. However, the
rise of single-cell omics in the past 10 years allowed us to
understand the changes in cell populations, biochemical
profile, and immune state of the TME during disease
progression and partially addressed the shortcomings of purely
biological assays.

The emergence of these novel technologies explores a myriad
of factors in the TME that were previously unattainable. FACS-
based smart-seq2 or nanowell-based platforms explore cell
alternative splicing (13, 14), while Sci-RNA-seq can detect rare
cell populations such as cancer stem cell, circulating tumor cell,
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or rare immune cells (15, 16). Single-cell assay for transposase-
accessible chromatin sequencing (scATAC-seq) and ChIP
sequencing (scChIP-seq) epigenetically explore chromatin
accessibility and transcriptional factor regulation (17, 18);
whereas, scDNA-seq has become the most widely used assay to
evaluate single-cell copy-number aberration (19). Meanwhile,
the continuous design of integrated tools for single-cell omics not
only detected cell heterogeneity but also extended analysis for
transcription-based cell cloning aberration (20), cell traceability
(21), cell-to-cell interaction (22, 23), rare cell resolution (24), and
disease process simulation (25), giving us a deeper understanding
of the intricate tumor malignancy. Therefore, this review
summarizes the current state of the art on the analysis of
breast cancer tumor microenvironment from single-cell omics
(Figure 1). Altogether, we construct a comprehensive view of the
TME and track the complex dynamic relationship between
immune and stromal cells. Lastly, we discuss the near future
research tendencies of single-cell omics and its impact in breast
cancer research.
THE PLASTICITY OF BREAST CANCER
MICROENVIRONMENT

Surprisingly, preneoplastic cells do not significantly change the
microenvironment for early malignant transformation and there is
no difference of the breast microenvironment between
preneoplastic and normal breast tissues (26). In fact, malignant
A

B

C

FIGURE 1 | Several high-dimensional approaches for understanding breast tumor microenvironment (TME) composition and interaction. (A) The advantages of
single-cell RNA sequencing. scRNA-seq is the most modern and popular technology for breast TME analysis, which is applicable for cell heterogeneity analysis and
new cell subtype identification; moreover, scRNA-seq can be derived for T/B cell clonal evolution, cell trajectory, and pathway analysis in breast TME studies.
(B) Meanwhile, the advantages of spatial transcriptomics are used to research cell orientation, tumor ecotypes, and cell-to-cell communication in breast TME. (C)
The basal HE/CyTOF/MIBI are always used for visualization and assessment of breast TME; however, they have limited information for breast TME analysis. None of
these methods can reach the three standards of single-cell level, high-throughput, and in situ reproducibility at the same time, so scRNAseq, spatial transcriptomics,
or HE/CyTOF/MIBI are often combined to analyze the tumor microenvironment from multiple dimensions. Furthermore, a variety of omics methods (such as single-
cell epigenomics, proteomics, and spatial metabolomics) can still be utilized for breast TME research but are more difficult to implement due to lack of evidence or
technical limitations.
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cells are responsible for tumor microenvironment reprogramming
likely caused by the exponential division of tumor cells and
immune cell recruitment. Therefore, the microenvironment is
constantly changing with tumor progression, from tiny tumor
foci to palpable tumor mass. Early “indolent” tumor areas are
dominated by infiltrating T cells and B cells with immune killing
properties. However, progressive tumor regions require increased
proliferation and an immunosuppressive milieu. Immune-
suppressive T cells secrete IL-17 to recruit neutrophils and
macrophages (27), which play an important role in higher
myeloid cell infiltration and tumor metastasis in the
clinical patients.
THE HETEROGENEITY OF LYPHOCYTES
IN BREAST TME

Classical prediction analysis of microarray 50 (PAM50) classifies
breast cancer into luminal A, luminal B, HER2+, and basal-like
subtypes according to the expression of estrogen receptor (ER),
progesterone receptor (PR), and HER2 (28, 29). Regardless, clone
aberration generates high heterogeneity even within each breast
cancer subtype (30), so do with TME. Elham Azizi et al. used
scDrop-seq to analyze CD45+ immune cell in 8 breast cancer
patients and found that the immune cell subtypes were highly
heterogeneous. T-cell fractions are the most abundant immune
cells (21%–96%) in breast TME, followed by myeloid cells.
Moreover, T cells in tumor and adjacent lesions had
transcriptional similarities, which were significantly different
from those in the peripheral circulatory system, indicating
reprogramming of T cells by local primary tumors. Functionally,
T cells were flexible in oxidative phosphorylation, IFN, TNF-a,
TGF-b, IL-6/JAK/STAT, hypoxia, proinflammation, activation,
and cytolytic effector pathways in local primary tumors. These
reflected various differentiated and activated states in 32 T-cell
clusters, but still immunogenic and exerting immune responses.
Moreover, combined antigenic TCR stimulation and
environmental factors reprogrammed similar biological function
to form T-cell niches. For example, similar CD4+ T-cell
populations exist in different breast cancer patients, such as
homogenous population of Treg immunosuppressive cells
prevalently present in all breast cancer subtypes. Interestingly, in
addition to naturally Treg cells, traceability analysis found tumors
could repolarize CD4+ conventional T cells to immunosuppressive
Tregs (31). Whereas CD4+ and CD8+ T cells are widely
dysfunctional, some representative CD8+ T-cell subgroups had
significant immune suppressive activity (26, 32). These interact
with Tregs and PD-L1+ tumor-associated macrophages (TAMs) to
establish complex immunosuppressive niches (33). Therefore, the
elimination of Tregs and PD-L1+ TAMs in the tumor may recover
cytotoxic effect of T cells and enhance the effect of immune
checkpoint blockade (ICB). Simultaneously, some T cells
expressed less PD-1 but other immune checkpoints such as
TIGIT and LAG3 which might prove novel ICB targets (34).
Furthermore, a typical CD8+CD103+ tissue-resident memory cell
population was also considered to be immunosuppressive.
Frontiers in Immunology | www.frontiersin.org 3
This T-cell subset seems to respond to immune checkpoint
blockade (ICB) (35).

Interestingly, when comparing the immune microenvironment
in different PAM50 subtypes, ER− patients had the most Tregs,
PD-L1+ TAMs, and PD-1 high CTLA-4+ CD38+ exhausted T cells,
revealing that breast cancer microenvironment is remodeled by
the endocrine system to promote immunosuppressive function.
This also explained why ER− patients are more likely to benefit
from immunotherapy (33).

The specific role of B cells is still largely unknown in breast
cancer and other cancers. It remains uncertain if B cells promote
or restrict tumor growth. Hu et al. performed scRNA-seq-based
BCR-seq analysis on B cells of breast cancer patients and showed
that the B cell increased BCR diversity in the tumor,
demonstrating the clone evolution and complex immunogenicity.
The B-cell populations in the tumor were classified into 7 groups,
including naïve B cells, IGM+CD27+ memory B cells, IGM+CD27−

atypical memory B cells, class-switched memory B cells, plasma
cells, germinal center B cells, and CD14+ atypical B cells. Among
these, memory B cells were the most abundant cell subgroup in the
tumor, which differs from the enriched naïve B-cell population in
the peripheral blood. Nevertheless, intratumoral B cells mainly
showed potential immunogenicity and antigen presentation
activity, and no specific cell population seemed to contribute
directly to cytotoxic or immunosuppressive function. Hence, the
specific function of B cells in the TME remained unclear (36).
Recently, B cells were associated to ICB response in renal cell
carcinoma (37), melanoma (38), and sarcoma (39). Sc-RNAseq
analysis of B-cell function in breast cancer patients proved its
respond to immune therapy and produced cascaded antibodies to
activate cytotoxic T cells and amplify the ICB effect (40).
Noteworthy, B cells in response to chemotherapy retained
plasticity, as chemotherapeutic TME signals, such as complement
signaling and inflammatory response, generate ICOSL+ B cells.
These boost effector T-cell activation or inversely reverse B cells
into immunosuppressive CD55+ B cells for chemoresistance (41).
Hence, the function of B cells seems multidirectional, and proper
induction of memory B-cell activation and antibody secretion is
likely necessary for immune activation.
COMPLEX MYELOID CELL SUBSETS IN
BREAST CANCER

Myeloid cells, including neutrophils, monocytes, and
macrophages, propel tumor progression, mainly via
immunosuppression and cytokines secretion, but huge
heterogeneity exits in myeloid cells (42). Macrophages are the
most widespread myeloid cell group in tumor lesions and can
polarize towards proinflammatory M1 or immunosuppressive
M2 phenotype. M2-type genes, such as CD276, CD163,
MS4A6A, and TGFB1, are widely expressed in tumor-
associated macrophages and showed the characteristics of
cascade M2 differentiation (32, 34, 43).

Recently, depletion of protumor macrophages with CSF1R
neutralizing antibodies was shown inefficient to inhibit tumor
April 2022 | Volume 13 | Article 868813
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progression (44). Sc-RNAseq identified gene sets related to M1
and M2 phenotypes, and the conversion of M2 phenotype to M1
immune-activated macrophages was an effective measure to
stimulate the immune response (45, 46) and amplify ICB
therapy. Moreover, a new type of lipid-associated macrophages
has been found in tumors that highly express lipid metabolism
genes such as Fabp5 or Apoe but not in the conventional M1/M2
classification. These macrophages also expressed PD-L1 and PD-
L2 for immunoregulation (47). Considering the rich lipid sources
of breast TME and the fatty acid dependence of tumor cells (48),
lipid-associated macrophages may belong to the tissue-resident
macrophage population that are reprogrammed by tumor cells
and the metabolic drugs might be targeted.

Finally, bone marrow-derived suppressor cells (MDSCs),
including polymorphonucler MDSCs (PMN-MDSCs) and
monocytic MDSCs (M-MDSCs), were identified in breast tumor
patients and gradually infiltrate tumor site with disease progression
(27). Similar to T cells, the heterogeneity of neutrophils and
monocytes could still be seen in tumors and spleen. Both tissues
contained both normal mature myeloid cell populations (Camp/
Lcn2/Ltf+ neutrophils) and immunosuppressive bone marrow-
derived suppressor cells (CD84/Il1b/Spi1+ PMN-MDSCs). These
two cell types coexist and are different from a common myeloid
progenitor, proving the ability of tumor cells to modulate myeloid
differentiation rather than the repolarizing mature neutrophils into
CD84 and ROS high MDSC subgroup, which mainly support the
immunosuppressive environment (49). In fact, compared with
their role at the tumor site, neutrophils seem to play a more
prominent role in tumor dissemination, metastasis, and recurrence
(50–54). Circulating tumor cells (CTCs) secret cytokines CSF1,
CSF3, TGF-b3, and IL-15 to recruit PMN-MDSCs to physically
cluster with CTCs. Subsequently, CTC-bonded PMN-MDSCs
secrete inflammatory factors TNF-a, OSM, IL-1b, and IL-6 in
CTC-PMN-MDSCs niche to improve the proliferation, stress
resistance of tumor cells, and CTC cluster formation (55).
CAFs FUNCTIONAL SUBCLUSTERS IN
BREAST CANCER

Cancer-associated fibroblasts (CAFs) are a major component of
the stroma in tumor. Healthy breast matrix is destroyed with
tumor progression as healthy fibroblasts reduce and tumor cells
reprogram fibroblasts to CAFs (56). CAFs are scattered inside the
tumor tissue rather than in the surrounding area, relying on its
strong secretion and tissue adhesion capacity. Traditional CAFs
promote tumor progression mainly through stromal remodeling,
immunosuppression, and neovascularization (57), but CAFs are
a group of heterogeneous cells without a unified cell maker and
of uncertain origin. Stromal cells such as MSCs, endothelial cells,
and pericytes, are strong candidates for CAF progenitor
cells (58).

Single-cell transcriptomic studies of intratumoral heterogeneous
CAFs showed two prime functions including nidogen+ perivascular
fibroblasts and fibulin+ stromal fibroblasts. Nidogen+ perivascular
fibroblasts highly expressed vascular production regulators
Frontiers in Immunology | www.frontiersin.org 4
NOTCH3, EPAS1, COL18A1, and NR2F2 and were enriched for
perivascular markers ACTA2, MCAM, CAV1, TAGLN, MYH11,
MYLK, and RGS5, suggesting a role in the regulation of
neovascularization in tumors under increased oxygen demand
settings. Another fibulin+ stroma-related CAFs highly expressed
matrix-related DCN, LUM, VCAN, LOX, secret collagens, and
chemokines CXCL12 and CXCL14. These seemed to act as tumor
functional fibroblasts that participate in tumor stromal formation
and immune response. Interestingly, stroma-related CAFs
gradually shrunk with tumor progression, which may be due to
tumor space occupation, low tumor adhesion, and metastasis
requirements (59, 60).

Alternatively, CAFs were divided into three functional
subgroups: (1) a-SMA+ myofibroblasts (myCAFs) which
maintain tumor structural stability and ECM remodeling, (2)
inflammatory fibroblasts (iCAFs) which regulate immune
response, and (3) extracellular matrix fibroblasts (ECM-CAF)
which remodel the extracellular matrix of tumors. These
functional cells can directly or indirectly interact with tumor
cells, myeloid cells, and T cells to promote immunosuppressive
milieu (61–63). Spatially, dispersed iCAFs colocalized with all
lymphocyte cells, responding to chemokines (CXCL12/CXCL14-
CXCR4 and CXCL10-CXCR3), complement, transforming
growth factor-b (TGFB1/TGFB3-TGFBR2), and lymphocyte
inhibitory/activation molecules (LTB-LTBR, TNFSF14-LTBR
and LTB-CD40, VTCN1/B7H4-BTLA). In contrast, marginal
myCAFs only interact directly with CD8+ T cells for tumor
invasion and matrix remodeling (47). Interestingly, in the high-
grade pregnancy-associated breast cancer, the tumor reprograms
these fibroblasts into a more function-evolved phenotype. Those
fibroblasts commonly express higher COL1A1, CXCL12,
TGFB1, and MMP3 and have a unique fatty acid metabolism,
peroxisome, and inflammatory profile (62). Therefore, the degree
of malignancy of breast tumor may affect the function of CAFs.
BREAST CANCER IMMUNOTHERAPY
RESPONSE MICROENVIRONMENT

ScRNA-seq-based supervision of the immune response following
ICB is necessary to fully understand mechanism of action and
expose emerging resistance pathways (64). Breast cancer patients
benefiting from ICB therapy already exhibit expanded PD-1+ T
cells before ICB therapy compared with nonresponders. Matured
CD4+ Th1 and Tfh cells and exhausted CD8+ effector T cells
greatly expand after anti-PD-1 therapy, with higher proliferation,
immune checkpoint protein (LAG3, HAVCR2, PDCD1), effector
(IFNG, NKG7), and cytotoxicity (GMZB, PRF1), higher TCR
richness, and lower TCR clonality. These responsive T cells
positively correlate with PD-L1+PD-L2+ DCs, PDL1+ CCR2+,
or MMP9+ macrophages or MHC I/II+ cancer cells, mainly
through costimulatory CD28-CD80, ICOS-ICOSLG,
coinhibitory PDCD1-CD274/PDCD1LG2, HAVCR2-LGALS9,
and CLTA4-CD80/CD86. In contrast, TCF7+ Sell+ naïve T
cells and CX3CR1+ or C3+ macrophages are inversely
correlated with T-cell expansion. More importantly, a specific
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gene set related to T-cell expansion has been identified for the
prediction of ICB response (65). Similar to the functional B cells
in chemotherapy (41), the abundant B-cell population in breast
tumors are activated by antigen presentation after ICB therapy to
promote T follicular helper cell expansion and cytotoxic CD8+ T
cells for immunotherapy sensitization (40), which recalls breast
TME into “immune hot” microenvironment.
SPATIAL DISTRIBUTION OF BREAST TME

Besides theheterogeneity andTCR/BCRclonal evolutionof stromal
and immune cells, tumor histological regions are demarcated by
TME to form heterogeneous tumor organization (30). However,
single-cell dissociation destroys the intact tissue structure in
scRNA-seq (33) and cell location and orientation information
were lost during tissue dissociation. Therefore, tremendous effort
has been put into the development of a variety of a three-
dimensional (3D) near-realistic cell environment. Spatial
transcriptome analysis and single-cell-level depth of tumor
pathology (66) was developed to evaluate cell types and their
locations. In 2018, Keren et al. first used multiplexed ion beam
imaging by time-of-flight (MIBI-TOF) to simultaneously analyze
36 proteins at single-cell resolution and draw a rough single-cell
map of breast cancer immune distribution. This study highlighted
that function-similar immunoregulator cells cluster together for
stronger effects. For example, KI67+ proliferating cells or IDO+

immunoregulatory cells formed proliferated or immunoregulatory
units within the tumor. Moreover, tumors were divided into three
immune categories: (1) “cold tumors” with less immune cell
infiltration, (2) “compartmentalized tumors” where immune cells
were distributed around tumor cells in an organized regional
orientation, and CD4+ T cells were mainly near PD-1+ cells in the
tumor-immune border, and (3) “mixed tumors” with tumor cells
and immune cells mixed together without borders, where CD8+ T
cells were dominant and had relative stronger immunosuppression
with worse prognosis (12).

Based on stromal distribution, topological network of high-
dimensional single-cell mass cytometry images, tumors were
compartmentalized in: (1) low stromal environment (including
immune cell infiltration and non-TME cell infiltration), (2)
highly vascularized regions, (3) vimentin high fibroblasts
regions, (4) fibronectin high fibroblasts regions, and (5)
multicellular dispersive types, where fibroblasts are distributed
around tumor cells and blood vessels which are consistent with
previous observation (59). Meanwhile Ki67+ tumor cells and T-
cell infiltration were increased around the blood vessels.

The traditional PAM50 is too generic to reveal the tumor
composition within individual patients. Based on tumor cell
metacluster compositions and environmental interaction, tumor
lesions can be divided into 18 single-cell pathology subgroups
(SPCs), and then matched with stromal models to establish 11
stromal environment subgroups. Interestingly, these
immunological patterns and pathological subtypes were
correlated with overall survival. For example, hypoxic SPC17
TNBC often exhibited large, stroma-deficient tumor regions,
Frontiers in Immunology | www.frontiersin.org 5
whereas SPC 13-16 TNBC showed T-cell-enriched or
macrophage-enriched regions, and HR+ tumor was immune
cold, accompanied by a range of fibroblast-enriched stromal
environment (67). For now, the basic elementary interaction
between tumor cells and TME have been explored, but more
complex interactions with specific tumor regions and cell subtypes
still need further elucidation.

High-resolution spatial transcriptomics can distinguish
hundreds of different spots in the tissue (68); each containing
tens of cells which expression profile can be deconvoluted with
RNA sequencing. Coupled with the resolution of fluorescence in
situ hybridization (FISH) and in situ sequencing (ISS), spatial
transcriptome analysis of intact tissue sections can expose spatial
nanoscale-resolution imaging (68, 69). When combined with sc-
RNAseq and spatial transcriptome positioning on breast cancer
patients, this technique confirmed the aforementioned cell
heterogeneity and explored the interaction within specific
functional TME cells (Figure 2). Primary tumors were first
divided into 9 different gene regulatory pattern regions based
on tumor biology and TME components (tumor ecotypes). Some
ecotypes enriched basal subtype classification, cycling and
luminal progenitor cells, and few immune cell infiltrations,
which corresponded to very poor 5-year survival. Another
highly immune cell-infiltrating ecotype is represented by a
higher response to ICB therapy (47).

Recently, deep learning convolutional algorithms were
established to directly learn single-cell spatial transcriptomes
and matched them to any HE-stained tissue section. These can
be used for tumor and TME cell model diagnosis prediction (70).
Hopefully, after accumulating enough spatial transcriptome
patterns, clinical pathological deep learning algorithm-based
HE images can directly recognize accurate tumor subtypes and
make more precise therapeutic interventions.
OUTLOOK

The current single-cell omics results have drawn a relatively
detailed map of the breast TME, distinguished stromal cells and
immune cells into functional populations (Table 1), and greatly
enriched the TME components for clinical diagnosis and
targeted therapy intervention. Unfortunately, many more in-
depth technical methods and joint application methods have not
yet fully matured, since single-cell omics only just emerged. The
microenvironment related to the occurrence and development of
breast cancer has not been fully researched.

1. Some cell populations in tumors such as NK cells,
neutrophils, and DCs have not been fully understood,

2. The microenvironment composition is still unclear in the
tumor initiation, dissemination, and metastasis. Macrophages
are necessary for early breast tumorigenesis (71), but single-cell
transcriptome can hardly identify the microenvironment
composition of early tumorigenesis due to the difficulty to
capture small lesions and cell number limitations.

3. The current microenvironment recognition method is mainly
established by single-cell transcriptome and antibody-
April 2022 | Volume 13 | Article 868813
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dependent multidimensional imaging. However, immune
cells are functionally regulated by numerous transcription
factors (21), hence, other single-cell strategies such as
scATAC-seq, scChIP-seq, and the emerging CRISPR
screening (72, 73) will be useful for breast TME analysis.

4. TMEanalysis needs topaymore attention to the combinationof
cell function and spatial distribution in the future. For example,
metabolic deprivationof polytrophic tumor cells transforms the
shared TMEmetabolism dependence (74, 75); whereas, various
TME cells have different substrate dependencies for its
activation or immunosuppression, such as the correlation
between TCA cycle and phenotypic states of T cells (32), high
lipid metabolism in lipid-related macrophages (47), and high
fatty acidmetabolism in function-evolved CAFs (62). However,
there is still no systematic research on breast TME
immunometabolism. Indeed, combining scRNA-seq and
spatial transcriptomics enables detailed analysis of cellular
metabolic pathways as well as regional metabolic pathway
enrichment. Moreover, the combination of spatial
transcriptome and spatial metabolome (76, 77) will clarify the
metabolic status in indicated tumor lesions. Using spatial
metabolome to analyze TME metabolic pathways, combined
with spatial transcriptome diagnosis of TME cell subtypes, can
Frontiers in Immunology | www.frontiersin.org 6
accurately detect the metabolite preference of TME cells.
Further research is needed to explore these methods in detail.

5. Similarly, single-cell proteomics has not yet been completed
(78). Current scLC-MS-based proteomics technology SCoPE-
MS and NanoPOTs sample preparation technology can only
quantify ~1,000 proteins per cell across thousands of
individual cells (79–81), not to say the detailed biological
analysis, carrier proteome, and data standardization (82–84).

6. Deep learning-based neural networks may identify novel breast
cancer subtypes, applying more cost-effective and rapid single-
cell analysis to clinical tumor patients. This will strengthen
pathologicaldiagnosis andtherapeutic interventionoptimization.

In summary, the evolution of novel single-cell omics
technology, including abundant omics exploration strategies,
multiomics conjoint analysis mode, and deep learning network
architecture is still developing and has the potential to
revolutionize our understanding of the TME, its changes with
disease progression, and its response to therapy.

Here, we focused on the applications and advances of single-
cell omics to unveil the heterogeneity, pathogenesis, and
treatment of breast cancer, describing the complex model of
breast cancer microenvironment composition in detail. Despite
A

C

B

FIGURE 2 | Complex interactions in breast tumor microenvironment. Tumor cells, immune cells, and CAFs exhibit high interactions which dynamically change
cellular functions. (A, B) Sometimes, the functions of these interactions are opposite such as the costimulatory or suppressive interaction between T cells and tumor
cells or myeloid cells due to specific tumor homeostasis. (C) Meanwhile, the CAFs interact with T cells, cancer cells, and myeloid cells for tumor progression and
immunosuppression through cytokines and immunomodulatory proteins.
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the massive heterogeneity between breast cancer patients and
tumors, the components of the immune microenvironment seem
to reflect the patient’s survival and response to immunotherapy,
highlighting the importance of fully understanding TME changes
and progression.
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