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1  | INTRODUC TION

Human brain is a complex and dynamic system (Sporns, 2014), 
which organizes and controls individuals’ interaction with the en-
vironment. The frontal lobe, especially the prefrontal cortex (PFC) 
plays an essential role in various high- level cognitive functions, 

such as executive functions (Mansouri, Tanaka, & Buckley, 2009; 
Miller, 2000; Miller & Cohen, 2001), reasoning and planning (Wood 
& Grafman, 2003), decision making (Wallis, 2007), social cogni-
tion, and moral judgment (Forbes & Grafman, 2010). Meanwhile, 
the deficits in PFC functions are involved in the pathophysiol-
ogy of several psychiatric and neurological disorders such as 
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Abstract
Background:	Accumulating	evidence	shows	that	the	dorsal	lateral	prefrontal	cortex	
(dlPFC) is implicated in personality traits. In this study, resting- state functional near 
infrared	spectroscopy	(fNIRS)	combined	with	small-	world	analysis	was	utilized	to	ex-
amine the relationship between the network properties of dlPFC and personality 
traits.
Methods: Thirty college students (aged between 20 and 29) were recruited from the 
University	of	Macau	campus,	whose	personality	scores	were	accessed	with	the	NEO-	
FFT	questionnaire.	Graph	theory	combined	with	resting-	state	fNIRS	data	was	used	
to quantify the network properties of dlPFC, whereas Pearson correlation analysis 
was performed to generate the relationship between the small- world indicators and 
personality scores.
Results: Compared to matched random networks, the resting- state brain networks 
exhibited a larger clustering coefficient (Cp,	 0.1–0.66),	 shorter	 characteristic	 path	
length (Lp,	0.1–0.66),	and	higher	global	 (Eg,	0.1–0.66)	and	local	efficiency	(Eloc, 0.1–
0.65).	 In	particular,	conscientiousness	 (r = −0.63)	and	neuroticism	(r = 0.40) respec-
tively showed negative and positive correlation with the Lp.
Conclusions: The resting- state functional brain networks in dlPFC exhibited the 
small- world properties. In addition, participants with higher conscientiousness scores 
showed a shorter Lp.
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schizophrenia,	 drug	 addiction,	 mood	 disorders,	 and	 Alzheimer’s	
disease (Fuster, 2001; Goto, Yang, & Otani, 2010). Therefore, in-
specting the PFC’s organizing patterns is not only crucial for us 
to elucidate the complex neural mechanism of high- level cognitive 
functions or brain disorders, but also absolutely necessary to pave 
a way for new treatments.

Intriguingly, previous reports have demonstrated that the struc-
tures and functions of PFC are strongly correlated with personality 
traits (DeYoung et al., 2010; Kennis, Rademaker, & Geuze, 2013), 
which consist of five factors such as openness, conscientiousness, 
extraversion, agreeable, and neuroticism (Costa & McCrae, 1992). 
Regarding the relationship between structural features of PFC and 
personality traits, past reports highlighted that conscientiousness 
and neuroticism are relevant with the lateral PFC volumes (DeYoung 
et al., 2010). For example, individuals with high scores of conscien-
tiousness or neuroticism exhibit a large or small dorsal lateral PFC 
(dlPFC) volume, respectively (DeYoung et al., 2010; Kapogiannis, 
Sutin,	Davatzikos,	Costa,	&	Resnick,	2013;	Wright	et	al.,	2006).	 In	
particular, a recent lesion study revealed that the focal damage to 
the left dlPFC showed significant correlation with high neuroticism 
and low conscientious scores (Forbes et al., 2014). In addition, the 
relationships between the PFC functioning and personality traits 
have also been explored by task- state studies, such as working 
memory. It was discovered that the dlPFC activation changes were 
positively correlated with extraversion (Kumari, ffytche, Williams, 
&	Gray,	2004).	Another	 interesting	 report	demonstrated	 that	 the	
brain activation in left frontal cortical regions associated with neg-
ative pictures showed positive correlation with participants’ neu-
roticism scores (Canli et al., 2001). In an additional emotion study, 
participants were instructed to attempt decreasing emotional re-
sponses while viewing moral violation pictures, in which it was ob-
served that the activation regarding voluntary emotion regulation 
in dlPFC was positively related to neuroticism (Harenski, Kim, & 
Hamann, 2009).

To date, although extensive studies have been performed to in-
spect the relationship based on task- related PFC activation, the cor-
relation between the PFC functioning at rest and personality traits 
have not been examined. More importantly, enhanced resting- state 
brain activities can provide us unique and exclusive information as-
sociated with brain cognition and disorders (Biswal, Zerrin Yetkin, 
Haughton,	&	Hyde,	1995;	Biswal	et	al.,	2010;	Lu	et	al.,	2015;	Lu,	Liu,	
et al. 2017). In particular, the resting- state brain networks can be 
generated by using graph theory (Bullmore & Sporns, 2009; He & 
Evans, 2010), in which the topological features of our brain’s orga-
nization	such	as	small-	world	network	properties	(Achard,	Salvador,	
Whitcher,	Suckling,	&	Bullmore,	2006)	are	quantified.

The aim of this study is to examine the relationship between 
the small- world network properties in dlPFC and personality 
traits. The small world analysis was first proposed in 1998 (Watts 
& Strogatz, 1998), which now has been widely adopted to char-
acterize	 complex	 networks	 (Bassett	 &	 Bullmore,	 2006;	 Bassett	
&	 Sporns,	 2017;	 Boccaletti,	 Latora,	Moreno,	 Chavez,	 &	Hwang,	
2006)	 in	 different	 fields,	 such	 as	 airport	 networks,	 biological	

networks and brain networks. In small- world network analysis, 
the clustering coefficient of network Cp denotes the local effi-
ciency in information transfer of the network, whereas the char-
acteristic path length Lp (Watts & Strogatz, 1998) describes the 
global efficiency and the ability of parallel information transmis-
sion of the network. In addition, the global and local efficiency 
(Eglob, Eloc) measure the ability of information transmission of the 
network	 (Latora	&	Marchiori,	2001;	Wang	et	al.,	2009).	Further,	
network hubs are referred as those nodes, which are positioned 
to make strong contributions to global network function and are 
able to be measured by node degree (K ) in graph theory (van den 
Heuvel & Sporns, 2013). The mean K represents the network den-
sity, in which the network connections are sparse when the av-
erage node degree is small. Meanwhile, functional near- infrared 
spectroscopy	(fNIRS)	is	a	noninvasive	and	affordable	neuroimaging	
technique (Ehlis, Schneider, Dresler, & Fallgatter, 2014; Ferrari 
&	 Quaresima,	 2012;	 Vanderwert	 &	 Nelson,	 2014),	 which	 uti-
lize	 the	 near-	infrared	 light	 (wavelengths	 between	 680–950	nm)	
to inspect the brain activation by measuring the concentration 
changes of oxygenated hemoglobin (HbO) and deoxygenated 
hemoglobin	 (HbR)	 (Ferrari	 &	 Quaresima,	 2012;	 Jobsis,	 1977;	
Villringer	&	Chance,	 1997).	 fNIRS	 studies	have	been	 conducted	
to reveal the neural mechanisms underlying various cognitive 
tasks	 (He,	 Wang,	 Li,	 &	 Yuan,	 2017;	 Lu,	 Wang,	 Zhang,	 Chen,	 &	
Yuan,	 2017;	Wang,	 Lu,	Hu,	 Zhang,	&	Yuan,	 2018).	However,	 lit-
tle	is	performed	to	use	resting-	state	fNIRS	to	decode	the	organi-
zational	characters	of	brains	 (Niu	&	He,	2014;	Niu,	Wang,	Zhao,	 
Shu, & He, 2012).

In	this	study,	resting-	state	fNIRS	combined	with	small-	world	net-
work analysis was used to extract the attribute features of functional 
brain networks associated with personality traits. Since neuroticism/
conscientiousness exhibits the relationship with the structure and 
function of PFC (Canli et al., 2001; DeYoung et al., 2010; Harenski 
et al., 2009; Kennis et al., 2013), it is expected that neuroticism/
conscientiousness might be strongly correlated with the small- world 
network indicators in dlPFC at rest as well. It is anticipated that by 
investigating into this relationship, this study can help to further re-
veal how the networks in PFC is organized at rest and thus pave 
a new way to better understand the neural mechanism underlying 
neuroticism/conscientiousness.

2  | MATERIAL S AND METHODS

2.1 | Participants

Thirty- five college students were recruited from the University 
of Macau campus. The protocol was approved by the Institutional 
Review	Board	with	 the	University	of	Macau.	All	participants	were	
right-	handed	with	normal	or	corrected-	to-	normal	vision.	All	partici-
pants were required to sign the informed consent documents prior 
to	the	experiments.	Any	participants	with	histories	of	neurological	
or psychiatric disorders were excluded from this study.
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2.2 | Big five personality questionnaire

NEO	 Five-	Factor	 Inventory	 (NEO-	FFT)	 (McCrae	 &	 Costa,	 2004,	
2007) was adopted to access each participant’s personality pro-
file.	The	NEO-	FFT	scale	contains	60	questions	which	measures	five	
personality traits with 12 items in each of five factors: Openness, 
Conscientiousness,	 Extraversion,	 Agreeableness,	 and	 Neuroticism	
(OCEAN).	 First,	 individuals	 with	 high	 openness	 (high-	O)	 are	 con-
sidered to be more imaginative to art, more intellectually curious 
and more behaviorally flexible (Costa & McCrae, 1992). Second, 
individuals with high conscientiousness (high- C) are more diligent, 
more well- organized and well- determined, and more ambitious com-
pared to those with low- C. Third, high extraversion (high- E) denotes 
a series of traits, which include activity, sociability and inclining to 
undergo positive emotions such as joy (Costa & McCrae, 1992). In 
addition,	 individuals	with	high	agreeableness	(high-	A)	are	coopera-
tive,	 trusting,	 and	 sympathetic	 whereas	 the	 ones	 with	 low-	A	 are	
callous, cynical and antagonistic (Costa & McCrae, 1992). Finally, 
individuals	with	high-	N	(Neuroticism)	are	more	likely	to	experience	
psychological conditions (Costa & McCrae, 1992).

Interestingly, this scale has been widely used to measure per-
sonality traits (McCrae & Costa, 1997). The items of the ques-
tionnaire	are	rated	based	on	a	five-	point	Likert	scale,	with	1	and	5	
representing “strongly disagree” and “strongly agree,” respectively. 
The total scores of each personality dimension are ranged from 
12	 to	60.	The	descriptive	 scores	of	 five	dimensions	 for	 the	pres-
ent	work	were:	O	(41.57	±	5.86),	C	(45.13	±	6.60),	E	(41.13	±	7.91),	
A	(39.80	±	5.06),	and	N	(28.30	±	7.55).	In	this	study,	we	discovered	
that conscientiousness was negatively correlated with neuroticism 
(r	=	−0.53,	p = 0.002).

2.3 | Data acquisition

Resting-	state	fNIRS	data	were	acquired	with	TechEn	CW6	(Techen	
Inc.,	Milford,	MA)	 system	as	depicted	 in	Figure	1a.	A	 total	of	 four	
lasers	 sources	with	wavelengths	 at	690	nm	and	830	nm	and	eight	
light detectors were used to generate 12 channels that covered the 
left and right lateral prefrontal cortex. The distance between each 
source and each detector was 3 cm as illustrated in Figure 1b. During 
the experiment, the participant wore a custom- built head cap, which 
was	made	from	plastic	and	Velcro.	The	sampling	rate	was	50	Hz	and	
a	total	10-	min	resting-	state	fNIRS	data	were	acquired.	While	record-
ing the data, all participants were required to stay still and keep their 
eyes closed without falling asleep.

After	 data	 acquisition,	 the	 three-	dimensional	 (3D)	 coordinates	
of each source and detector were measured by using a 3D digitizer 
(PATRIOT,	Polhemus,	Colchester,	Vermont,	USA).	The	mean	3D	co-
ordinates	were	then	 imported	 into	NIRS-	SPM	(Ye,	Tak,	Jang,	Jung,	
&	Jang,	2009)	for	spatial	registration	to	generate	the	layout	of	op-
todes	and	MNI	coordinates	of	each	channel	(Table	1).	The	3D	MNI	
coordinates of 12 channels were displayed in Figure 1c, which were 
visualized	with	BrainNet	Viewer	(Xia,	Wang,	&	He,	2013).

2.4 | Data processing

Data from five participants were excluded due to extensive body 
movement. Data processing was further performed for the remain-
ing	 30	 participants,	 including	 17	 females	 (23.41	±	2.09	years)	 and	
13	males	 (23.92	±	2.25	years).	 The	 first	 3-	min	 resting-	state	 fNIRS	
recordings	were	 discarded	 to	make	 the	 analysis	 stable	 (Niu	 et	al.,	
2012, 2013), whereas only 3- min resting- state recordings in the mid-
dle	section	were	kept	for	further	analysis.	After	the	band-	pass	filter	
(0.01–0.1 Hz), motion correction and data detrending, the concen-
tration changes of HbO and HbR were generated and the resting- 
state	functional	networks	were	constructed	with	FC-	NIRS	(Xu	et	al.,	
2015).

2.5 | Small- world network analysis

The nodes and edges are two key elements to construct a functional 
connectivity network. In our case, the nodes were defined as the 
channels and the edges were denoted as the functional connectivity 
between channels. In this study, an N by N (N = 12, the number of 
channels in this study) correlation matrix was generated in dlPFC for 
each participant using parametric Pearson correlation analysis. We 
then converted the correlation matrix into a binary undirected graph 
G using the following graph construction:

(1)
eij=

{
1, if

|||
rij
|||
≥T

0, otherwise

F IGURE  1  (a)	The	CW6	fNIRS	system.	(b)	The	configuration	of	
the source and detector pairs. The blue and red dots denote the 
light detectors and laser sources, respectively, and the green lines 
between each source and each detector represented the channels. 
(c)	The	3D	MNI	coordinates	of	the	12	channels
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If the absolute rij exceeded a given threshold T, the connection 
between two nodes was set to 1. Otherwise, it was set to 0. In this 
study, the threshold T was determined by the sparsity (S), which was 
the ratio between the number of actual edges and the maximum 
possible number of edges in a network. The S values were ranged 
from	0	to	1	with	an	interval	of	0.01	(Niu	et	al.,	2012).

We computed the small- world network parameters, which in-
clude the clustering coefficient (Cp), characteristic path length (Lp), 
normalized clustering coefficient (γ), and normalized characteris-
tic path length (λ).	 And	 the	 efficiency	 properties	 of	 the	 networks	
in dlPFC were also generated, which contain the global efficiency 
(Eglob), local efficiency (Eloc), nodal efficiencies (Enodal), normalized 
global efficiency (γ), normalized local efficiency (λ), and two addi-
tional nodal parameters (Knodal, Nbc). The network characteristics de-
scribed the ability of information transmission of a network at both 
the global and local level.

The Cp is defined as the averaged clustering coefficient over all 
nodes, which measures the local interconnectivity of a network:

in which N is the number of nodes, and Ei and Ki represent the num-
ber of edges and nodes in the subgraph Gi, respectively (Rubinov & 
Sporns, 2010; Watts & Strogatz, 1998).

The Lp is defined as the average of character path length over all 
nodes, which quantifies the overall routing efficiency of a network,

in which min|Lij| is the shortest path length between the node i and 
node j (Rubinov & Sporns, 2010; Watts & Strogatz, 1998).

The normalized clustering coefficient is the ratio between the 
real and random clustering coefficients: = Cp_real

Cp_rand
. The normalized 

characteristic path length is the ratio between the real and random 
characteristic path length: �= Lp_real

Lp_rand
. Cp_rand and Lp_rand denotes, re-

spectively, the averaged clustering coefficient and characteristic 
path length of 100 matched random networks, which possess the 
same number of nodes, edges, and degree distribution with the real 
networks (Maslov & Sneppen, 2002; Sporns & Zwi, 2004). Typically, 
a small- word network meets the conditions of 𝛾 >1 and λ	≈	1	(Watts	
& Strogatz, 1998), and therefore, the small- world scalar σ = λ/γ is 
larger	than	1	(Humphries,	Gurney,	&	Prescott,	2006).

For the network efficiency matrices, Eglob is the mean of all 
nodes efficiencies, which is defined as the inversion of harmonic 
mean	of	the	shortest	path	length	between	each	node	pair	(Achard	&	
Bullmore,	2007;	Latora	&	Marchiori,	2001),

and

in which min |Lij| denotes the shortest path length between the node 
i and node j, indicating the capability of parallel information transfer 
through the whole network. In addition, Eloc is the average of all local 
efficiencies for nodes in the subgraph Gi	(Achard	&	Bullmore,	2007;	
Latora	&	Marchiori,	2001),	which	is	defined	as

in which Eloc_nodal(i) = Eglob(Gi). Since the node i is not an element of 
subgraph Gi, the local efficiency can also be considered as a measure 
of the fault tolerance of the network, indicating how well each sub-
graph exchanges information when the node i	is	eliminated	(Achard	&	
Bullmore, 2007).

The normalized global efficiency is the ratio between the real and 
random global efficiency �E=

Eg_real

Eg_rand
. The normalized local efficient is 

the ratio between the real and random local efficiency �E=
El_real

El_rand
. 

Eg_rand and El_rand denotes the averaged global and local efficiency of 

(2)Cp=
1

N

∑

i∈G

Ei

Ki

(
Ki −1

)
∕2

(3)Lp=
1

N

�

i∈G

∑
i≠j∈G min�Lij�

N−1

(4)Eglob=
1

N

∑

i∈G

Enodal (i)

(5)Enodal (i)=
1

N−1

∑

j≠i∈G

1

min
|||
Lij

|||

(6)Eloc=
1

N

∑

i∈G

Eloc_nodal (i)

TABLE  1 The	mean	3D	MNI	coordinates	and	associated	brain	
regions of the 12 channels

Channels
MNI coordi-
nates (x, y, z) Brodmann area Probability

CH01 50 43 26 45	-		pars	triangularis	
Broca’s area

0.88

CH02 42 51 27 46	-		Dorsolateral	
prefrontal cortex

0.74

CH03 32 57 29 46	-		Dorsolateral	
prefrontal cortex

0.86

CH04 50 50 7 46	-		Dorsolateral	
prefrontal cortex

0.80

CH05 44 59 9 46	-		Dorsolateral	
prefrontal cortex; 10 
-  Frontopolar area

0.56;	0.44

CH06 36 65 11 10 -  Frontopolar area 0.89

CH07 −18 62 32 10 -  Frontopolar area; 
46	-		Dorsolateral	
prefrontal cortex

0.48;	0.36

CH08 −29 56 30 46	-		Dorsolateral	
prefrontal cortex

0.91

CH09 −42 49 27 46	-		Dorsolateral	
prefrontal cortex

0.61

CH10 −20 71 13 10 -  Frontopolar area 1

CH11 −32 65 10 10 -  Frontopolar area 0.86

CH12 −43 56 7 46	-		Dorsolateral	
prefrontal cortex

0.71
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100 degree matched random networks (Wang et al., 2009), respec-
tively. Generally, a small- word network processes 𝛾E>1 and λE	≈	1,	
and the small- wordness scalar σE = γE/λE is larger than 1. Further, 
Knodal is the degree index of a node, which is the number of edges 
generated by a node connecting with other nodes. The larger num-
ber indicts that this node connects with more additional nodes. By 
contrast, Nbc estimates the influence of a node over information flow 
with the rest nodes in a network. The network analysis module in 
software	GRETNA	(Wang	et	al.,	2015)	was	used	to	analyze	the	net-
work characteristics.

2.6 | Statistical analysis of the network indicators

To examine the difference between the real network parameters 
and the ones from associated random network, we computed the 
z- score with

in which xreal denotes the network characteristics (Cp, Lp, Eglob, Eloc). 
A	two-	tailed	significance	 level	of	0.05	 (z-	score	<−1.96	or	z- score > 
1.96)	was	used	to	inspect	the	significant	difference.

In order to examine the association between the individuals’ 
traits and network parameters, we calculated the integral area 
under	 curve	 (AUC)	 for	 a	 network	metric	Y, which was produced 
over the sparsity threshold ranged from S1 to Sn with an interval 
of ΔS,

3  | RESULTS

3.1 | Small- world and efficiency characteristics of 
brain networks in the dLPFC

The small- world analysis results were displayed Figure 2, in which we 
discovered that the Cp and Lp, respectively, increased (Figure 2a) and 
descended (Figure 2b) with increased sparsity threshold for both the 
real brain network and random network (Figure 2). Statistical analy-
sis showed that compared to the random network, the real brain net-
work (Cp_real) exhibited significant larger Cp for the sparsity S ranged 
from	 0.1	 to	 0.66	 (mean	 z-	score	=	2.86	±	0.37).	 In	 addition,	 the	 Lp 
of real brain network (Lp_real) was also larger than (but numerically 
approximate to) that of the random network (Lp_rand) with S ranged 
from	0.1	to	0.66	 (mean	z-	score	=	8.03	±	3.27).	Further,	since	the	γ 
was larger than 1 and the λ approached to 1 (σ > 1) (Figure 2c,d), the 
resting-	state	brain	networks	in	dLPFC	also	exhibited	the	small-	world	
properties.

Accordingly,	 we	 also	 calculated	 the	 Cp and Lp based on HbR 
and HbT (Total hemoglobin: the sum of HbO and HbR) recordings 
(Supporting Information Figures S1 and S2). The results showed that 
the networks of HbR and HbT also manifested small- world proper-
ties. Compared to that of random matched networks, the Cp of brain 
networks	in	dlPFC	was	larger	with	sparsity	between	0.05	and	0.62	
for	HbR	and	0.07–0.62	for	HbT.	By	contrast,	the	Lp of HbR or HbT 

(7)
Z (x)=

xreal−xrand

std
(
xrand

)

(8)Y
AUC=

n−1∑

k=1

[
Y
(
Sk

)
+Y

(
Sk+1

)]
×ΔS∕2.

F IGURE  2 The small- world properties 
of real network in dlPFC and matched 
random network. (a) The cluster 
coefficient (Cp). The shadow window 
shows that the Cp of real dlPFC network 
is significantly larger than that of the 
random network with sparsity from 0.1 to 
0.66	(p < 0.05).	The	red	curve	denotes	the	
real network of dlPFC while the blue one 
defines the random network.  
(b) The characteristic path length (Lp). The 
shadow window shows that the Lp of real 
dlPFC network is significantly longer than 
that of the random network (p < 0.05).	
The red curve denotes the real network 
of dlPFC, while the blue one defines the 
random network. (c) Two indictors of the 
small- worldness. The red and blue curve 
denotes the distribution of γ and λ of real 
dlPFC network, respectively. γ > 1, λ ≈	1.	
(d)	Additional	indicator	of	the	small-	
worldness, σ > 1. The network of dlPFC 
exhibits the small- world properties
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measures didn’t exhibit obvious difference as compared to that from 
the random network.

The profiles of global and local efficiency were depicted in 
Figure 3, in which we discovered that the Eglob and Eloc of the two 
networks (real network and random network) ascended rapidly and 
approached to one in the end. Compared to the random network, 
the real brain network exhibited larger global and smaller local ef-
ficiency	 with	 sparsity	 between	 0.1	 and	 0.66	 for	 the	 global	 one	
(mean z-	score	=	6.32	±	2.20)	and	0.1–0.65	for	the	local	one	(mean	z- 
score	=	−2.47	±	0.54).	Meanwhile,	the	γE was greater than one while 
the λE was equal to one (Figure 3c).

Likewise,	we	computed	the	Eglob and Eloc based on HbR and HbT 
signals (Supporting Information Figures S3 and S4), in which we dis-
covered that the results were in line with that of HbO measures. The 
Eglob and Eloc of HbR and HbT were greater than those of the matched 
random	network	with	 a	 broad	 sparsity	 range	 (HbR,	 0.07–0.62	 for	
global	one	and	0.05–0.41	 for	 local	one;	HbT,	0.08–0.57	 for	global	
one	 and	0.12–0.36	 for	 local	 one).	 In	 addition,	 the	 results	 of	 γE, λE 
from HbR and HbT measures showed good agreement with that of 
HbO measures.

3.2 | Network hubs in the dlPFC

The network hubs were determined by the nodal degree (Knodal), 
nodal efficiency (Enodal), and nodal betweenness (Nbc). If any of the 
three nodal network properties for a single node was one standard 
deviation larger than that from the average of all nodes in the net-
work,	 this	node	was	considered	as	a	hub	 (Niu	et	al.,	 2012).	 In	 this	
study, extensive sparsity (0:0.01:1) values was utilized to construct 

the functional brain network, in which each of these three nodal pa-
rameters was a function of sparsity. In particular, a threshold inde-
pendent	scalar	(area	under	the	curve,	AUC)	was	calculated	for	each	
nodal parameter (Knodal, Enodal, and Nbc) from each node to determine 
the	network	hubs.	Consequently,	we	discovered	that	Channels	5	and	
11	were	the	hubs	determined	by	the	AUCs	of	Knodal, Enodal, and Nbc 
(Figure 4).

Similar operations were performed to identify the network hubs 
by using HbR and HbT signals. Intriguingly, HbR measures showed 
that channels 2, 3, and 11 were the identified hubs (Supporting 
Information	Figure	S5)	while	HbT	measures	exhibited	that	channel	
11	was	the	hub	(Supporting	Information	Figure	S6).

3.3 | Correlation analysis

In order to explore the individual difference in relationship between 
the personality traits and topological characteristics of brain net-
works, the correlation analysis was conducted between the small 
world properties (Cp, Lp, Eglob and Eloc)	 and	 NEO	 FFT	 scores.	 We	
discovered that conscientiousness (r = −0.63)	showed	negative	cor-
relation with the Lp, whereas neuroticism (r = 0.40) was positively 
correlated with the Lp	(Table	2,	Figure	5).

4  | DISCUSSION

In this study, we explored the relationship between individuals’ 
variations in personality traits and the topological characteristics of 
resting-	state	functional	networks	in	dlPFC	using	fNIRS.	Importantly,	

F IGURE  3 The global and local 
efficiency of real brain network in dlPFC 
and the matched random network.  
(a) The global efficiency (Eg). The red 
curve denotes the real network of dlPFC 
while the blue curve denotes the matched 
random network. The shadow window 
represents the Eg of real dlPFC network 
is significantly higher than that of the 
random network with sparsity from 0.1 
to	0.66	(p < 0.05).	(b)	The	local	efficiency	
(Eloc). The red curve denotes the real 
network of dlPFC while the blue curve 
denotes the matched random network. 
The shadow window shows that the Eloc of 
real dlPFC network is significantly smaller 
than that of the random network with 
sparsity	from	0.1	to	0.65(p	<	0.05).	(c)	The	
blue curve and red curve denotes the λ 
and γ of the efficiency, respectively.  
(d) The red curve represents the sigma of 
the efficiency in dlPFC
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the resting- state networks in dlPFC exhibited the small- world prop-
erties, in which we discovered the clustering coefficient was much 
higher than that from the random network (Figure 2). These findings 
were in line with reports from previous studies (Fekete, Beacher, 
Cha,	 Rubin,	 &	 Mujica-	Parodi,	 2014;	 Niu	 et	al.,	 2012).	 In	 addition,	

we also discovered that rich hubs across HbO, HbR, or HbT meas-
ures were identified for the brain networks in dlPFC (Figure 4, 
Supporting	Information	Figures	S5	and	S6).	Further,	positive	corre-
lations between the neuroticism and characteristic path lengths of 
HbO and HbT measures were revealed, whereas conscientiousness 
exhibited negative relationship with the characteristic path length 
of	HbO	recordings	(Figure	5).	Interestingly,	little	studies	have	been	
performed to examine the resting- state functional brain networks 
by	using	fNIRS	data	and	graph	theory.	To	the	best	of	our	knowledge,	
this	is	the	first	study	that	used	resting-	state	fNIRS	data	to	examine	
the relationship between the small- world networks properties and 
personality traits in the dlPFC. Therefore, our study provided solid 
evidences that effective neuromarkers can be extracted from the 
resting-	sate	fNIRS	data.

The small- world network was first proposed in 1998 (Watts & 
Strogatz, 1998), which generally exhibits a higher clustering coeffi-
cient and almost the same characteristic path length as compared to 

F IGURE  4 Hubs identified by three nodal indices were displayed in red color. The size of nodes denotes the value of nodal properties

TABLE  2 The correlation coefficients between the small world 
properties and five personality factors

HbOCp HbOLp HbOEg HbO Eloc

Neuroticism 0.22 0.40* −0.20 0.16

Extraversion −0.04 −0.18 −0.06 −0.002

Openness 0.09 −0.21 −0.003 0.07

Agreeable −0.02 −0.12 0.13 0.01

Conscientious −0.23 −0.63** 0.29 −0.15

*p < 0.05;	**p < 0.01.

F IGURE  5 The correlation between the two personality traits and Lp	of	dlPFC.	(a)	Neuroticism	was	positively	related	with	the	Lp 
(r = 0.40, p < 0.05).	(b)	Conscientiousness	was	negatively	related	with	the	Lp (r = −0.63,	p < 0.001)
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a random network (Watts & Strogatz, 1998). These characteristics 
enable the information to flow more efficiently, which were also ev-
idenced by our global and local efficiency analyses (Figure 3). For 
example, we discovered that our resting- state brain functional net-
work manifested a higher global and local efficiency than the ran-
dom network, which showed good agreement with previous fMRI 
and	fNIRS	findings	(Achard	et	al.,	2006;	Fekete	et	al.,	2014;	Niu	et	al.,	
2012).	 In	 particular,	 our	 resting-	state	 fNIRS	 results	 demonstrated	
that the brain network in local dlPFC is also organized economi-
cally and efficiently just as the whole brain does. More importantly, 
our results further indicated that the small- world architecture is a 
ubiquitous organization of our brain regardless of different imaging 
methods	(Niu	et	al.,	2012).	Besides,	we	also	inspected	the	node	hubs	
of resting- state functional brain networks in dlPFC. Interestingly, 
previous work showed that the brain hubs play an essential role in 
information integration underpinning numerous aspects of complex 
cognitive functions (van den Heuvel & Sporns, 2013). In this study, 
three nodal characteristics were used to identify brain hubs in dlPFC 
using	resting-	state	fNIRS	recordings.	We	discovered	that	channels	2,	
3,	5,	and	11	were	the	identified	network	hubs	based	on	three	mea-
sures (HbO, HbR, and HbT). When the analysis results from the three 
measures	were	combined	together,	we	observed	that	channels	5	and	
11 played a crucial role for the network organization in dlPFC, which 
were symmetrically located in the right and left hemispheres, re-
spectively. In particular, the identified hubs demonstrated that each 
part of left and right dlPFC was involved in the information process-
ing framework on brain cognition.

In addition, our results showed that neuroticism was positively 
correlated with the shortest path length from HbO and HbT measures 
while conscientious was inversely associated with the characteristic 
path	length	of	HbO	measures.	Neuroticism	is	related	to	emotion	sta-
bility	 and	vulnerability	 and	negative	 affection.	A	high	 score	of	 this	
factor represents one of the most common psychiatric conditions 
(Costa & McCrae, 1992). In addition, our results also demonstrated 
that individuals who are vulnerable to neurosis or who are experienc-
ing more negative feelings exhibit the less efficiency and the longest 
path length in processing information in dlPFC. Interestingly, previ-
ous clinical study had validated that the depression patients exhib-
ited	the	long	characteristic	path	length	(Meng	et	al.,	2013).	Additional	
reported work further demonstrated that neuroticism was positively 
related with brain activation in dlPFC during viewing negative pic-
tures (Canli et al., 2001) or emotion regulation (Harenski et al., 2009).

By contrast, conscientiousness is a dimension that contrasts scru-
pulous, well- organized, and diligent people with lax, disorganized, and 
lackadaisical individuals (Costa & McCrae, 1992). Those who score 
high for this factor are considered to be more self- controlled and 
motivated. Conscientiousness is also associated with academic and 
vocational	success	(Judge,	Higgins,	Thoresen,	&	Barrick,	1999;	Noftle	
& Robins, 2007; O’Connor & Paunonen, 2007). Our results showed 
that conscientiousness was negatively correlated with the Lp in dlPFC, 
which plays an essential role in executive function. The higher con-
scientiousness scores are, the shorter characteristic path length is. 
Meanwhile, our results suggested that individuals with well- organized, 

persistence and self- discipline tend to process information more effi-
ciently and economically, which showed good agreement with previ-
ous reports. For example, the relationship between the Lp in dlPFC and 
neuroticism/conscientiousness was also highlighted in previous stud-
ies, in which they discovered that neuroticism and conscientiousness, 
respectively, constrained and facilitated neuroplastic responses within 
the working memory networks, which includes the dlPFC, parietal, and 
anterior	cingulate	cortex	 (Dima,	Friston,	Stephan,	&	Frangou,	2015).	
Interestingly, previous studies also demonstrated that compromised 
small- world properties in dlPFC was associated with reduced levels 
of effort control, which was related with psychopathology in young 
children (Fekete et al., 2014).

In	summary,	our	study	showed	that	fNIRS	can	be	an	efficient	tech-
nique to explore the brain network of special atypical populations at 
rest, which might not be appropriate for them such as neonates, in-
fants, and claustrophobia to participate in fMRI tests due to its nar-
row space and restrained positions. Several limitations of this study 
should be mentioned here. First, although the validity and reliability 
of	 NEO-	FFI	 is	 stable,	 we	 cannot	 fully	 exclude	 subjective	 judgment	
because	 it	 is	a	self-	report	measurement	 (Dima	et	al.,	2015).	Second,	
only the dlPFC is involved in this study, which somehow ignores the 
influence from other brain regions. Third, it should be pointed out that 
the relatively small sample sizes might affect the accuracy of present 
analysis	results.	Nevertheless,	our	results	demonstrated	that	neuroti-
cism and conscientiousness, respectively, are positively and negatively 
correlated with the Lp	in	dlPFC,	indicating	that	resting-	state	fNIRS	can	
be a promise tool for early detection of brain disorders.
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