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1  | INTRODUC TION

Human brain is a complex and dynamic system (Sporns, 2014), 
which organizes and controls individuals’ interaction with the en-
vironment. The frontal lobe, especially the prefrontal cortex (PFC) 
plays an essential role in various high-level cognitive functions, 

such as executive functions (Mansouri, Tanaka, & Buckley, 2009; 
Miller, 2000; Miller & Cohen, 2001), reasoning and planning (Wood 
& Grafman, 2003), decision making (Wallis, 2007), social cogni-
tion, and moral judgment (Forbes & Grafman, 2010). Meanwhile, 
the deficits in PFC functions are involved in the pathophysiol-
ogy of several psychiatric and neurological disorders such as 
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Abstract
Background: Accumulating evidence shows that the dorsal lateral prefrontal cortex 
(dlPFC) is implicated in personality traits. In this study, resting-state functional near 
infrared spectroscopy (fNIRS) combined with small-world analysis was utilized to ex-
amine the relationship between the network properties of dlPFC and personality 
traits.
Methods: Thirty college students (aged between 20 and 29) were recruited from the 
University of Macau campus, whose personality scores were accessed with the NEO-
FFT questionnaire. Graph theory combined with resting-state fNIRS data was used 
to quantify the network properties of dlPFC, whereas Pearson correlation analysis 
was performed to generate the relationship between the small-world indicators and 
personality scores.
Results: Compared to matched random networks, the resting-state brain networks 
exhibited a larger clustering coefficient (Cp, 0.1–0.66), shorter characteristic path 
length (Lp, 0.1–0.66), and higher global (Eg, 0.1–0.66) and local efficiency (Eloc, 0.1–
0.65). In particular, conscientiousness (r = −0.63) and neuroticism (r = 0.40) respec-
tively showed negative and positive correlation with the Lp.
Conclusions: The resting-state functional brain networks in dlPFC exhibited the 
small-world properties. In addition, participants with higher conscientiousness scores 
showed a shorter Lp.
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schizophrenia, drug addiction, mood disorders, and Alzheimer’s 
disease (Fuster, 2001; Goto, Yang, & Otani, 2010). Therefore, in-
specting the PFC’s organizing patterns is not only crucial for us 
to elucidate the complex neural mechanism of high-level cognitive 
functions or brain disorders, but also absolutely necessary to pave 
a way for new treatments.

Intriguingly, previous reports have demonstrated that the struc-
tures and functions of PFC are strongly correlated with personality 
traits (DeYoung et al., 2010; Kennis, Rademaker, & Geuze, 2013), 
which consist of five factors such as openness, conscientiousness, 
extraversion, agreeable, and neuroticism (Costa & McCrae, 1992). 
Regarding the relationship between structural features of PFC and 
personality traits, past reports highlighted that conscientiousness 
and neuroticism are relevant with the lateral PFC volumes (DeYoung 
et al., 2010). For example, individuals with high scores of conscien-
tiousness or neuroticism exhibit a large or small dorsal lateral PFC 
(dlPFC) volume, respectively (DeYoung et al., 2010; Kapogiannis, 
Sutin, Davatzikos, Costa, & Resnick, 2013; Wright et al., 2006). In 
particular, a recent lesion study revealed that the focal damage to 
the left dlPFC showed significant correlation with high neuroticism 
and low conscientious scores (Forbes et al., 2014). In addition, the 
relationships between the PFC functioning and personality traits 
have also been explored by task-state studies, such as working 
memory. It was discovered that the dlPFC activation changes were 
positively correlated with extraversion (Kumari, ffytche, Williams, 
& Gray, 2004). Another interesting report demonstrated that the 
brain activation in left frontal cortical regions associated with neg-
ative pictures showed positive correlation with participants’ neu-
roticism scores (Canli et al., 2001). In an additional emotion study, 
participants were instructed to attempt decreasing emotional re-
sponses while viewing moral violation pictures, in which it was ob-
served that the activation regarding voluntary emotion regulation 
in dlPFC was positively related to neuroticism (Harenski, Kim, & 
Hamann, 2009).

To date, although extensive studies have been performed to in-
spect the relationship based on task-related PFC activation, the cor-
relation between the PFC functioning at rest and personality traits 
have not been examined. More importantly, enhanced resting-state 
brain activities can provide us unique and exclusive information as-
sociated with brain cognition and disorders (Biswal, Zerrin Yetkin, 
Haughton, & Hyde, 1995; Biswal et al., 2010; Lu et al., 2015; Lu, Liu, 
et al. 2017). In particular, the resting-state brain networks can be 
generated by using graph theory (Bullmore & Sporns, 2009; He & 
Evans, 2010), in which the topological features of our brain’s orga-
nization such as small-world network properties (Achard, Salvador, 
Whitcher, Suckling, & Bullmore, 2006) are quantified.

The aim of this study is to examine the relationship between 
the small-world network properties in dlPFC and personality 
traits. The small world analysis was first proposed in 1998 (Watts 
& Strogatz, 1998), which now has been widely adopted to char-
acterize complex networks (Bassett & Bullmore, 2006; Bassett 
& Sporns, 2017; Boccaletti, Latora, Moreno, Chavez, & Hwang, 
2006) in different fields, such as airport networks, biological 

networks and brain networks. In small-world network analysis, 
the clustering coefficient of network Cp denotes the local effi-
ciency in information transfer of the network, whereas the char-
acteristic path length Lp (Watts & Strogatz, 1998) describes the 
global efficiency and the ability of parallel information transmis-
sion of the network. In addition, the global and local efficiency 
(Eglob, Eloc) measure the ability of information transmission of the 
network (Latora & Marchiori, 2001; Wang et al., 2009). Further, 
network hubs are referred as those nodes, which are positioned 
to make strong contributions to global network function and are 
able to be measured by node degree (K ) in graph theory (van den 
Heuvel & Sporns, 2013). The mean K represents the network den-
sity, in which the network connections are sparse when the av-
erage node degree is small. Meanwhile, functional near-infrared 
spectroscopy (fNIRS) is a noninvasive and affordable neuroimaging 
technique (Ehlis, Schneider, Dresler, & Fallgatter, 2014; Ferrari 
& Quaresima, 2012; Vanderwert & Nelson, 2014), which uti-
lize the near-infrared light (wavelengths between 680–950 nm) 
to inspect the brain activation by measuring the concentration 
changes of oxygenated hemoglobin (HbO) and deoxygenated 
hemoglobin (HbR) (Ferrari & Quaresima, 2012; Jobsis, 1977; 
Villringer & Chance, 1997). fNIRS studies have been conducted 
to reveal the neural mechanisms underlying various cognitive 
tasks (He, Wang, Li, & Yuan, 2017; Lu, Wang, Zhang, Chen, & 
Yuan, 2017; Wang, Lu, Hu, Zhang, & Yuan, 2018). However, lit-
tle is performed to use resting-state fNIRS to decode the organi-
zational characters of brains (Niu & He, 2014; Niu, Wang, Zhao,  
Shu, & He, 2012).

In this study, resting-state fNIRS combined with small-world net-
work analysis was used to extract the attribute features of functional 
brain networks associated with personality traits. Since neuroticism/
conscientiousness exhibits the relationship with the structure and 
function of PFC (Canli et al., 2001; DeYoung et al., 2010; Harenski 
et al., 2009; Kennis et al., 2013), it is expected that neuroticism/
conscientiousness might be strongly correlated with the small-world 
network indicators in dlPFC at rest as well. It is anticipated that by 
investigating into this relationship, this study can help to further re-
veal how the networks in PFC is organized at rest and thus pave 
a new way to better understand the neural mechanism underlying 
neuroticism/conscientiousness.

2  | MATERIAL S AND METHODS

2.1 | Participants

Thirty-five college students were recruited from the University 
of Macau campus. The protocol was approved by the Institutional 
Review Board with the University of Macau. All participants were 
right-handed with normal or corrected-to-normal vision. All partici-
pants were required to sign the informed consent documents prior 
to the experiments. Any participants with histories of neurological 
or psychiatric disorders were excluded from this study.
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2.2 | Big five personality questionnaire

NEO Five-Factor Inventory (NEO-FFT) (McCrae & Costa, 2004, 
2007) was adopted to access each participant’s personality pro-
file. The NEO-FFT scale contains 60 questions which measures five 
personality traits with 12 items in each of five factors: Openness, 
Conscientiousness, Extraversion, Agreeableness, and Neuroticism 
(OCEAN). First, individuals with high openness (high-O) are con-
sidered to be more imaginative to art, more intellectually curious 
and more behaviorally flexible (Costa & McCrae, 1992). Second, 
individuals with high conscientiousness (high-C) are more diligent, 
more well-organized and well-determined, and more ambitious com-
pared to those with low-C. Third, high extraversion (high-E) denotes 
a series of traits, which include activity, sociability and inclining to 
undergo positive emotions such as joy (Costa & McCrae, 1992). In 
addition, individuals with high agreeableness (high-A) are coopera-
tive, trusting, and sympathetic whereas the ones with low-A are 
callous, cynical and antagonistic (Costa & McCrae, 1992). Finally, 
individuals with high-N (Neuroticism) are more likely to experience 
psychological conditions (Costa & McCrae, 1992).

Interestingly, this scale has been widely used to measure per-
sonality traits (McCrae & Costa, 1997). The items of the ques-
tionnaire are rated based on a five-point Likert scale, with 1 and 5 
representing “strongly disagree” and “strongly agree,” respectively. 
The total scores of each personality dimension are ranged from 
12 to 60. The descriptive scores of five dimensions for the pres-
ent work were: O (41.57 ± 5.86), C (45.13 ± 6.60), E (41.13 ± 7.91), 
A (39.80 ± 5.06), and N (28.30 ± 7.55). In this study, we discovered 
that conscientiousness was negatively correlated with neuroticism 
(r = −0.53, p = 0.002).

2.3 | Data acquisition

Resting-state fNIRS data were acquired with TechEn CW6 (Techen 
Inc., Milford, MA) system as depicted in Figure 1a. A total of four 
lasers sources with wavelengths at 690 nm and 830 nm and eight 
light detectors were used to generate 12 channels that covered the 
left and right lateral prefrontal cortex. The distance between each 
source and each detector was 3 cm as illustrated in Figure 1b. During 
the experiment, the participant wore a custom-built head cap, which 
was made from plastic and Velcro. The sampling rate was 50 Hz and 
a total 10-min resting-state fNIRS data were acquired. While record-
ing the data, all participants were required to stay still and keep their 
eyes closed without falling asleep.

After data acquisition, the three-dimensional (3D) coordinates 
of each source and detector were measured by using a 3D digitizer 
(PATRIOT, Polhemus, Colchester, Vermont, USA). The mean 3D co-
ordinates were then imported into NIRS-SPM (Ye, Tak, Jang, Jung, 
& Jang, 2009) for spatial registration to generate the layout of op-
todes and MNI coordinates of each channel (Table 1). The 3D MNI 
coordinates of 12 channels were displayed in Figure 1c, which were 
visualized with BrainNet Viewer (Xia, Wang, & He, 2013).

2.4 | Data processing

Data from five participants were excluded due to extensive body 
movement. Data processing was further performed for the remain-
ing 30 participants, including 17 females (23.41 ± 2.09 years) and 
13 males (23.92 ± 2.25 years). The first 3-min resting-state fNIRS 
recordings were discarded to make the analysis stable (Niu et al., 
2012, 2013), whereas only 3-min resting-state recordings in the mid-
dle section were kept for further analysis. After the band-pass filter 
(0.01–0.1 Hz), motion correction and data detrending, the concen-
tration changes of HbO and HbR were generated and the resting-
state functional networks were constructed with FC-NIRS (Xu et al., 
2015).

2.5 | Small-world network analysis

The nodes and edges are two key elements to construct a functional 
connectivity network. In our case, the nodes were defined as the 
channels and the edges were denoted as the functional connectivity 
between channels. In this study, an N by N (N = 12, the number of 
channels in this study) correlation matrix was generated in dlPFC for 
each participant using parametric Pearson correlation analysis. We 
then converted the correlation matrix into a binary undirected graph 
G using the following graph construction:

(1)
eij=

{
1, if

|||
rij
|||
≥T

0, otherwise

F IGURE  1  (a) The CW6 fNIRS system. (b) The configuration of 
the source and detector pairs. The blue and red dots denote the 
light detectors and laser sources, respectively, and the green lines 
between each source and each detector represented the channels. 
(c) The 3D MNI coordinates of the 12 channels
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If the absolute rij exceeded a given threshold T, the connection 
between two nodes was set to 1. Otherwise, it was set to 0. In this 
study, the threshold T was determined by the sparsity (S), which was 
the ratio between the number of actual edges and the maximum 
possible number of edges in a network. The S values were ranged 
from 0 to 1 with an interval of 0.01 (Niu et al., 2012).

We computed the small-world network parameters, which in-
clude the clustering coefficient (Cp), characteristic path length (Lp), 
normalized clustering coefficient (γ), and normalized characteris-
tic path length (λ). And the efficiency properties of the networks 
in dlPFC were also generated, which contain the global efficiency 
(Eglob), local efficiency (Eloc), nodal efficiencies (Enodal), normalized 
global efficiency (γ), normalized local efficiency (λ), and two addi-
tional nodal parameters (Knodal, Nbc). The network characteristics de-
scribed the ability of information transmission of a network at both 
the global and local level.

The Cp is defined as the averaged clustering coefficient over all 
nodes, which measures the local interconnectivity of a network:

in which N is the number of nodes, and Ei and Ki represent the num-
ber of edges and nodes in the subgraph Gi, respectively (Rubinov & 
Sporns, 2010; Watts & Strogatz, 1998).

The Lp is defined as the average of character path length over all 
nodes, which quantifies the overall routing efficiency of a network,

in which min|Lij| is the shortest path length between the node i and 
node j (Rubinov & Sporns, 2010; Watts & Strogatz, 1998).

The normalized clustering coefficient is the ratio between the 
real and random clustering coefficients: = Cp_real

Cp_rand
. The normalized 

characteristic path length is the ratio between the real and random 
characteristic path length: �= Lp_real

Lp_rand
. Cp_rand and Lp_rand denotes, re-

spectively, the averaged clustering coefficient and characteristic 
path length of 100 matched random networks, which possess the 
same number of nodes, edges, and degree distribution with the real 
networks (Maslov & Sneppen, 2002; Sporns & Zwi, 2004). Typically, 
a small-word network meets the conditions of 𝛾 >1 and λ ≈ 1 (Watts 
& Strogatz, 1998), and therefore, the small-world scalar σ = λ/γ is 
larger than 1 (Humphries, Gurney, & Prescott, 2006).

For the network efficiency matrices, Eglob is the mean of all 
nodes efficiencies, which is defined as the inversion of harmonic 
mean of the shortest path length between each node pair (Achard & 
Bullmore, 2007; Latora & Marchiori, 2001),

and

in which min |Lij| denotes the shortest path length between the node 
i and node j, indicating the capability of parallel information transfer 
through the whole network. In addition, Eloc is the average of all local 
efficiencies for nodes in the subgraph Gi (Achard & Bullmore, 2007; 
Latora & Marchiori, 2001), which is defined as

in which Eloc_nodal(i) = Eglob(Gi). Since the node i is not an element of 
subgraph Gi, the local efficiency can also be considered as a measure 
of the fault tolerance of the network, indicating how well each sub-
graph exchanges information when the node i is eliminated (Achard & 
Bullmore, 2007).

The normalized global efficiency is the ratio between the real and 
random global efficiency �E=

Eg_real

Eg_rand
. The normalized local efficient is 

the ratio between the real and random local efficiency �E=
El_real

El_rand
. 

Eg_rand and El_rand denotes the averaged global and local efficiency of 

(2)Cp=
1

N

∑

i∈G

Ei

Ki

(
Ki −1

)
∕2

(3)Lp=
1

N

�

i∈G

∑
i≠j∈G min�Lij�

N−1

(4)Eglob=
1

N

∑

i∈G

Enodal (i)

(5)Enodal (i)=
1

N−1

∑

j≠i∈G

1

min
|||
Lij

|||

(6)Eloc=
1

N

∑

i∈G

Eloc_nodal (i)

TABLE  1 The mean 3D MNI coordinates and associated brain 
regions of the 12 channels

Channels
MNI coordi-
nates (x, y, z) Brodmann area Probability

CH01 50 43 26 45 - pars triangularis 
Broca’s area

0.88

CH02 42 51 27 46 - Dorsolateral 
prefrontal cortex

0.74

CH03 32 57 29 46 - Dorsolateral 
prefrontal cortex

0.86

CH04 50 50 7 46 - Dorsolateral 
prefrontal cortex

0.80

CH05 44 59 9 46 - Dorsolateral 
prefrontal cortex; 10 
- Frontopolar area

0.56; 0.44

CH06 36 65 11 10 - Frontopolar area 0.89

CH07 −18 62 32 10 - Frontopolar area; 
46 - Dorsolateral 
prefrontal cortex

0.48; 0.36

CH08 −29 56 30 46 - Dorsolateral 
prefrontal cortex

0.91

CH09 −42 49 27 46 - Dorsolateral 
prefrontal cortex

0.61

CH10 −20 71 13 10 - Frontopolar area 1

CH11 −32 65 10 10 - Frontopolar area 0.86

CH12 −43 56 7 46 - Dorsolateral 
prefrontal cortex

0.71
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100 degree matched random networks (Wang et al., 2009), respec-
tively. Generally, a small-word network processes 𝛾E>1 and λE ≈ 1, 
and the small-wordness scalar σE = γE/λE is larger than 1. Further, 
Knodal is the degree index of a node, which is the number of edges 
generated by a node connecting with other nodes. The larger num-
ber indicts that this node connects with more additional nodes. By 
contrast, Nbc estimates the influence of a node over information flow 
with the rest nodes in a network. The network analysis module in 
software GRETNA (Wang et al., 2015) was used to analyze the net-
work characteristics.

2.6 | Statistical analysis of the network indicators

To examine the difference between the real network parameters 
and the ones from associated random network, we computed the 
z-score with

in which xreal denotes the network characteristics (Cp, Lp, Eglob, Eloc). 
A two-tailed significance level of 0.05 (z-score <−1.96 or z-score > 
1.96) was used to inspect the significant difference.

In order to examine the association between the individuals’ 
traits and network parameters, we calculated the integral area 
under curve (AUC) for a network metric Y, which was produced 
over the sparsity threshold ranged from S1 to Sn with an interval 
of ΔS,

3  | RESULTS

3.1 | Small-world and efficiency characteristics of 
brain networks in the dLPFC

The small-world analysis results were displayed Figure 2, in which we 
discovered that the Cp and Lp, respectively, increased (Figure 2a) and 
descended (Figure 2b) with increased sparsity threshold for both the 
real brain network and random network (Figure 2). Statistical analy-
sis showed that compared to the random network, the real brain net-
work (Cp_real) exhibited significant larger Cp for the sparsity S ranged 
from 0.1 to 0.66 (mean z-score = 2.86 ± 0.37). In addition, the Lp 
of real brain network (Lp_real) was also larger than (but numerically 
approximate to) that of the random network (Lp_rand) with S ranged 
from 0.1 to 0.66 (mean z-score = 8.03 ± 3.27). Further, since the γ 
was larger than 1 and the λ approached to 1 (σ > 1) (Figure 2c,d), the 
resting-state brain networks in dLPFC also exhibited the small-world 
properties.

Accordingly, we also calculated the Cp and Lp based on HbR 
and HbT (Total hemoglobin: the sum of HbO and HbR) recordings 
(Supporting Information Figures S1 and S2). The results showed that 
the networks of HbR and HbT also manifested small-world proper-
ties. Compared to that of random matched networks, the Cp of brain 
networks in dlPFC was larger with sparsity between 0.05 and 0.62 
for HbR and 0.07–0.62 for HbT. By contrast, the Lp of HbR or HbT 

(7)
Z (x)=

xreal−xrand

std
(
xrand

)

(8)Y
AUC=

n−1∑

k=1

[
Y
(
Sk

)
+Y

(
Sk+1

)]
×ΔS∕2.

F IGURE  2 The small-world properties 
of real network in dlPFC and matched 
random network. (a) The cluster 
coefficient (Cp). The shadow window 
shows that the Cp of real dlPFC network 
is significantly larger than that of the 
random network with sparsity from 0.1 to 
0.66 (p < 0.05). The red curve denotes the 
real network of dlPFC while the blue one 
defines the random network.  
(b) The characteristic path length (Lp). The 
shadow window shows that the Lp of real 
dlPFC network is significantly longer than 
that of the random network (p < 0.05). 
The red curve denotes the real network 
of dlPFC, while the blue one defines the 
random network. (c) Two indictors of the 
small-worldness. The red and blue curve 
denotes the distribution of γ and λ of real 
dlPFC network, respectively. γ > 1, λ ≈ 1. 
(d) Additional indicator of the small-
worldness, σ > 1. The network of dlPFC 
exhibits the small-world properties
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measures didn’t exhibit obvious difference as compared to that from 
the random network.

The profiles of global and local efficiency were depicted in 
Figure 3, in which we discovered that the Eglob and Eloc of the two 
networks (real network and random network) ascended rapidly and 
approached to one in the end. Compared to the random network, 
the real brain network exhibited larger global and smaller local ef-
ficiency with sparsity between 0.1 and 0.66 for the global one 
(mean z-score = 6.32 ± 2.20) and 0.1–0.65 for the local one (mean z-
score = −2.47 ± 0.54). Meanwhile, the γE was greater than one while 
the λE was equal to one (Figure 3c).

Likewise, we computed the Eglob and Eloc based on HbR and HbT 
signals (Supporting Information Figures S3 and S4), in which we dis-
covered that the results were in line with that of HbO measures. The 
Eglob and Eloc of HbR and HbT were greater than those of the matched 
random network with a broad sparsity range (HbR, 0.07–0.62 for 
global one and 0.05–0.41 for local one; HbT, 0.08–0.57 for global 
one and 0.12–0.36 for local one). In addition, the results of γE, λE 
from HbR and HbT measures showed good agreement with that of 
HbO measures.

3.2 | Network hubs in the dlPFC

The network hubs were determined by the nodal degree (Knodal), 
nodal efficiency (Enodal), and nodal betweenness (Nbc). If any of the 
three nodal network properties for a single node was one standard 
deviation larger than that from the average of all nodes in the net-
work, this node was considered as a hub (Niu et al., 2012). In this 
study, extensive sparsity (0:0.01:1) values was utilized to construct 

the functional brain network, in which each of these three nodal pa-
rameters was a function of sparsity. In particular, a threshold inde-
pendent scalar (area under the curve, AUC) was calculated for each 
nodal parameter (Knodal, Enodal, and Nbc) from each node to determine 
the network hubs. Consequently, we discovered that Channels 5 and 
11 were the hubs determined by the AUCs of Knodal, Enodal, and Nbc 
(Figure 4).

Similar operations were performed to identify the network hubs 
by using HbR and HbT signals. Intriguingly, HbR measures showed 
that channels 2, 3, and 11 were the identified hubs (Supporting 
Information Figure S5) while HbT measures exhibited that channel 
11 was the hub (Supporting Information Figure S6).

3.3 | Correlation analysis

In order to explore the individual difference in relationship between 
the personality traits and topological characteristics of brain net-
works, the correlation analysis was conducted between the small 
world properties (Cp, Lp, Eglob and Eloc) and NEO FFT scores. We 
discovered that conscientiousness (r = −0.63) showed negative cor-
relation with the Lp, whereas neuroticism (r = 0.40) was positively 
correlated with the Lp (Table 2, Figure 5).

4  | DISCUSSION

In this study, we explored the relationship between individuals’ 
variations in personality traits and the topological characteristics of 
resting-state functional networks in dlPFC using fNIRS. Importantly, 

F IGURE  3 The global and local 
efficiency of real brain network in dlPFC 
and the matched random network.  
(a) The global efficiency (Eg). The red 
curve denotes the real network of dlPFC 
while the blue curve denotes the matched 
random network. The shadow window 
represents the Eg of real dlPFC network 
is significantly higher than that of the 
random network with sparsity from 0.1 
to 0.66 (p < 0.05). (b) The local efficiency 
(Eloc). The red curve denotes the real 
network of dlPFC while the blue curve 
denotes the matched random network. 
The shadow window shows that the Eloc of 
real dlPFC network is significantly smaller 
than that of the random network with 
sparsity from 0.1 to 0.65(p < 0.05). (c) The 
blue curve and red curve denotes the λ 
and γ of the efficiency, respectively.  
(d) The red curve represents the sigma of 
the efficiency in dlPFC
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the resting-state networks in dlPFC exhibited the small-world prop-
erties, in which we discovered the clustering coefficient was much 
higher than that from the random network (Figure 2). These findings 
were in line with reports from previous studies (Fekete, Beacher, 
Cha, Rubin, & Mujica-Parodi, 2014; Niu et al., 2012). In addition, 

we also discovered that rich hubs across HbO, HbR, or HbT meas-
ures were identified for the brain networks in dlPFC (Figure 4, 
Supporting Information Figures S5 and S6). Further, positive corre-
lations between the neuroticism and characteristic path lengths of 
HbO and HbT measures were revealed, whereas conscientiousness 
exhibited negative relationship with the characteristic path length 
of HbO recordings (Figure 5). Interestingly, little studies have been 
performed to examine the resting-state functional brain networks 
by using fNIRS data and graph theory. To the best of our knowledge, 
this is the first study that used resting-state fNIRS data to examine 
the relationship between the small-world networks properties and 
personality traits in the dlPFC. Therefore, our study provided solid 
evidences that effective neuromarkers can be extracted from the 
resting-sate fNIRS data.

The small-world network was first proposed in 1998 (Watts & 
Strogatz, 1998), which generally exhibits a higher clustering coeffi-
cient and almost the same characteristic path length as compared to 

F IGURE  4 Hubs identified by three nodal indices were displayed in red color. The size of nodes denotes the value of nodal properties

TABLE  2 The correlation coefficients between the small world 
properties and five personality factors

HbOCp HbOLp HbOEg HbO Eloc

Neuroticism 0.22 0.40* −0.20 0.16

Extraversion −0.04 −0.18 −0.06 −0.002

Openness 0.09 −0.21 −0.003 0.07

Agreeable −0.02 −0.12 0.13 0.01

Conscientious −0.23 −0.63** 0.29 −0.15

*p < 0.05; **p < 0.01.

F IGURE  5 The correlation between the two personality traits and Lp of dlPFC. (a) Neuroticism was positively related with the Lp 
(r = 0.40, p < 0.05). (b) Conscientiousness was negatively related with the Lp (r = −0.63, p < 0.001)
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a random network (Watts & Strogatz, 1998). These characteristics 
enable the information to flow more efficiently, which were also ev-
idenced by our global and local efficiency analyses (Figure 3). For 
example, we discovered that our resting-state brain functional net-
work manifested a higher global and local efficiency than the ran-
dom network, which showed good agreement with previous fMRI 
and fNIRS findings (Achard et al., 2006; Fekete et al., 2014; Niu et al., 
2012). In particular, our resting-state fNIRS results demonstrated 
that the brain network in local dlPFC is also organized economi-
cally and efficiently just as the whole brain does. More importantly, 
our results further indicated that the small-world architecture is a 
ubiquitous organization of our brain regardless of different imaging 
methods (Niu et al., 2012). Besides, we also inspected the node hubs 
of resting-state functional brain networks in dlPFC. Interestingly, 
previous work showed that the brain hubs play an essential role in 
information integration underpinning numerous aspects of complex 
cognitive functions (van den Heuvel & Sporns, 2013). In this study, 
three nodal characteristics were used to identify brain hubs in dlPFC 
using resting-state fNIRS recordings. We discovered that channels 2, 
3, 5, and 11 were the identified network hubs based on three mea-
sures (HbO, HbR, and HbT). When the analysis results from the three 
measures were combined together, we observed that channels 5 and 
11 played a crucial role for the network organization in dlPFC, which 
were symmetrically located in the right and left hemispheres, re-
spectively. In particular, the identified hubs demonstrated that each 
part of left and right dlPFC was involved in the information process-
ing framework on brain cognition.

In addition, our results showed that neuroticism was positively 
correlated with the shortest path length from HbO and HbT measures 
while conscientious was inversely associated with the characteristic 
path length of HbO measures. Neuroticism is related to emotion sta-
bility and vulnerability and negative affection. A high score of this 
factor represents one of the most common psychiatric conditions 
(Costa & McCrae, 1992). In addition, our results also demonstrated 
that individuals who are vulnerable to neurosis or who are experienc-
ing more negative feelings exhibit the less efficiency and the longest 
path length in processing information in dlPFC. Interestingly, previ-
ous clinical study had validated that the depression patients exhib-
ited the long characteristic path length (Meng et al., 2013). Additional 
reported work further demonstrated that neuroticism was positively 
related with brain activation in dlPFC during viewing negative pic-
tures (Canli et al., 2001) or emotion regulation (Harenski et al., 2009).

By contrast, conscientiousness is a dimension that contrasts scru-
pulous, well-organized, and diligent people with lax, disorganized, and 
lackadaisical individuals (Costa & McCrae, 1992). Those who score 
high for this factor are considered to be more self-controlled and 
motivated. Conscientiousness is also associated with academic and 
vocational success (Judge, Higgins, Thoresen, & Barrick, 1999; Noftle 
& Robins, 2007; O’Connor & Paunonen, 2007). Our results showed 
that conscientiousness was negatively correlated with the Lp in dlPFC, 
which plays an essential role in executive function. The higher con-
scientiousness scores are, the shorter characteristic path length is. 
Meanwhile, our results suggested that individuals with well-organized, 

persistence and self-discipline tend to process information more effi-
ciently and economically, which showed good agreement with previ-
ous reports. For example, the relationship between the Lp in dlPFC and 
neuroticism/conscientiousness was also highlighted in previous stud-
ies, in which they discovered that neuroticism and conscientiousness, 
respectively, constrained and facilitated neuroplastic responses within 
the working memory networks, which includes the dlPFC, parietal, and 
anterior cingulate cortex (Dima, Friston, Stephan, & Frangou, 2015). 
Interestingly, previous studies also demonstrated that compromised 
small-world properties in dlPFC was associated with reduced levels 
of effort control, which was related with psychopathology in young 
children (Fekete et al., 2014).

In summary, our study showed that fNIRS can be an efficient tech-
nique to explore the brain network of special atypical populations at 
rest, which might not be appropriate for them such as neonates, in-
fants, and claustrophobia to participate in fMRI tests due to its nar-
row space and restrained positions. Several limitations of this study 
should be mentioned here. First, although the validity and reliability 
of NEO-FFI is stable, we cannot fully exclude subjective judgment 
because it is a self-report measurement (Dima et al., 2015). Second, 
only the dlPFC is involved in this study, which somehow ignores the 
influence from other brain regions. Third, it should be pointed out that 
the relatively small sample sizes might affect the accuracy of present 
analysis results. Nevertheless, our results demonstrated that neuroti-
cism and conscientiousness, respectively, are positively and negatively 
correlated with the Lp in dlPFC, indicating that resting-state fNIRS can 
be a promise tool for early detection of brain disorders.
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