
molecules

Review

The Early Years of 2,2′-Bipyridine—A Ligand in Its
Own Lifetime

Edwin C. Constable * and Catherine E. Housecroft

Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland;
catherine.housecroft@unibas.ch
* Correspondence: edwin.constable@unibas.ch; Tel.: +41-61-207-1001

Academic Editor: Victor Mamane
Received: 13 October 2019; Accepted: 29 October 2019; Published: 31 October 2019

����������
�������

Abstract: The first fifty years of the chemistry of 2,2′-bipyridine are reviewed from its first discovery
in 1888 to the outbreak of the second global conflict in 1939. The coordination chemistry and analytical
applications are described and placed in the context of the increasingly sophisticated methods of
characterization which became available to the chemist in this time period. Many of the “simple”
complexes of 2,2′-bipyridine reported in the early literature have been subsequently shown to have
more complex structures.
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1. Introduction

2,2′-Bipyridine (bpy, 1, Figure 1) celebrated its 131st birthday in 2019 and is one of the most
commonly used and most easily identified ligands in coordination chemistry. Coordination compounds
incorporating 1 have played crucial roles in developing our understanding of the thermodynamics and
kinetics of complexation of metal ions, the bonding, photochemistry, photophysics and electrochemistry
of metal complexes. As a bidentate metal-binding domain, bpy has also found widespread application
as a scaffold in supramolecular and metallosupramolecular chemistry. Indeed, at the turn of the
millennium, 2,2′-bipyridine was described as “the most widely used ligand” [1] a status that has
changed little in the intervening two decades. Not surprisingly, this commonly used type of ligand,
together with the higher oligopyridines and the closely related species 1,10-phenanthroline, 2 (Figure 1),
has been the subject of a number of reviews [2–8] since the first review of their coordination chemistry
in 1954 [9]. 2,2′-Bipyridine is the first member of a series of higher oligopyridines, which can also act as
polydentate ligands for metal-centres [10–15]. This review aims to present a comprehensive overview
of the first 50 years of the chemistry of 1 and its simple derivatives up to 1939; the patent literature is
not included in the survey and the chemistry of the higher oligopyridines and the 1,10-phenanthrolines
is not covered in detail. The material is presented in a chronological manner with the intention
of emphasizing how developments and trends in chemical science paralleled technical advances
and societal needs and demands. An additional emphasis is on the coordination chemistry and the
observations that many “simple” compounds reported in this early period were subsequently shown
to have more complex structures. No explicit reference is cited for compounds where structural data
have been lodged with the Cambridge Structural Database but not otherwise published.
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Figure 1. The structures of 2,2’-bipyridine (1) and some related compounds. The numbering scheme 
for the parent compound, 2,2’-bipyridine is shown. The coordination chemistry of 1,10-
phenanthroline (2) is very similar to that of 1. The compounds 3, 4 and 5 are the isomers 4,4’-
bipyridine, 3,4-bipyridine and 3,3’-bipyridine. Compound 6, 2,2’-bipiperidine, is one of the reduction 
products of 1. Also shown is the next higher oligopyridine 2,2’:6’,2”-terpyridine, 7, which Blau 
described in 1889. 

2. Discovery and the discoverer 

Fritz Blau described the dry distillation of copper(II) pyridine-2-carboxylate in 1888 and reported 
the loss of gases including hydrogen cyanide and the formation of a distillate containing pyridine 
and a new base with melting point 70 °C (Figure 2). This latter compound gave an intense red colour 
with FeSO4 (eine intensiv rothe Färbung mit Eisenvitriol) [16]. He assigned the correct structure of 1 to 
the new compound which he described as α-α-Dipyridyl and noted that one might obtain isomeric 
Dipyridyle by distilling either mixtures of pyridine-2-carboxylate, pyridine-3-carboxylate and 
pyridine-4-carboxylate salts or mixed salts containing these anions. One comment that Blau makes is 
not so easy to understand “The substance with a melting point of 70° causes the iron reaction to 
become weaker the purer it is, without the colouring being completely suppressed (Die Substanz vom 
Schmelzpunkt 70° giebt die Eisenreaction umso schwächer, je reiner sie ist, ohne dass die Färbung 
ganz unterdrückt werden könnte). The yield of 2,2’-bipyridine is typically less than 20%.  

It seems likely that Weidel had obtained 2,2’-bipyridine earlier by the distillation of a mixture of 
calcium pyridine-2-carboxylate and calcium oxide [17], although he identifies his product with the 
“dipyridine” isolated by Anderson from the reaction of pyridine with sodium [18,19]. The initial 
product of the reaction of sodium with pyridine is a blue “sodium dipyridine”. The major isolated 
product of this reaction, after oxidative and hydrolytic workup, was later shown by Weidel to be 4,4’-
bipyridine (γ-Dipyridyl), 3 [20]. However, the reaction of sodium with pyridine is complex and the 
major isolated products are typically 1 and 2, with the 4,4’-isomer, 3 (Figure 1) dominant [21]. 
Modified conditions for the reaction of sodium with pyridine followed by subsequent oxidation with 
dry or moist air gave not only 1 and 2, but also 3,4-bipyridine (4, Figure 1); heating the reaction 
mixture before oxidation gave 3,3'-bipyridine (5, Figure 1) amongst the products [22]. In an 1885 
publication, Hartley reports the absorption spectra of a series of aromatic and heteroaromatic 
compounds, including an unidentified “dipyridine” that he had obtained from a Dr Ramsay in Bristol 
[23], but this was probably Anderson’s “dipyridine”. Heuser and Stoehr extended the studies of the 
reaction with sodium to 2-methylpyridine and report the isolation of a compound which they 
described as αα-Dimethyldipyridyl and which can be confidently identified as 2,2’-dimethyl-4,4’-
bipyridine [24–26]. 

Blau published one additional paper describing the dry distillation of copper(II) pyridine-2-
carboxylate [27]. In these publications, he confirmed the formation of an intense red colouration when 
bpy reacted with iron(II) salts, described the formation of an insoluble hexacyanoferrate(IV) salt of 
the free ligand, and reported various reactions of bpy. Quarternization gave N,N’-dimethyl-2,2’-
bipyridinium iodide as a yellow solid which did not give the typical colour reaction with iron(II). 
Reduction with sodium and 3-methylbutanol gave 2,2’-bipiperidine (6, Figure 1). One aspect of Blau’s 
work that seems to have been unnoticed is his description of a less volatile product of the distillation 

Figure 1. The structures of 2,2′-bipyridine (1) and some related compounds. The numbering scheme
for the parent compound, 2,2′-bipyridine is shown. The coordination chemistry of 1,10-phenanthroline
(2) is very similar to that of 1. The compounds 3, 4 and 5 are the isomers 4,4′-bipyridine, 3,4-bipyridine
and 3,3’-bipyridine. Compound 6, 2,2′-bipiperidine, is one of the reduction products of 1. Also shown
is the next higher oligopyridine 2,2′:6’,2”-terpyridine, 7, which Blau described in 1889.

2. Discovery and the Discoverer

Fritz Blau described the dry distillation of copper(II) pyridine-2-carboxylate in 1888 and reported
the loss of gases including hydrogen cyanide and the formation of a distillate containing pyridine
and a new base with melting point 70 ◦C (Figure 2). This latter compound gave an intense red colour
with FeSO4 (eine intensiv rothe Färbung mit Eisenvitriol) [16]. He assigned the correct structure
of 1 to the new compound which he described as α-α-Dipyridyl and noted that one might obtain
isomeric Dipyridyle by distilling either mixtures of pyridine-2-carboxylate, pyridine-3-carboxylate and
pyridine-4-carboxylate salts or mixed salts containing these anions. One comment that Blau makes
is not so easy to understand “The substance with a melting point of 70◦ causes the iron reaction to
become weaker the purer it is, without the colouring being completely suppressed (Die Substanz vom
Schmelzpunkt 70◦ giebt die Eisenreaction umso schwächer, je reiner sie ist, ohne dass die Färbung
ganz unterdrückt werden könnte). The yield of 2,2′-bipyridine is typically less than 20%.
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of copper(II) pyridine-2-carboxylate. This compound gives an intense purple colouration with iron(II) 
salts and has a very similar elemental constitution to bpy. Blau proposed that it had “more than two 
pyridine rings” [27]. Although Blau mentions Tetrapyridyls, this compound can actually be nothing 
other than 2,2’:6’,2”-terpyridine (7, Figure 1), the first preparation of which is normally credited to 
Morgan and Burstall. Blau also used bpy as one of the test substances for his detailed publication on 
methods for combustion analysis, also published in 1889 [28].   

 
Figure 2. Fritz Blau first prepared 2,2’-bipyridine by the dry distillation of copper(II) pyridine-2-
carboxylate [16]. 

Some ten years later, Blau published a new paper Über neue organische Metallverbindungen in 
which he describes many of the features that define the coordination chemistry of bpy [29]. Blau 
established the 3:1 bpy-iron stoichiometry for the red compound (which contains the cation we now 
formulate as [Fe(bpy)3]2+) and, building on the paradigm-shifting 1893 vision of Werner [30], 
formulated the compounds Tridipyridylferrosalze). He describes the oxidation to the blue Tridipyridyl-
ψ-Ferrisalze [Fe(bpy)3]3+ (ψ, meaning pseudo, “because they are not obtainable by the combination of 
dipyridyl and iron oxide salts”) together with the preparation of [Ni(bpy)3]2+ and [Co(bpy)3]2+ salts. 
Blau also reports that copper(II), cadmium(II) and chromium(III) complexes could be formed but 
noted that he could not obtain compounds with manganese, lead, or aluminium salts.  

Blau also clearly identifies the challenges associated with kinetic or thermodynamic stability 
inherent in coordination chemistry “If, on the other hand, a dipyridyl solution contains a sufficient 
amount of a zinc or cadmium salt, ferrosulphate [FeSO4] does not produce any colouring at all, 
whereas the red solution of a tridipyridylferro salt is not altered by the subsequent addition of one of 
the above salts, so that it is by no means the same whether a dipyridyl solution is first treated with 
iron and then zinc vitriol, or first zinc and then iron vitriol”. In the case of copper(II), he described 
complexes with 1:1 and 2:1 bpy:Cu composition. This paper not only introduced bpy coordination 
chemistry to the world, but also describes the first preparation of 1,10-phenanthroline (phen, α-
Phenantrolin) from a double Skraup synthesis of benzene-1,4-diamine with propane-1,2,3-triol as well 
as the corresponding iron, cobalt and nickel [M(phen)3]2+ complexes (Figure 3a). 

Blau did not publish any further significant work in coordination chemistry, but began work at 
Auer in Berlin in 1902. He went on to become the chief research advisor to Osram after its foundation 
in 1919, with responsibility for the patent department, the research department and the Research 
Society for Electric lighting, holding the latter position until his death in 1929 [31–33]. Although he 
published no further research papers in chemistry, he was a prolific innovator and is the originator 
of some 185 patents in a wide range of areas. In view of the importance of bpy and its derivatives in 
a vast range of photonic and photoactive materials used, inter alia, for lighting and other 
technological applications, I like to think that Fritz Blau would be proud of his legacy. 

3. Fundamentals 

3.1. Nomenclature 

Compound 1 has a PIN (preferred IUPAC nomenclature) name of 2,2'-bipyridine [34] and a 
recommended abbreviation as a ligand of bpy [35]. Similarly, compound 2 has a PIN name of 1,10-
phenanthroline [36] and a recommended abbreviation as a ligand of phen [35]. Over the years, 1 has 
had a variety of other names including 2,2'-dipyridyl, α,α'-dipyridyl, α,α-dipyridyl, 2,2'-dipyridine, 
2,2'-dipyridene, 2,2'-dipyridine, bipyridyl, 2,2'-bipyridyl, 2,2-bipyridyl, 2,2,-bipyridyl, 2,2'-
bipyridyle, bipyridine, 2,6'-bipyridine, α,α'-bipyridine, 2,2′-bipyridinyl, α,α'-bipyridyl, CI-588, 2-

Figure 2. Fritz Blau first prepared 2,2′-bipyridine by the dry distillation of copper(II)
pyridine-2-carboxylate [16].

It seems likely that Weidel had obtained 2,2′-bipyridine earlier by the distillation of a mixture
of calcium pyridine-2-carboxylate and calcium oxide [17], although he identifies his product with
the “dipyridine” isolated by Anderson from the reaction of pyridine with sodium [18,19]. The initial
product of the reaction of sodium with pyridine is a blue “sodium dipyridine”. The major isolated
product of this reaction, after oxidative and hydrolytic workup, was later shown by Weidel to be
4,4′-bipyridine (γ-Dipyridyl), 3 [20]. However, the reaction of sodium with pyridine is complex and the
major isolated products are typically 1 and 2, with the 4,4′-isomer, 3 (Figure 1) dominant [21]. Modified
conditions for the reaction of sodium with pyridine followed by subsequent oxidation with dry or
moist air gave not only 1 and 2, but also 3,4-bipyridine (4, Figure 1); heating the reaction mixture before
oxidation gave 3,3′-bipyridine (5, Figure 1) amongst the products [22]. In an 1885 publication, Hartley
reports the absorption spectra of a series of aromatic and heteroaromatic compounds, including an
unidentified “dipyridine” that he had obtained from a Dr Ramsay in Bristol [23], but this was probably
Anderson’s “dipyridine”. Heuser and Stoehr extended the studies of the reaction with sodium to
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2-methylpyridine and report the isolation of a compound which they described as αα-Dimethyldipyridyl
and which can be confidently identified as 2,2′-dimethyl-4,4′-bipyridine [24–26].

Blau published one additional paper describing the dry distillation of copper(II)
pyridine-2-carboxylate [27]. In these publications, he confirmed the formation of an intense
red colouration when bpy reacted with iron(II) salts, described the formation of an insoluble
hexacyanoferrate(IV) salt of the free ligand, and reported various reactions of bpy. Quarternization
gave N,N′-dimethyl-2,2′-bipyridinium iodide as a yellow solid which did not give the typical colour
reaction with iron(II). Reduction with sodium and 3-methylbutanol gave 2,2′-bipiperidine (6, Figure 1).
One aspect of Blau’s work that seems to have been unnoticed is his description of a less volatile
product of the distillation of copper(II) pyridine-2-carboxylate. This compound gives an intense purple
colouration with iron(II) salts and has a very similar elemental constitution to bpy. Blau proposed
that it had “more than two pyridine rings” [27]. Although Blau mentions Tetrapyridyls, this compound
can actually be nothing other than 2,2′:6’,2”-terpyridine (7, Figure 1), the first preparation of which is
normally credited to Morgan and Burstall. Blau also used bpy as one of the test substances for his
detailed publication on methods for combustion analysis, also published in 1889 [28].

Some ten years later, Blau published a new paper Über neue organische Metallverbindungen in which
he describes many of the features that define the coordination chemistry of bpy [29]. Blau established
the 3:1 bpy-iron stoichiometry for the red compound (which contains the cation we now formulate
as [Fe(bpy)3]2+) and, building on the paradigm-shifting 1893 vision of Werner [30], formulated the
compounds Tridipyridylferrosalze). He describes the oxidation to the blue Tridipyridyl-ψ-Ferrisalze
[Fe(bpy)3]3+ (ψ, meaning pseudo, “because they are not obtainable by the combination of dipyridyl
and iron oxide salts”) together with the preparation of [Ni(bpy)3]2+ and [Co(bpy)3]2+ salts. Blau also
reports that copper(II), cadmium(II) and chromium(III) complexes could be formed but noted that he
could not obtain compounds with manganese, lead, or aluminium salts.

Blau also clearly identifies the challenges associated with kinetic or thermodynamic stability
inherent in coordination chemistry “If, on the other hand, a dipyridyl solution contains a sufficient
amount of a zinc or cadmium salt, ferrosulphate [FeSO4] does not produce any colouring at all, whereas
the red solution of a tridipyridylferro salt is not altered by the subsequent addition of one of the above
salts, so that it is by no means the same whether a dipyridyl solution is first treated with iron and then
zinc vitriol, or first zinc and then iron vitriol”. In the case of copper(II), he described complexes with
1:1 and 2:1 bpy:Cu composition. This paper not only introduced bpy coordination chemistry to the
world, but also describes the first preparation of 1,10-phenanthroline (phen, α-Phenantrolin) from a
double Skraup synthesis of benzene-1,4-diamine with propane-1,2,3-triol as well as the corresponding
iron, cobalt and nickel [M(phen)3]2+ complexes (Figure 3a).

Blau did not publish any further significant work in coordination chemistry, but began work at
Auer in Berlin in 1902. He went on to become the chief research advisor to Osram after its foundation
in 1919, with responsibility for the patent department, the research department and the Research
Society for Electric lighting, holding the latter position until his death in 1929 [31–33]. Although he
published no further research papers in chemistry, he was a prolific innovator and is the originator of
some 185 patents in a wide range of areas. In view of the importance of bpy and its derivatives in a
vast range of photonic and photoactive materials used, inter alia, for lighting and other technological
applications, I like to think that Fritz Blau would be proud of his legacy.

3. Fundamentals

3.1. Nomenclature

Compound 1 has a PIN (preferred IUPAC nomenclature) name of 2,2′-bipyridine [34] and
a recommended abbreviation as a ligand of bpy [35]. Similarly, compound 2 has a PIN name
of 1,10-phenanthroline [36] and a recommended abbreviation as a ligand of phen [35]. Over the
years, 1 has had a variety of other names including 2,2′-dipyridyl, α,α′-dipyridyl, α,α-dipyridyl,
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2,2′-dipyridine, 2,2′-dipyridene, 2,2′-dipyridine, bipyridyl, 2,2′-bipyridyl, 2,2-bipyridyl, 2,2,-bipyridyl,
2,2′-bipyridyle, bipyridine, 2,6′-bipyridine, α,α′-bipyridine, 2,2′-bipyridinyl, α,α′-bipyridyl, CI-588,
2-(pyridin-2-yl)pyridine, 2-(2-pyridyl)pyridine and 2-pyridin-2-ylpyridine; the abbreviations bipy, dpy
and dipy have also been used.
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Figure 3. (a) The structures proposed by Fritz Blau for [Fe(phen)3]2+ and [Fe(phen)3]3+ [29]. The 
diagrams indicate that Blau had not fully understood Werner’s concepts of primary and secondary 
valence. The bonding to the iron(II) and iron(III) centres are based upon valency of two and three 
respectively (rather than an oxidation state). The bonding of the chloride to the nitrogen was relatively 
common in the depiction of ammonium and pyridinium salts at this period in time. (Reprinted from 
reference 29 by permission from Springer). (b) The bright red colour of the [Fe(bpy)3]2+ is familiar to 
all scientists who work with 2,2’-bipyridines. 

3.2. Structure 

The Cambridge Structural Database (CSD) [37] contains 319 compounds containing a non-
coordinated 2,2'-bipyridine molecule (CSD accessed on 8th August 2019), but in the majority of these, 
the molecules of 1 are involved in additional hydrogen-bonding, charge-transfer, host-guest or 
aromatic-aromatic interactions. Nevertheless, there are also a number of solid-state crystal structures 
of 1 itself [38–42]. In the solid state, molecules of bpy are strictly planar with a trans-conformation 
about the inter-annular C–C bond (Figure 4a) and exhibit both C–H...π and face-to-face (3.518 Å, 
Figure 4b) interactions. No polymorphs of bpy have been structurally characterized.  

The monoprotonated [bpyH]+ cation is usually close to a cis-coplanar conformation with both 
nitrogen atoms interacting with the hydron (285 entries in CSD, 404 individual torsion data, mean 
1.482°). In contrast, the diprotonated [bpyH]+ cation exhibits a bimodal distribution of torsion angles 
in the solid state, with maxima clustered around cisoid and transoid conformations (62 entries in 
CSD, 73 individual torsion data). The terms cisoid and transoid are used in contrast to cis and trans 
when referring to the related non-planar conformations. 

Theoretical investigations of the conformation and the characters of the molecular orbitals of 
bpy have been performed at various calculational levels and an excellent overview, together with 
state-of-the-art DFT calculations have been presented by Alkorta et al. [43]. The planar trans 
conformation is found at a global minimum with a cisoid form exhibiting a 40.7° inter-annular torsion 
angle lying 27 kJ mol–1 higher in energy. The [bpyH]+ cation is also calculated to be planar and with a 
cis-conformation. In contrast, the [bpyH2]2+ dication is non-planar with a global minimum exhibiting 
a transoid structure with a torsion angle of 130.6° and a cisoid form with a torsion angle of 64.8° lying 
just 6.9 kJ mol–1 higher in energy. 

Figure 3. (a) The structures proposed by Fritz Blau for [Fe(phen)3]2+ and [Fe(phen)3]3+ [29]. The
diagrams indicate that Blau had not fully understood Werner’s concepts of primary and secondary
valence. The bonding to the iron(II) and iron(III) centres are based upon valency of two and three
respectively (rather than an oxidation state). The bonding of the chloride to the nitrogen was relatively
common in the depiction of ammonium and pyridinium salts at this period in time. (Reprinted from
reference 29 by permission from Springer). (b) The bright red colour of the [Fe(bpy)3]2+ is familiar to
all scientists who work with 2,2′-bipyridines.

3.2. Structure

The Cambridge Structural Database (CSD) [37] contains 319 compounds containing a
non-coordinated 2,2′-bipyridine molecule (CSD accessed on 8th August 2019), but in the majority of
these, the molecules of 1 are involved in additional hydrogen-bonding, charge-transfer, host-guest or
aromatic-aromatic interactions. Nevertheless, there are also a number of solid-state crystal structures of
1 itself [38–42]. In the solid state, molecules of bpy are strictly planar with a trans-conformation about
the inter-annular C–C bond (Figure 4a) and exhibit both C–H...π and face-to-face (3.518 Å, Figure 4b)
interactions. No polymorphs of bpy have been structurally characterized.

The monoprotonated [bpyH]+ cation is usually close to a cis-coplanar conformation with both
nitrogen atoms interacting with the hydron (285 entries in CSD, 404 individual torsion data, mean
1.482◦). In contrast, the diprotonated [bpyH]+ cation exhibits a bimodal distribution of torsion angles
in the solid state, with maxima clustered around cisoid and transoid conformations (62 entries in CSD,
73 individual torsion data). The terms cisoid and transoid are used in contrast to cis and trans when
referring to the related non-planar conformations.

Theoretical investigations of the conformation and the characters of the molecular orbitals
of bpy have been performed at various calculational levels and an excellent overview, together
with state-of-the-art DFT calculations have been presented by Alkorta et al. [43]. The planar trans
conformation is found at a global minimum with a cisoid form exhibiting a 40.7◦ inter-annular torsion
angle lying 27 kJ mol−1 higher in energy. The [bpyH]+ cation is also calculated to be planar and with a
cis-conformation. In contrast, the [bpyH2]2+ dication is non-planar with a global minimum exhibiting
a transoid structure with a torsion angle of 130.6◦ and a cisoid form with a torsion angle of 64.8◦ lying
just 6.9 kJ mol−1 higher in energy.



Molecules 2019, 24, 3951 5 of 38

Molecules 2019, 24, x FOR PEER REVIEW 5 of 39 

 

 
Figure 4. (a) The solid-state crystal structure of 1 shows that the molecules of 2,2’-bipyridine are planar 
and possess a trans-conformation; (b) molecules of 1 exhibit face-to-face stacking in the crystal lattice. 
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3.3. Protonation 

As discussed above, bpy can be protonated once or twice to give the (bpyH)+ cation and the 
(bpyH2)2+ dication, respectively. There is a remarkably wide variation in the pKa values reported in 
the literature, using various methods, solvents and different ionic strengths. In aqueous solution, the 
values in Table 1 are reasonable estimates. Concerning monoprotonation, both phen and bpy are 
weaker bases than pyridine itself, with bpy being weaker than phen. This difference between phen 
and bpy can be explained in the additional energy required for the re-organization of the bpy from 
the trans- to the cis-conformation upon protonation. In contrast, for the second protonation, the 
[bpyH]+ cation is more basic than the [phenH]+ cation, reflecting the possibility of rotation about the 
inter-annular C–C bond in the [bpyH2]2+ cation to minimize charge repulsion. 

Table 1. pKa values for protonated 2,2'-bipyridine, 1,10-phenanthroline and pyridine in aqueous 
solution. Data for bpy and phen taken from reference [44]. 
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(bpyH2)2+ 0.05 
(bpyH)+ 

(phenH2)2+ 
(phenH)+ 

(pyH)+ 
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4.9 

5.25 

3.4. Coordination behaviour 

The commonest coordination mode of 2,2'-bipyridine is as a chelating bidentate ligand in which 
both nitrogen atoms are bonded to the same metal centre. Less common are complexes in which the 
bpy ligand is monodentate or bridges multiple metal centres [45]. An additional coordination mode 
is one in which the 2,2'-bipyridine is deprotonated at C3 and the ligand functions as a C-donor or a 
cyclometallating C,N-donor [45]. The complexes [M(bpy)3]n+ have been intensively studied and their 
formation is quantified by the cumulative stability constants, β or K respectively (Equations 1–5, note 
that the solvent ligands and charges have been omitted from the equations for simplicity and that the 
square brackets are used in this case to indicate the equilibrium concentrations of the species rather 
than to enclose the coordination entity): 

M + bpy ⇌ M(bpy)   K1 = β1 = [M(bpy)]/[M][bpy], (1) 

M(bpy) + bpy ⇌  M(bpy)2    K2 = [M(bpy)2]/[M(bpy)][bpy], (2) 

M(bpy)2 + bpy ⇌  M(bpy)3    K3= [M(bpy)3]/[M(bpy)2][bpy], (3) 

Figure 4. (a) The solid-state crystal structure of 1 shows that the molecules of 2,2′-bipyridine are planar
and possess a trans-conformation; (b) molecules of 1 exhibit face-to-face stacking in the crystal lattice.
Graphics generated from data from reference [42].

3.3. Protonation

As discussed above, bpy can be protonated once or twice to give the (bpyH)+ cation and the
(bpyH2)2+ dication, respectively. There is a remarkably wide variation in the pKa values reported
in the literature, using various methods, solvents and different ionic strengths. In aqueous solution,
the values in Table 1 are reasonable estimates. Concerning monoprotonation, both phen and bpy
are weaker bases than pyridine itself, with bpy being weaker than phen. This difference between
phen and bpy can be explained in the additional energy required for the re-organization of the bpy
from the trans- to the cis-conformation upon protonation. In contrast, for the second protonation, the
[bpyH]+ cation is more basic than the [phenH]+ cation, reflecting the possibility of rotation about the
inter-annular C–C bond in the [bpyH2]2+ cation to minimize charge repulsion.

Table 1. pKa values for protonated 2,2′-bipyridine, 1,10-phenanthroline and pyridine in aqueous
solution. Data for bpy and phen taken from reference [44].

Compound pKa

(bpyH2)
2+ 0.05

(bpyH)+ 4.4
(phenH2)2+ −0.2
(phenH)+ 4.9

(pyH)+ 5.25

3.4. Coordination Behaviour

The commonest coordination mode of 2,2′-bipyridine is as a chelating bidentate ligand in which
both nitrogen atoms are bonded to the same metal centre. Less common are complexes in which the
bpy ligand is monodentate or bridges multiple metal centres [45]. An additional coordination mode
is one in which the 2,2′-bipyridine is deprotonated at C3 and the ligand functions as a C-donor or a
cyclometallating C,N-donor [45]. The complexes [M(bpy)3]n+ have been intensively studied and their
formation is quantified by the cumulative stability constants, β or K respectively (Equations (1)–(5),
note that the solvent ligands and charges have been omitted from the equations for simplicity and that
the square brackets are used in this case to indicate the equilibrium concentrations of the species rather
than to enclose the coordination entity):

M + bpy 
 M(bpy) K1 = β1 = [M(bpy)]/[M][bpy], (1)

M(bpy) + bpy 
 M(bpy)2 K2 =
[
M(bpy)2

]
/[M(bpy)][bpy], (2)
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M(bpy)2 + bpy 
 M(bpy)3 K3 =
[
M(bpy)3

]
/
[
M(bpy)2

]
[bpy], (3)

M + 2bpy 
 M(bpy)2 β2 =
[
M(bpy)2

]
/[M][bpy]2, (4)

M + 3bpy 
 M(bpy)3 β3 =
[
M(bpy)3

]
/[M][bpy]3, (5)

β2 = K1K2 β3 = K1K2K3 lgβ2 = lg K1 + lg K2 lg β3 = lg K1 + lgK2 + lgK3

In general, K1 > K2 > K3 and the complexes with 2,2′-bipyridine ligands are more stable than
those with an equivalent number of pyridine ligands (i.e., comparing [M(bpy)3]n+ with [M(py)6]n+).
Comparing equivalent K or β values between bpy and phen complexes reveals that the phen species
are significantly more stable, with β3 showing the phen compounds to be typically 100–10,000 times
more stable than their bpy analogues. This is attributed to the strain energy incurred in attaining the
cis-conformation of the bpy necessary for coordination. Another way of viewing this is by describing
the phen as pre-organized or pre-disposed for coordination.

4. The First 30 Years—from 1899 to 1929

4.1. Physicochemical Properties

It is probably fair to say that Blau’s reports of the preparation and coordination chemistry
of 2,2′-bipyridine and 1,10-phenanthroline did not set the chemical world ablaze. In view of the
subsequent importance of complexes of bpy in understanding the bonding, spectroscopy, photophysics
and photochemistry of metal complexes, it is perhaps appropriate that the first publication in the
20th century CE concerned the vapour phase and solution (Figure 5) absorption spectroscopy of
2,2′-bipyridine [46]. Before considering developments in the synthesis and coordination chemistry
of 2,2′-bipyridine, we continue the theme of physicochemical studies. In a study of what we would
now call atropisomerism of biphenyl derivatives [47], Mascarelli predicted that it might be possible to
resolve some derivatives of 1 exhibiting restricted rotation and hence optical activity [48].
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4.2. Biological activity 

In the latter half of the 20th century CE, the quaternized derivatives 8 and 9 were commercialized 
as the herbicides paraquat and diquat, respectively (Figure 6) [49]. This application was predated by 
investigations of the biological activity of the isomeric bipyridines or their crude mixtures, in part 
inspired by the perceived similarity of their structures to that of the alkaloid nicotine, 10. In a first 
study in 1923 of their effectiveness as contact insecticides, it was shown that impure 4,4’-bipyridine 

Figure 5. What a difference a century makes! (a) The first reported absorption spectrum of 2,2′-bipyridine
from 1913 (Reproduced from reference 46 by permission of The Royal Society of Chemistry); (b) a
modern absorption spectrum of the same compound (courtesy of Ms. Dalila Rocco, University of Basel).
Both spectra are recorded in ethanol as solvent.

4.2. Biological Activity

In the latter half of the 20th century CE, the quaternized derivatives 8 and 9 were commercialized
as the herbicides paraquat and diquat, respectively (Figure 6) [49]. This application was predated by
investigations of the biological activity of the isomeric bipyridines or their crude mixtures, in part
inspired by the perceived similarity of their structures to that of the alkaloid nicotine, 10. In a first
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study in 1923 of their effectiveness as contact insecticides, it was shown that impure 4,4′-bipyridine was
much more toxic to Aphis rumicis than purified material, an observation attributed to the presence of
more toxic isomeric bipyridines [50]. A subsequent publication reported that crude extracts containing
the isomeric bipyridines were tested against Aphis rumicis, Myzus persicae, Illinoia pisi, Rhopalosiphum
pseudobrassicae, Anuraphis roseus, Aphis pomi, Leptinotarsa decemlineata, Lema trilineata, Ephestia kuehniella
and Bombyx mori [51]. The extracts were very efficient at killing aphids and studies using purified
bipyridine isomers showed that all were moderately toxic, with 3,3’-bipyridine and 2,3-bipyridine being
less effective than 2,2′-bipyridine or 3,4-bipyridine. However, the conclusion was that the toxicity of
the crude mixture of bipyridines was less due to the bipyridines themselves, but rather to unidentified
water-soluble species with an efficacy similar to nicotine. The highly toxic material was eventually
identified as 3-(piperidin-2-yl)pyridine, 11, which was given the trivial name neonicotine [52,53].
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and diquat (9), the alkaloid nicotine (10) and neonicotine (11). The latter compound was responsible
for the reported toxicity of crude bipyridine preparations [52].

4.3. Synthetic Developments

The preparation of the bipyridines was further investigated in this period, in particular within the
established mainland European laboratories, and as interest in the 2,2′-bipyridines slowly grew, new
and specific synthetic methods for this isomer were developed. These fall into three main categories:
(i) dimerization of a pyridine derivative with an electropositive metal and subsequent oxidation of the
resultant tetrahydrobipyridine (ii) reductive coupling of a 2-functionalized pyridine with a transition
metal and (iii) oxidation of a pyridine.

4.3.1. Dimerization with Electropositive Metals

In Section 2 we mentioned the reaction of pyridine with sodium metal to generate blue “sodium
dipyridine” and the subsequent oxidation of this to a mixture of bipyridines, predominantly
the 4,4′-isomer, 3, although it is reported that all six possible isomers are present in varying
amounts [50]. Further investigations into the reaction of pyridine with sodium were reported from
1914 onwards [21,54–56], although these publications are primarily concerned with the preparation and
reactivity of 1,1′,4,4′-tetrahydro-4,4′-bipyridines. Smith later showed that the oxidation of “sodium
dipyridine” in pyridine at 90◦C or lower with dry air or oxygen gave predominantly 3, but at higher
temperatures the amounts of isomeric bipyridines increased [22]. The reactions of N-alkylpyridinium
salts or N-acylpyridinium salts, either from isolated compounds or prepared in situ, with reactive
metals such as zinc or sodium amalgam yield 1,1’-dialkyl-1,1’,4,4′-tetrahydro-4,4′-bipyridines or
1,1’-diacyl-1,1’,4,4′-tetrahydro-4,4′-bipyridines as the primary products [57–70], although some of
these were initially formulated as 2,2′-bipyridine derivatives [58].

4.3.2. Reductive Coupling of a 2-Functionalized Pyridine

In 1928, Wibaut used the Ullmann reaction [71] for the preparation of 2,2′-bipyridine from the
reaction of 2-bromopyridine or 2-chloropyridine with copper metal in 1-methyl-4-(propan-2-yl)benzene
(Figure 7), obtaining 1 in 60% yield in the case of the reaction with 2-bromopyridine [72]. This reaction
and modern variants remained a staple in the arsenal of synthetic routes available to the bpy chemist
for many years, although the yields were variable and the work-up often “challenging”.
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Figure 7. The preparation of 2,2′-bipyridine utilizing the Ullmann reaction was introduced by Wibaut
in 1928 (Hal = Br or Cl) [72].

4.3.3. Oxidation and Dehydrogenation of Pyridines and Piperidines

Heating pyridine to a temperature between 700 ◦C and 800 ◦C in a sealed tube gives bpy
as the major condensation product, together with 2,3′-bipyridine and 2,4′-bipyridine [73]; when
2-methylpyridine was treated in the same manner, 6,6′-dimethyl-2,2′-bipyridine, 12, was isolated,
making this the first substituted 2,2′-bipyridine to be prepared (Figure 8). Meyer described a red
colouration when 6,6′-dimethyl-2,2′-bipyridine was treated with iron(II) salts, which suggests that
his material was contaminated with bpy. Wibaut confirmed the formation of traces of bpy from the
pyrolysis of pyridine [74,75] and in a closely related reaction, Sabatier showed that dehydrogenation of
piperidine vapor over MnO or nickel at elevated temperatures gave a mixture of pyridine and bpy [76].
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Figure 8. The structures of the earliest derivatives of 2,2′-bipyridine to be described; compound 12 was
obtained from the pyrolysis of 2-methylpyridine [73].

Noting that the yield of 2,2′-bipyridine from the original Blau synthesis was typically below
20%, Hein also described the direct preparation of bpy from pyridine in 1928 [77]. In rationalizing
his approach, he describes what we would today call a template reaction, postulating that the high
stability of metal complexes of bpy, in particular of [Fe(bpy)3]2+, might be used as a driving force for
the oxidative coupling of two molecules of pyridine. Pyridine was heated with FeCl3 at 300 ◦C in a
sealed vessel and after (extensive) work up, 2,2′-bipyridine was obtained in a 52% yield (Figure 9).
2,2′-Bipyridine was also obtained when pyridine was heated with FeCl3·6H2O or CuCl2, but not
CuCl2·2H2O. The colour changes in the reaction indicate reduction to iron(II) although the exact
stoichiometry and, in particular, the fate of the two hydrogen atoms per molecule of bpy are not known.
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Figure 9. The preparation of 2,2′-bipyridine by the reaction of pyridine with FeCl3 at elevated
temperatures provided a convenient access to the ligand in 52% yield, although the work-up was
sometimes challenging because of the large amounts of metal salts [77].

4.4. Coordination Chemistry

It is appropriate that following the initial publications from Blau, the next studies of the coordination
chemistry of bpy should be made by Alfred Werner. In 1912 [78], he described the resolution of the
Λ and ∆ enantiomers of the [Fe(bpy)3]2+ cation as their diastereoisomeric l-tartrate salts (Figure 10).
Werner described the rapid racemization of the [Fe(bpy)3]2+ cation and postulated that it might be due
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to the dissociation of bpy from the complex. The next chemical study of the coordination behaviour
dates to 1926 and is concerned with the adsorption of [Fe(bpy)3]2+ and [Fe(phen)3]2+ on various
substrates, including blood charcoal (Blutkohle) and natural polymers such as wool [79]. The chiral
nature of wool and other natural polymers was specifically mentioned but no diastereoselectivity was
observed in the binding of the complex cations. The authors also conclude that dissociation of bpy from
[Fe(bpy)3]2+ occurs under specific conditions and conclude inter alia “the sulfate of ferro-tridipyridyl
and the bromide of ferro-triphenantroline, are strongly adsorbed in aqueous solution by adsorbents
such as charcoal, wool, arsenic trisulfide....An aqueous solution...that initially wets glass and quartz
well, only wets glass and quartz very poorly after a short time; it appears that a poorly wetting organic
substance is formed....probably due to the separation of dipyridyl from the complex salts”.
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Today, we describe bpy as a chelating ligand and the coordination compounds as chelate complexes,
but this description was only introduced in 1920 when Morgan and Drew [80] used the word chelate to
describe a ligand which bound to a metal ion through two different atoms. Chelated complexes of bpy
and phen were cited in a bad-tempered exchange between Lowry and Smith in 1923 debating the need
for the term and regarding the precise manner which the term chelate should be used [81–83].

The year 1928 saw the first magnetochemical investigation of a coordination compound containing
bpy, when Blitz reported that the salt [Fe(bpy)3](SO4) was diamagnetic and, in modern terminology, a
low spin iron(II) complex [84].

5. 1930–1939—Golden Years and then Back into the Abyss

In this next section, the developments in the period 1930–1939 are reviewed. The principal
advances came in the elaboration of the coordination chemistry of bpy and related ligands, in particular
the pioneering studies of Morgan and Jaeger. In parallel, synthetic methods for the bipyridines
were being refined and, increasingly, the ligands and their complexes were being investigated in
physicochemical and analytical applications.

5.1. Synthetic Developments

This section is concerned primarily with synthetic studies leading to bpy and its derivatives.

5.1.1. Oxidation and Dehydrogenation of Pyridines

Hein and Retter had shown in 1928 that acceptable yields of bpy could be obtained from the
reaction of pyridine with FeCl3 or other metal salts [77] and this method of preparation proved to
be something of a growth industry in the 1930s and seems to have become the preparative method
of choice for the coordination chemists [85,86]. On a personal note from one of the authors (E.C.C.),
these methods should be avoided if possible, as the work-up of the dark-coloured and foul-smelling
reaction mixture is truly disgusting! Morgan showed that not only 2,2′-bipyridine was formed in this
reaction, but also higher oligopyridines, in particular 12,22:26,32-terpyridine (2,2′:6′,2”-terpyridine, 7)
and 12,22:26,32:36,42-quaterpyridine (2,2′:6′,2′′:6′′,2′′′-quaterpyridine, 13, Figure 8) [87,88]. Heating
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pyridine with WCl6, [Cu(py)2Cl2], [Co(py)4Cl2] or (Hpy)[FeCl4] gave moderate to good yields of
2,2′-bipyridine and other isomeric bipyridines and higher oligopyridines [88]. The use of the copper
and cobalt complexes raises again the question of whether these are template reactions, with the critical
interannular C–C bond formation involving coordinated pyridines. Non-metallic oxidizing agents are
also effective for the conversion of pyridine to bpy and heating pyridine with I2 at 320 ◦C gave good
yields of bpy [89]. Traces of bpy were also obtained by heating pyridine alone or with dihydrogen on the
presence of catalytic amounts of AlCl3 and FeCl3 [90]. Burstall subsequently showed that the reaction
of 2-methylpyridine with FeCl3 could be used for the preparation of 6,6’-dimethyl-2,2′-bipyridine, 12
(Figure 8) [91].

Wibaut showed that respectable yields of bpy could be obtained from the dehydrogenation of
pyridine at 300 ◦C with Ni-metal catalysts [92]. The same catalysts were used by Willink for the
conversion of 2-methylpyridine to 12, which was reported not to give a red-colouration with iron(II)
salts [89]. In mechanistically obscure reactions, Wibaut also showed that the yield of bpy from the
reaction of pyridine with dehydrogenation catalysts at elevated temperatures was increased in the
presence of ammonia [93]. This method was extended to the preparation of 6,6’-dimethyl-2,2′-bipyridine
from 2-methylpyridine, albeit in low yield, by Burstall [91].

The isolation of bpy as a minor product in the reaction of pyridine with NaNH2 is explained
in terms of a metallation reaction competing with the nucleophilic attack of amide, followed by
subsequent reaction of the metallated intermediate with pyridine and oxidation of the resultant
dihydro-2,2′-bipyridine in the workup [94]. The reaction of sodamide with bpy itself gives
6,6′-diamino-2,2′-bipyridine in low yield [89]

5.1.2. Other Routes to 2,2′-Bipyridines

The second derivative of 2,2′-bipyridine to be described was 2,2′-bipyridine-3,3’-dicarboxylic
acid 14 (Figure 8) which was obtained from the oxidation of 1,10-phenanthroline [89,95]. In
1938, Burstall gave an overview of the methods available for the preparation of bpy and
reported the use of diphenyl as a solvent for the preparation of higher oligopyridines by
Ullmann reactions [91]. In the course of these studies, Burstall described the preparation of both
6-bromo-2,2′-bipyridine, 15, and 6,6’-dibromo-2,2′-bipyridine, 16 (Figure 11), from the vapour-phase
bromination of bpy at 773 K. At lower temperatures (523 K), only a perbromide was obtained and
no brominated-2,2′-bipyridines could be isolated. In contrast, the reaction of (bpyH)Br with bromine
at 523 K gave a mixture of 6-bromo-2,2′-bipyridine and 5-bromo-2,2′-bipyridine, 17. The relevant
bromo-compounds were converted to other bpy derivatives, for example 6-amino-2,2′-bipyridine, 18,
and 6,6’-diamino-2,2′-bipyridine, 19 (Figure 11), by reaction with aqueous ammonia at > 473 K or
2,2′-bipyridine-6-carbonitrile, 20, and 2,2′-bipyridine-6,6’-bis(carbonitrile), 21, by reaction with CuCN.
The carboxylic acids, 2,2′-bipyridine-6-carboxylic acid, 22, and 2,2′-bipyridine-6,6’-dicarboxylic acid,
23, were obtained by the hydrolysis of the corresponding nitriles with concentrated HCl, although
the latter compound was also obtained from the oxidation of 6,6’-dimethyl-2,2′-bipyridine, 12, with
selenium dioxide.
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5.2. Coordination Chemistry

The 1930s saw the growth in the coordination chemistry of bpy, in part inspired by the development
of better synthetic methods for the ligand, and in part by a general increase of interest in inorganic
and coordination chemistry. In the period up to 1930, the best characterized complexes exhibited a 3:1
bpy:M ratio, typified by salts of [Fe(bpy)3]2+, although Blau had also described 1:1 and 2:1 complexes
with copper(II) [29]. In the 1930’s, the broad picture of the diversity of complexes formed by bpy across
the entire periodic table emerged, in particular with the body of work for Jaeger and Morgan and
Burstall. Jaeger was particularly important in making extensive use of crystallographic studies (but
not single crystal determinations) in his work. One feature that emerges from this early work is that
many of the compounds reported and apparently exhibiting simple stoichiometries, were subsequently
shown to exhibit structural complexity or to possess unexpected reactivity not suspected at the initial
time of the preparation.

5.2.1. Complexes of Elements in Groups 1 and 2

No complexes of elements of group 1 and 2 containing bpy were reported in the 1930s (in contrast
to pioneering descriptions of complexes of phen with these elements).

5.2.2. Complexes of Elements in Groups 3 to 12

Considering the early history of bpy, it is not surprising that the vast majority of publications
concerning its coordination chemistry reported in the period up to 1939 concerned iron(II) complexes.
The most important development was probably the use of bpy and phen as reagents for the colorimetric
determination of iron in a wide range of materials for which efficient and effective methods had not
previously been available. These studies are collected in Section 5.3. However, other studies of bpy
complexes with group 8 metals were also reported in this period.

No complexes with elements of groups 3–5 were reported. The first group 6 compound was
probably described when Blau mentioned the formation of a red solution as bpy reacted with
chromium(III) solutions, but he made no further characterization of the products [29]. The first
characterized chromium complex was [Cr(bpy)3]Br2.6H2O, which was prepared by the reaction of
[Cr2(OAc)4] with (bpyH)Br; the compound is relatively air-stable in aqueous solution [96,97]. Although
the formation of coloured species when low oxidation state molybdenum reacted with bpy, no
complexes were isolated [98,99]. The first mixed ligand complex containing bpy and carbonyl ligands
was reported by Hieber in 1935, who obtained dark-red [W(bpy)(CO)4] from the reaction of [W(CO)6]
with bpy in EtOH [100]. The compound [W(bpy)(CO)4] has been structurally characterized and has the
structure predicted by Hieber (Figures 11 and 12) [101,102]. Unexpected is the fact that the compound
crystallizes in the non-centrosymmetric space group Pn (No. 7) and is an effective material for second
harmonic generation (similar to urea) [101].
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Although no manganese complexes were reported in this early period, a detailed study of rhenium
chemistry was reported by Morgan [103]. No complexes with bpy ligands coordinated to rhenium
were isolated, but the salts (bpyH2)[ReO2(CN)4]2 (pink), H(bpyH)[ReO2(CN)4] (blue), (bpyH)2[ReCl6]
(green), (bpyH2)[ReCl6] (yellow) and (bpyH)[ReO4] (colourless) were described. Subsequently, the
compounds (bpyH2)[ReCl6] [104] and (bpyH)2[ReCl6] [104,105] have been structurally characterized.

The elements of group 8 have attracted the most attention and it is not an understatement to say
that in this period, the 3:1 bpy:Fe complex dominates the chemistry of bpy. Most researchers working
actively on bpy and its derivatives recognize with horror the pale pink colour that often pervades their
reaction mixtures. The stability of the [Fe(bpy)3]2+ cation particularly intrigued Italian researchers. In
a note on the analytical applications of bpy, Ferrari commented on the extreme stability of [Fe(bpy)3]2+,
noting that it does not give a blue colour with K3[Fe(CN)6] and that the iron is not precipitated by
aqueous ammonia solution [106]. He also noted that in aqueous solution, regardless of the Fe:bpy ratio,
the only iron(II)-bpy species present was [Fe(bpy)3]2+ [107]. In contrast, Barbieri showed that in acidic
solution at elevated temperatures, the complex decomposed to give (bpyH2)2+ and [Fe(H2O)6]2+, but
regenerated [Fe(bpy)3]2+ on cooling [108]. Jaeger described materials with apparently 1:1, 2:1 and 3:1
bpy:Fe ratios from the reaction of bpy with FeSO4, although metathesis to chloride salts with BaCl2
gave [Fe(bpy)3]Cl2 in all cases [109]. Magnetic studies of a series of bpy complexes were reported
and the tendency for the bidentate N,N-donor to form low-spin complexes was confirmed [110–113]
although high-spin complexes with thiocyanato ligands were described for the first time in 1934 [114].

In 1934, Barbieri reported the preparation of diamagnetic complexes [Fe(bpy)2(CN)2] (red-violet)
and [Fe(bpy)(CN)4]2– (isolated as the orange-yellow K+, Ba2+, Pb2+ and Ag+ salts as well as the
free acid) by heating [Fe(bpy)3]2+ salts with aqueous KCN solution [115]. The analogous compound
[Fe(bpy)2(SCN)2] was described by Ferrari [107]. Jaeger also described the isolation and crystal
morphology of a series of complexes containing iron and bpy, including [Fe(bpy)3]Cl2.7H2O and
{Fe(bpy)(H2O)2.33(SO4)} [116]. The nature of these 1:1 and 1:2 complexes [109,116] remains unclear, but
it is worth noting that the complex [Fe(24)(H2O)4](SO4) (24 = 5,5′- dimethyl-2,2′-bipyridine, Figure 13)
has been structurally characterized (Figure 13) [117].
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today for the myriad of poorly understood reactions involving water, light and bpy complexes. The 
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In an early study of homogeneous catalysis, it was noted that iron(III) in the presence of bpy
oxidizes H2O2 with the formation of [Fe(bpy)3]2+ [118–120]; in the course of the reaction, until the
complete formation of the complex cation, species are present which are highly active for the catalytic
decomposition of H2O2. These reactions and an understanding of their mechanism are still relevant
today for the myriad of poorly understood reactions involving water, light and bpy complexes. The
use of bpy to determine iron(II) concentrations in the oxidation of iron(II) to iron(III) by H2O2 should
be assessed cautiously if intermediate Fe-bpy complexes are highly catalytically active [121].



Molecules 2019, 24, 3951 13 of 38

Few attempts to prepare iron(III) complexes were reported, but of note is the synthesis of
{Fe(bpy)Cl3} from the reaction of FeCl3 with bpy in ether [122]. The complex is a high-spin iron(III)
species with µeff of 5.91 B.M.. It has subsequently been shown that six coordinate mononuclear
species with an additional ligand, [Fe(bpy)XCl3] (X = H2O [123], MeOH [123,124], 1,2,4-triazole [125],
dmso [126]) are relatively common, but the structure of the parent compound is more complex. Multiple
structure determinations of different polymorphs of {Fe(bpy)Cl3} have shown that in the solid state it is
not five-coordinate but correctly formulated as [Fe(bpy)2Cl2][FeCl4] (Figure 14) [127–130]. The reaction
of [Fe(bpy)2Cl2][FeCl4] with H2S was also described, which proceeded according to the stoichiometry
of Equation (6).

6Fe(bpy)Cl3 + 3H2S→ 2[Fe(bpy)3]Cl2 + 4FeCl2 + 6HCl + 3S, (6)

Molecules 2019, 24, x FOR PEER REVIEW 13 of 39 

 

species with μeff of 5.91 B.M.. It has subsequently been shown that six coordinate mononuclear species 
with an additional ligand, [Fe(bpy)XCl3] (X = H2O [123], MeOH [123,124], 1,2,4-triazole [125], dmso 
[126]) are relatively common, but the structure of the parent compound is more complex. Multiple 
structure determinations of different polymorphs of {Fe(bpy)Cl3} have shown that in the solid state it 
is not five-coordinate but correctly formulated as [Fe(bpy)2Cl2][FeCl4] (Figure 14) [127–130]. The 
reaction of [Fe(bpy)2Cl2][FeCl4] with H2S was also described, which proceeded according to the 
stoichiometry of equation6.  

6Fe(bpy)Cl3 + 3H2S → 2[Fe(bpy)3]Cl2 + 4FeCl2 + 6HCl + 3S, (6)

 
Figure 14. The solid-state structure of structure of {Fe(bpy)Cl3}, which was shown to be 
[Fe(bpy)2Cl2][FeCl4] (structural data taken from reference 129). 

In view of the dominant role that ruthenium, and to a lesser extent osmium, complexes 
containing bpy-type ligands were to play in the latter half of the 20th Century CE, it is perhaps 
surprising how little attention these elements received in this golden age of coordination chemistry. 
The first mention of ruthenium bpy complexes occurs in a published lecture from Morgan dating to 
1935 [131] although the details of these new compounds were only published in 1938. The first report 
of [Ru(bpy)3]2+ was made in 1936, when Burstall described the reaction of ruthenium trichloride with 
bpy according to equation 7 [132]. The reduction of ruthenium(II) (or strictly higher oxidation states 
of ruthenium, as “ruthenium trichloride” is a complex material) to ruthenium(II) in orange 
[Ru(bpy)3]2+ was accompanied by the oxidation of bpy to 12,22:26,32:36,42-quaterpyridine (13, Figure 8). 

2RuC13+ 8bpy → 2[Ru(bpy)3]Cl2 + 13 + 2HCl, (7)

Burstall notes that the complex ion [Ru(bpy)3]2+ is significantly more stable than the iron(II) and 
nickel(II) analogues and describes the resolution into the Λ and Δ salts with d-tartrate. Burstall also 
notes the remarkable kinetic stability of the enantiomeric cations and reports that not only do the 
salts show no racemization in aqueous solution at room temperature but also upon boiling, in 
contrast to the iron and nickel homologues. Burstall also described the preparation of [Ru(bpy)3]2+ 
salts from the reaction of ruthenium trichloride with bpy in aqueous or ethanolic solution. He also 
obtained the same product from the reaction of “ruthenium red” (probably 
[(NH3)5RuORu(NH3)4ORu(NH3)5]Cl6 but at the time formulated [RuCl(NH3)4(OH)]Cl.H2O) or 
K[Ru(NO)Cl5] with bpy at 250 °C or in aqueous solution or from the reaction of a variety of 
ruthenium-chlorido complexes in various oxidation states with bpy. In 1938, Morgan and Burstall 
described a series of ruthenium-nitroso complexes, including [Ru(bpy)Cl3(NO)], [Ru(bpy)Br3(NO)], 
[Ru(bpy)I3(NO)], [Ru(bpy)2Cl(NO)][RuCl5(NO)] and (bpyH)2[RuCl5(NO)] [133]. Both mer- (Figure 15 
a) and fac- (Figure 15b) diastereoisomers of fac-[Ru(bpy)Cl3(NO)] have been structurally 
characterized; as expected the nitrosyl ligands are linear [134]. Although 
[Ru(bpy)2Cl(NO)][RuCl5(NO)] has not been structurally characterized, the structure of both cis- 
(Figure 15c) [135] and trans- (Figure 15d) [136] diastereoisomers of the [Ru(bpy)2Cl(NO)]2+ cation in 
the related salt [Ru(bpy)2Cl(NO)](ClO4)2 have been described. The latter cation is a relatively rare 

Figure 14. The solid-state structure of structure of {Fe(bpy)Cl3}, which was shown to be
[Fe(bpy)2Cl2][FeCl4] (structural data taken from reference 129).

In view of the dominant role that ruthenium, and to a lesser extent osmium, complexes containing
bpy-type ligands were to play in the latter half of the 20th Century CE, it is perhaps surprising how little
attention these elements received in this golden age of coordination chemistry. The first mention of
ruthenium bpy complexes occurs in a published lecture from Morgan dating to 1935 [131] although the
details of these new compounds were only published in 1938. The first report of [Ru(bpy)3]2+ was made
in 1936, when Burstall described the reaction of ruthenium trichloride with bpy according to Equation
(7) [132]. The reduction of ruthenium(II) (or strictly higher oxidation states of ruthenium, as “ruthenium
trichloride” is a complex material) to ruthenium(II) in orange [Ru(bpy)3]2+ was accompanied by the
oxidation of bpy to 12,22:26,32:36,42-quaterpyridine (13, Figure 8).

2RuC13 + 8bpy→ 2[Ru(bpy)3]Cl2 + 13 + 2HCl (7)

Burstall notes that the complex ion [Ru(bpy)3]2+ is significantly more stable than the iron(II) and
nickel(II) analogues and describes the resolution into the Λ and ∆ salts with d-tartrate. Burstall also
notes the remarkable kinetic stability of the enantiomeric cations and reports that not only do the salts
show no racemization in aqueous solution at room temperature but also upon boiling, in contrast to
the iron and nickel homologues. Burstall also described the preparation of [Ru(bpy)3]2+ salts from the
reaction of ruthenium trichloride with bpy in aqueous or ethanolic solution. He also obtained the same
product from the reaction of “ruthenium red” (probably [(NH3)5RuORu(NH3)4ORu(NH3)5]Cl6 but at
the time formulated [RuCl(NH3)4(OH)]Cl.H2O) or K[Ru(NO)Cl5] with bpy at 250 ◦C or in aqueous
solution or from the reaction of a variety of ruthenium-chlorido complexes in various oxidation
states with bpy. In 1938, Morgan and Burstall described a series of ruthenium-nitroso complexes,
including [Ru(bpy)Cl3(NO)], [Ru(bpy)Br3(NO)], [Ru(bpy)I3(NO)], [Ru(bpy)2Cl(NO)][RuCl5(NO)]
and (bpyH)2[RuCl5(NO)] [133]. Both mer- (Figure 15 a) and fac- (Figure 15b) diastereoisomers
of fac-[Ru(bpy)Cl3(NO)] have been structurally characterized; as expected the nitrosyl ligands
are linear [134]. Although [Ru(bpy)2Cl(NO)][RuCl5(NO)] has not been structurally characterized,
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the structure of both cis- (Figure 15c) [135] and trans- (Figure 15d) [136] diastereoisomers of the
[Ru(bpy)2Cl(NO)]2+ cation in the related salt [Ru(bpy)2Cl(NO)](ClO4)2 have been described. The latter
cation is a relatively rare example of an [M(bpy)2XY]n+– complex exhibiting a trans-arrangement of the
X and Y ligands and shows the riffling of the bpy ligands that is necessary to minimize the bpy H6 . . .
H6 interactions.
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Goodward reported his investigations on the notorious “ruthenium blue” solutions obtained by
the reduction of ruthenium compounds in various solvents. He used a blue solution obtained by the
electrochemical reduction of ruthenium trichloride in 6M hydrochloric acid and isolated a compound
he formulated as variously as {(bpyH)RuCl4} or {(bpyH2)RuCl4} [137]. This compound is probably
the acid H[Ru(bpy)Cl4]; the salt K[Ru(bpy)Cl4] has been structurally characterized (Figure 16a) [138]
as has the related compound [(H5O2)Ru(25)Cl4].2H2O (25 = 2,2′-bipyridine-4,4′-dicarboxylic acid)
containing the unusual (H5O2)+ cation (Figure 16b) [139]. The true complexity of the ruthenium blue
solutions has been addressed by Seddon [140] but the conversion of the blue solution to [Ru(bpy)3]2+
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The group 9 metals were to play a vital role in the development of bpy chemistry, and the eventual
recognition of the cyclometallated C,N-bonding mode was to be established in iridium complexes.
In studies of the coordination chemistry of cobalt with bpy, Jaeger described [Co(bpy)3]Cl2.6H2O,
[Co(bpy)2Cl2].5H2O, [Co(bpy)2(H2O)2]Cl2.4H2O, [Co(bpy)2(H2O)2]Cl2.3H2O [Co(bpy)3]SO4.7H2O,
[Co(bpy)2(H2O)2]SO4.4H2O, [Co(bpy)3](NO3)2.6H2O, [Co(bpy)2CO3]NO3.5H2O, [Co(bpy)2Cl2]Cl.2H2O,
[Co(bpy)3]2(SO4)3.5H2O and [Co(bpy)3]Cl3.3H2O [116,141]. Jaeger was remarkably prescient in his
assignment of the coordination mode in these compounds, an especially difficult task with labile
metal centres such as cobalt(II) and in the absence of the modern analytical methods that we take
for granted. Although [Co(bpy)2Cl2].5H2O has not been structurally characterized, the trihydrate
has (Figure 17a), confirming the presence of two chlorido ligands coordinated to the cobalt(II)
centre [142]. The cationic [Co(bpy)2(H2O)2]2+ coordination entity has been established in the compound
[Co(bpy)2(H2O)2][{N(CH2CO2)3}Cr(µ-OH)Cr{N(CH2CO2)3] (Figure 17b) [143]. The structural analysis
of green [Co(bpy)2Cl2]Cl.2H2O confirmed the presence of the CoN4Cl2 coordination core with one
free anionic chloride ion [144,145]. Finally, structural analyses of [Co(bpy)2CO3]NO3.5H2O confirmed
the presence of the coordinated bidentate carbonato ligand and ionic nitrate, rather than alternative
structures with coordinated nitrato ligands [146,147].
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aqua-species  [Rh(bpy)(H2O)4]3+, [Rh(bpy)(H2O)2Cl2]+, [Rh(bpy)(H2O)3Cl]2+ and 
[Rh(bpy)(H2O)Cl3].H2O [116,148]. A crystal structure determination of [Rh(bpy)2Cl2]Cl.2H2O 
confirmed the presence and stereochemistry of the expected cis-[Rh(bpy)2Cl2]+ cation [149] although 
no structures of the aqua complexes have been reported. The compound [(bpy)2Rh(μ-Cl)2Rh(bpy)2]Cl4 
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Λ and Δ d-tartrate salts [150,151], making this the second [M(bpy)3]2+ and (probably) the first nickel(II) 
complex to be resolved [78]. In the first systematic study of [M(bpy)2X2] compounds, Pfeiffer showed 
that when [Ni(bpy)3]Cl2 was heated over boiling benzene, toluene or xylenes, bpy was lost with a 
corresponding change in colour from red-brown to green and the formation of [Ni(bpy)2Cl2] [152]. 
Jaeger reported the synthesis and described the crystal forms of red [Ni(bpy)3]2+ salts, but also 
described the formation of blue materials of composition {Ni(bpy)(H2O)6(SO4)}, {Ni(bpy)2(H2O)7(SO4)} 
[86,116]. The compound {Ni(bpy)(H2O)6(SO4)} has been shown to be a one-dimensional coordination 
polymer with bridging sulfato ligands (Figure 18a) [153]. The speciation is not so simple, as the 
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Figure 17. (a) The neutral cobalt(II) coordination entity present in [Co(bpy)2Cl2].3H2O [141]
(b) the [Co(bpy)2(H2O)2]2+ cation present in [Co(bpy)2(H2O)2][{N(CH2CO2)3}Cr(µ-OH)Cr
{N(CH2CO2)3] [143].

As early as 1934, Jaeger described the preparation and crystal morphology of the
archetypical complexes [Rh(bpy)3]Cl3.3H2O, [Rh(bpy)2Cl2]Cl.2H2O, [(bpy)2Rh(µ-Cl)2Rh(bpy)2]Cl4
together with the aqua-species [Rh(bpy)(H2O)4]3+, [Rh(bpy)(H2O)2Cl2]+, [Rh(bpy)(H2O)3Cl]2+ and
[Rh(bpy)(H2O)Cl3].H2O [116,148]. A crystal structure determination of [Rh(bpy)2Cl2]Cl.2H2O
confirmed the presence and stereochemistry of the expected cis-[Rh(bpy)2Cl2]+ cation [149] although
no structures of the aqua complexes have been reported. The compound [(bpy)2Rh(µ-Cl)2Rh(bpy)2]Cl4
is of particular interest as each metal is a stereogenic centre and the dication could exist as a
number of diastereoisomers: the enantiomeric pair ∆∆- and ΛΛ-[(bpy)2Rh(µ-Cl)2Rh(bpy)2]4+ and the
diastereoisomer ∆Λ-[(bpy)2Rh(µ-Cl)2Rh(bpy)2]4+.

Blau had described the first group 10 metal complexes of bpy, the pink [Ni(bpy)3]2+ salts, in
1898 [29]. In 1931, Morgan and Burstall showed that this cation could be resolved into diastereoisomeric
Λ and ∆ d-tartrate salts [150,151], making this the second [M(bpy)3]2+ and (probably) the first nickel(II)
complex to be resolved [78]. In the first systematic study of [M(bpy)2X2] compounds, Pfeiffer showed
that when [Ni(bpy)3]Cl2 was heated over boiling benzene, toluene or xylenes, bpy was lost with a
corresponding change in colour from red-brown to green and the formation of [Ni(bpy)2Cl2] [152].
Jaeger reported the synthesis and described the crystal forms of red [Ni(bpy)3]2+ salts, but also described
the formation of blue materials of composition {Ni(bpy)(H2O)6(SO4)}, {Ni(bpy)2(H2O)7(SO4)} [86,116].
The compound {Ni(bpy)(H2O)6(SO4)} has been shown to be a one-dimensional coordination polymer
with bridging sulfato ligands (Figure 18a) [153]. The speciation is not so simple, as the mononuclear
complex [Ni(bpy)(H2O)4](SO4) has also been structurally characterized [154]. Pfeiffer prepared a series



Molecules 2019, 24, 3951 16 of 38

of [Ni(bpy)3]2+ salts in the context of his studies of what later became termed the Pfeiffer effect (see later),
but does not appear to have reported their behaviour in detail [155]. Jaeger also initially confirmed the
observation of Pfeiffer, that 2:1 bpy:Ni complexes could not be prepared directly in aqueous solution [86].
In later work, Jaeger showed that the reaction of nickel(II) nitrate with bpy in aqueous solution could give
[Ni(bpy)3](NO3)2.5H2O, {Ni(bpy)2(NO3)2(H2O)3} and {Ni(bpy)(H2O)3(NO3)2} [116,156]. The nitrates
are of some interest. When the reaction of bpy with nickel(II) nitrate is performed in an ionic liquid or
MeOH, the complex [Ni(bpy)2(ONO2)](NO3) is obtained, containing a bidentate O,O′-donor nitrato
ligand and a nitrate anion [157,158]. In aqueous solution, the complex [Ni(bpy)2(H2O)(ONO2)](NO3)
has been structurally characterized [159], as has Jaeger′s {Ni(bpy)(H2O)3(NO3)2}, which was shown to
be [Ni(bpy)(H2O)3(ONO2)](NO3) [157]. In similar studies with nickel(II) chloride in aqueous solution,
Jaeger obtained [Ni(bpy)3]Cl2.7H2O although this yielded {Ni(bpy)2Cl2} upon heating. In reactions
with one equivalent of bpy, a compound {Ni(bpy)(H2O)2Cl2} was obtained after the precipitation
of [Ni(bpy)3]Cl2.7H2O. Although {Ni(bpy)(H2O)2Cl2} has not been structurally characterized, the
related compound [(bpy)Cl(H2O)Ni(µ-Cl)2Ni(bpy)Cl(OH2)], with trans-chlorido and aqua ligands
(Figure 18b), is obtained from the reaction of NiCl2.6H2O with bpy in DMSO and has a very short
(3.441 Å) Ni...Ni contact [160]. Similarly, {Ni(bpy)2Cl2} has not been structurally characterized, but the
cation [Ni(bpy)2Cl(OH2)]+ has been shown to be present in [Ni(bpy)2Cl(OH2)]Cl.CHCl3.H2O [161];
in contrast, the five-coordinate [Ni(bpy)2Cl]+ ion is present in [Ni(bpy)2Cl](NO3).3H2O [162]. The
magnetic properties of [Ni(bpy)3]Br2.3H2O were first reported by Cambi in 1934 [163].
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The first reports of platinum bpy complexes were made in 1933 by Morgan and Burstall [88] and 
almost simultaneously, Rosenblatt found that although yellow [Pt(bpy)Cl2] could be prepared with 
ease, but reported that it was not possible to obtain [Pt(bpy)2]2+ salts in solution by reaction of 
K2[PtCl4] or [Pt(bpy)Cl2] with excess bpy in aqueous, ethanolic or phenol solution [170]. He also 
reported that although [Pt(bpy)Cl2] did not react with ammonia or pyridine, the chlorido ligands 
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KCN to give both yellow and red forms of [Pt(bpy)(CN)2] [170]. It is now known that in [Pt(bpy)2]2+ 
salts, steric interactions between the bpy H6 protons are expected in a planar structure. Nevertheless, 
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Figure 18. (a) The one-dimensional coordination polymer present in {Ni(bpy)(H2O)2(SO4)}.nH2O [153]
and (b) the dimer [(bpy)Cl(H2O)Ni(µ-Cl)2Ni(bpy)Cl(OH2)] [160].

As a part of the classical series of papers from Chatt and Mann describing studies on the structure
of palladium-phosphane complexes, the preparation of both [Pd(bpy)(NO2)2] and [Pd(bpy)Cl2] were
reported [164,165]. The compound [Pd(bpy)Cl2] exists in two polymorphs corresponding to the
red [166] and yellow [167] forms of [Pt(bpy)Cl2] (see below) with Pd . . . Pd separations of 3.46 and 4.587
Å respectively. Solvates with CH2Cl2 [168] and dioxane [169] have been structurally characterized and
shown not to exhibit short Pd . . . Pd contacts.

The first reports of platinum bpy complexes were made in 1933 by Morgan and Burstall [88]
and almost simultaneously, Rosenblatt found that although yellow [Pt(bpy)Cl2] could be prepared
with ease, but reported that it was not possible to obtain [Pt(bpy)2]2+ salts in solution by reaction
of K2[PtCl4] or [Pt(bpy)Cl2] with excess bpy in aqueous, ethanolic or phenol solution [170]. He also
reported that although [Pt(bpy)Cl2] did not react with ammonia or pyridine, the chlorido ligands
could be replaced by ethane-1,2-diamine (en) to give [Pt(bpy)(en)]2+ salts, which in turn reacted
with KCN to give both yellow and red forms of [Pt(bpy)(CN)2] [170]. It is now known that in
[Pt(bpy)2]2+ salts, steric interactions between the bpy H6 protons are expected in a planar structure.
Nevertheless, a number of [Pt(bpy)2]2+ salts have been prepared and structurally characterized
and the ways in which the complexes adapt to minimise the steric interactions are of considerable
interest. In some cases, the electronic demands of the bpy ligand to maximize conjugation in a planar
conformation dominates and the geometry of the PtN4 motif in the [Pt(bpy)2]2+ cation is distorted
towards tetrahedral, with least squares planes angles between the near-planar bpy ligands between
30 and 37◦ (Figure 19a) [171–173]. In other cases, the electronic preference of the d8 metal centre
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for a square-planar PtN4 motif dominates, and the bpy adopts a V-shaped conformation about the
interannular C–C bond (Figure 19b) [174–179]. Only in the compound [Pt(bpy)2](ClO4)2 have both
the square-planar and tetrahedral PtN4 coordination geometries been structurally characterized. The
[Pd(bpy)2]2+ cation shows a similar pattern of distortions [180–189].
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It was left to Morgan and Burstall to further elucidate the chemistry of the platinum
compounds [190]. These authors described the yellow (β) and red (α) polymorphs of [Pt(bpy)Cl2] and
reproducible methods for their preparation. In a very early study of the photophysical properties of
transition metal complexes, Randall reported the low temperature fluorescence of both the red and the
yellow polymorphs [191]. Both the red [192–194] and the yellow [167,192,193,195,196] polymorphs
of [Pt(bpy)Cl2] have been structurally characterized; in the yellow form, stacked planar [Pt(bpy)Cl2]
molecules are arranged to give a zig-zag chain of Pt centres (∠Pt...Pt...Pt, 110.25◦, Pt...Pt 4.56 Å) whereas
in the red form, the metal centres are much closer together (Pt...Pt 3.45 Å) and the propagation along
the Pt...Pt...Pt vector is closer to linear (∠Pt...Pt...Pt, 161.2◦) Figure 20.
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Morgan and Burstall also demonstrated the formation of [Pt(bpy)2]2+ salts and suggested that some
of the {Pt(bpy)Cl2} materials reported by Rosenblatt in his attempts to prepare [Pt(bpy)2]2+ salts, might
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be the coordination isomer [Pt(bpy)2][PtCl4]. In addition to confirming the [Pt(bpy)(en)]2+ species,
compounds containing the [Pt(bpy)(NH3)2]2+, [Pt(bpy)(py)2]2+, [Pt(bpy)(py)Cl]+, [Pt(bpy)(NH3)Cl]+,
[Pt(bpy)(NH3)I]+ and [Pt(bpy)(MeSCH2CH2SMe)]2+ cations were also prepared. Salts of [Pt(bpy)(en)]2+

and related compounds have attracted some interest because of their ability to exhibit strong face-to-face
π-interactions with aromatics (in particular nucleic acids), and a number of compounds have been
structurally characterized [197–199]. In [Pt(bpy)(py)2]2+ salts, the pyridine ligands are close to
orthogonal to the PtN4 square plane containing the bpy ligand [200–202]. Finally, Morgan and
Burstall extended the chemistry to the platinum(IV) oxidation state by oxidation of the platinum(II)
bpy complexes with chlorine. In addition to the expected platinum(IV) compounds of the type
[Pt(bpy)(NH3)2Cl2]2+ and [Pt(bpy)Cl4], some compounds in which RNH2 ligands had been converted
to RNHCl species were isolated. This new ligand, which lies along the pathway from NH3 to NCl3,
gave complexes with interesting properties and were reported to “explode violently when heated or
even when struck” [190].

Some interesting reports of platinum(II) bpy complexes appeared in 1935 and concerned some
anomalous results with the chiral ligand [203,204] H2NCHPhCH2NH2 which were interpreted in
terms of an asymmetric platinum atom. The exact origin of these effects is unclear but it seems
likely that either the Pfeiffer effect (see later) was operative in the synthesis of complex cations
such as [Pt(bpy)(H2NCHPhCH2NH2)]2+ or that the authors were observing an early example of
diastereoisomerism involving the δ and λ conformations of the chelate ring; the stereochemistry at
the H2NCHPhCH2NH2 ligand is known to be either R or S, and the Rδ and Sλ enantiomeric pair are
diastereoisomers of the Sδ and Rλ enantiomeric pair.

The group 11 elements proved to have an interesting coordination chemistry with bpy ligands
and Blau had described copper(II) complexes of bpy [29]. In view of the current interest in copper(I)
bpy complexes as photonic materials exhibiting thermally activated delayed fluorescence (TADF), it is
appropriate that the first copper(I) species were described as early as 1933. Tartarini reported a series
of red-brown complexes with 1:1 and 2:1 bpy:Cu ratios from the reduction of copper(II) complexes
or by direct reaction with solid copper(I) compounds [205]. Mann investigated a series of copper(I)
compounds and reported that the tetrahedral clusters [(nBu3E)Cu4I4] (E = P or As) reacted with bpy to
give the mononuclear red complexes [Cu(bpy)(nBu3E)I] [206]. Heating solutions of [Cu(bpy)(nBu3P)I]
resulted in loss of phosphane and the formation of a compound formulated [(bpy)(Cu(µ-I)2Cu(bpy)],
identical to one of the materials obtained by Tartarini by the reduction of copper(II) salts with hydrazine
and subsequent reaction with bpy and KI. The dinuclear structure has been confirmed by modern
crystallographic studies (Figure 21) [207,208].
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Jaeger investigated the interaction of bpy with copper(II) compounds and described a series of
well-characterized species [209]. The reaction of copper(II) propane-1,3-dioate (malonate) with one,
two or three equivalents of bpy only gave the 1:1 complex {Cu(bpy)(H2O)2(C3H2O4)} [116,209]. In
contrast, reactions of bpy with aqueous CuSO4 gave both pale blue {Cu(bpy)(H2O)2(SO4)} and deep
blue [Cu(bpy)3](SO4).7H2O [209]. As might be expected for a labile metal centre exhibiting Jahn-Teller
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distortions, the structural chemistry of the Cu-bpy-H2O-SO4 quaternary system is exceptionally
complex and diverse. Nevertheless, the compound {Cu(bpy)(H2O)2(SO4)} has been structurally
characterized as the one-dimensional coordination polymer [{Cu(bpy)(H2O)2(µ-SO4)}n] with bridging
bidentate sulfato ligands (Figure 22) [210–216].
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best described as a square-planar copper(II) centre with two short (1.941 Å) contacts; however, the 
remaining acetate oxygen atoms then form pseudo-axial interactions (∠Oax-Cu-Oax 126.25°) with 
longer Cu...O contacts of 2.61 Å [239]. In contrast, the monohydrate [Cu(bpy)(OAc)2].H2O is 
formulated as [(AcO)(bpy)Cu(μ-OAc)2Cu(AcO)(bpy)].2H2O (Figure 24a) [240] whereas the 
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by short Cu...O interactions of 2.384 Å (Figure 24b) [241]. 
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(data taken from reference [211]).

With CuCl2, Jaeger could obtain complexes {Cu(bpy)Cl2} (green), {Cu(bpy)2(H2O)2Cl2} (blue)
and violet [Cu(bpy)3]Cl2.7H2O [209]. Despite the simple stoichiometry, {Cu(bpy)Cl2} exhibits an
unexpected structural complexity and a number of compounds have been characterized. The
simplest is a one-dimensional coordination polymer [{Cu(bpy)Cl(µ-Cl)}n] with five-coordinate
copper centres, each coordinated to one bidentate bpy ligand, one terminal chlorine (2.259 Å)
and two bridging chlorines (2.291 and 2.674 Å) (Figure 23a) [217]. The remaining compounds
are also one-dimensional coordination polymers [{Cu(bpy)(µ-Cl)2}n] with six-coordinate copper
centres, each coordinated to one bidentate bpy ligand and four bridging chlorines exhibiting
two short Cu-Cl bonds (2.2 to 2.5 Å) and two longer Cu . . . Cl (2.9 to 3.2 Å) interactions
(Figure 23b) [218–222]. In a second publication, Jaeger described the formation of compounds
formulated {Cu(bpy)(H2O)3(NO3)2}, {Cu(bpy)2(H2O)(NO3)2}, {Cu(bpy)3](NO3)2.6H2O} [223]. The
compound {Cu(bpy)(H2O)3(NO3)2} has been structurally characterized and shown to be the
mononuclear species [Cu(bpy)(H2O)3(ONO2)](NO3) [224–227]; although {Cu(bpy)2(H2O)(NO3)2}
has not been structurally characterized, the related compounds [Cu(bpy)2(ONO2)](NO3).0.5H2O [228]
[Cu(bpy)2(ONO2)](NO3) [229–234] [Cu(bpy)2(ONO2)](NO3).H2O [235–237] all contain six-coordinate
copper centres with two bidentate bpy ligands and a chelating bidentate nitrato ligand.
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polymers, the coordination number of the copper varies. (a) [{Cu(bpy)Cl(µ-Cl)}n] [217], (b)
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In addition to the compounds described above, Jaeger also reported the formation and described
the crystal morphology of {Cu(bpy)(OAc)2.(H2O)5} [116] and a further series of compounds including
[Cu(bpy)3](ClO4)2 and mixed ligand complexes with bpy and the amino acids l-valine, isoleucine and
l-alanine [238]. As is always the case, some of these simple compounds proved to be significantly
more complex and diverse than expected. For example, of [Cu(bpy)(OAc)2].5H2O is mononuclear
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and best described as a square-planar copper(II) centre with two short (1.941 Å) contacts; however,
the remaining acetate oxygen atoms then form pseudo-axial interactions (∠Oax-Cu-Oax 126.25◦)
with longer Cu...O contacts of 2.61 Å [239]. In contrast, the monohydrate [Cu(bpy)(OAc)2].H2O is
formulated as [(AcO)(bpy)Cu(µ-OAc)2Cu(AcO)(bpy)].2H2O (Figure 24a) [240] whereas the anhydrous
[Cu(bpy)(OAc)2] is a dimer of two square-planar {Cu(bpy)2(OAc)2} moieties held together by short
Cu...O interactions of 2.384 Å (Figure 24b) [241].Molecules 2019, 24, x FOR PEER REVIEW 20 of 39 
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Figure 24. (a) The dimeric structure of [(AcO)(bpy)Cu(µ-OAc)2Cu(AcO)(bpy)].2H2O [240] and (b) the
dimer present in anhydrous [Cu(bpy)(OAc)2] [241].

One of the earliest studies on bpy complexes by Morgan concerned silver(II) complexes, which were
prepared by the oxidation of [Ag(bpy)2]+ with persulfate [242]. The use of bpy to stabilize an "unusual"
oxidation state in one of the pioneering studies of its coordination chemistry seems appropriate
and a prophecy of the vital role this ligand was to play in the development and understanding of
coordination chemistry. The complex [Ag(bpy)2][NO3] was obtained directly from bpy and AgNO3

and is diamagnetic [243]. After persulfate oxidation, silver(II) complexes with both a 2:1 and 3:1
bpy:Ag ratio were isolated. The 2:1 compounds were also prepared by electrolysis of solutions
containing AgNO3 in the presence of bpy and in this way, [Ag(bpy)2](ClO4)2 and [Ag(bpy)2](NO3)2

were obtained [244]. Hein described the preparation of the silver(I) compound [Ag(bpy)2](NO3) and
its oxidation by K2S2O8 to the silver(II) compound [Ag(bpy)2](S2O8) [85]. The [Ag(bpy)2]2+ cation is
well-established in compounds such as [Ag(bpy)2](ClO4)2 [245] and [Ag(bpy)2](NO3)2·H2O [246]; these
complexes are not planar but have angles between the least squares planes through the near-planar bpy
ligands of 35.17◦ and 32.25◦ respectively (Figure 25). In [Ag(bpy)2](NO3)2·H2O, there are also longer
Ag...O interactions to oxygen atoms of nitrate anions at > 2.8 Å. The nature of the claimed [Ag(bpy)3]2+

species is less clear; although magnetic [243,247], electron paramagnetic resonance [248] and electronic
spectra [249] have been reported, the existence of these compounds has been cast in doubt [250], and
to date only the [Ag(bpy)2]2+ compounds have been established unequivocally. Magnetic data were
also reported for compounds [Ag(bpy)2](S2O8) and {Ag2(bpy)5(S2O8)2} [243]. Hiebert described the
complex (Ag(bpy)[Co(CO)4] [251].
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The first gold bpy complex to be claimed was {KAu(bpy)(CN)2}, which was obtained from the
reaction of K[Au(CN)2] with bpy and reported to contain a square-planar [Au(bpy)(CN)2]– ion, on
the basis of X-ray crystallographic data showing a very short (3.74 Å) b-axis [252]. Some 40 years
later, the crystal structure of the compound was determined and it was shown to contain linear
[Au(CN)2]– anions; the bpy was not coordinated to the gold but adopts a cisoid conformation and
interacts with the potassium cations at 2.778 and 3.080 Å (Figure 26a) [253,254]. In view of the current
interest in organogold compounds in organic synthesis, it is appropriate that one of the first gold
complexes containing a bpy ligand should be an organometallic compound [255]. Attempts to form
the five-coordinate gold complex [Et2Au(bpy)Br] from the reaction of [Et2Au(µ-Cl)2AuEt2] with bpy,
gave only [Et2AuBr(µ-bpy)AuBrEt2], the first example of a compound containing a ditopic bpy ligand
acting as a bridging bidentate species presenting one pyridine metal-binding domain to each of two
{Et2AuBr} moieties (Figure 26b).
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Figure 26. (a) The compound initially formulated K[Au(bpy)(CN)2] was subsequently shown to have
no bpy-Au bonding (data taken from reference 253. Colour code: K purple; Au, yellow. (b) The
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The group 12 elements have a rich and varied bpy coordination chemistry. Blau had described
zinc(II) complexes, but it was left to Paul Pfeiffer to report in detail the complexes containing the
[Zn(bpy)3]2+ and [Cd(bpy)3]2+ ions [256,257]. These compounds were critical in the identification and
understanding of the Pfeiffer effect in which an enantiopure or enantioenriched compound enhances
the resolution of a racemic mixture of a second compound. The effect originates in supramolecular
interactions between the chiral species and the second component (in this case, the enantiomeric Λ and ∆
[M(bpy)3]2+ cations) to generate diastereoisomeric contact pairs with different free energies. The zinc(II)
and cadmium(II) complexes are labile, and this in turn leads to an enrichment of the diastereoisomeric
contact pair with the lowest energy when they interact with an enantiopure species. For example,
interacting with a second species of R chirality, the diastereoisomeric contact pairs {ΛR} and {∆R} have
different energies, and as the Λ and ∆ are in dynamic equilibrium, the solution becomes enriched in
the lower energy {ΛR} or {∆R} component. As the chirality of the additional species is fixed, the lowest
energy diastereoisomer is attained through an enrichment of either the Λ or ∆ [M(bpy)3]2+ cation.
Pfeiffer demonstrated the enhancement with sub-stoichiometric amounts of camphorsulfonic acid and
bromocamphorsulfonic acid. The lability of the zinc and cadmium complexes was further illustrated
by Jaeger, who obtained not only [M(bpy)3]2+ complexes, but also species with 1:1 and 2:1 bpy:M
ratios [258]. Although the reaction of ZnSO4 with two equivalents of bpy gave equimolar amounts of
[Zn(bpy)3]2+ and {Zn(bpy)(H2O)2(SO4)}, with Cd(NO3)2, the complex {Cd(bpy)2(NO3)2(H2O)0.5} was
obtained. The compound {Zn(bpy)(H2O)2(SO4)} has subsequently been shown to be a one-dimensional
coordination polymer in which planar {Zn(bpy)(H2O)2} moieties are linked by bridging bidentate sulfato
anions (Figure 27) [215,259–264] whereas {Cd(bpy)2(NO3)2(H2O)0.5} is a mixed crystal containing a
stoichiometric mixture of [Cd(bpy)2(NO3)2] and [Cd(bpy)2(NO3)(H2O)](NO3) [265–267]. In other
studies, Jaeger described the synthesis and crystal morphology of various [M(bpy)3]2+ salts (M = Cd, Zn)
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and of compounds including {Zn(bpy)(H2O)n(NO3)2}, {Zn(bpy)(H2O)nCl2}, {Cd(bpy)(H2O)n(NO3)2},
{Cd(bpy)(H2O)n(SO4)}, and {Cd(bpy)2(H2O)Cl2} [116,268]. The compound {Cd(bpy)(H2O)n(NO3)2}
has been structurally characterized and shown to be the one-dimensional coordination polymer
[{Cd(bpy)(H2O)(O2NO)(µ-NO3)}n] in which the cadmium has a bicapped trigonal-antiprismatic
coordination geometry comprising a bidentate bpy, a bidentate nitrato ligand, a water and two bridging
nitrato ligands (one bidentate, the other monodentate) (Figure 27b) [269].Molecules 2019, 24, x FOR PEER REVIEW 22 of 39 
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One of the earliest compounds of bpy with a group 12 element to be described was [Hg(bpy)I2],
which Morgan identified as an insoluble species, which could be used for the gravimetric determination
of bpy [242]. Like many of these apparently simple species, the compound has been subsequently
structurally characterized and shown to possess a more complex structure with a very distorted
four-coordinate mercury centre [270]. Pfeiffer reported the salt (bpyH)[HgCl3], which presumably has
no bpy-Hg interactions [271].

5.2.3. Complexes of Elements in Groups 13 to 18

Pfeiffer showed that the reaction of lead nitrate with bpy in aqueous MeOH followed by treatment
with NaClO4 gave {Pb(bpy)2(ClO4)2} as a colourless crystalline product [271]. No complexes with a
greater bpy to lead ratio could be isolated.

5.3. Analytical Applications

Although colorimetric analysis had a distinguished pedigree, it was not widely utilized until the
beginning of the 20th century CE. Particularly influential was the publication of the first book written
in English on the method in 1921 [272] after which a steady increase in the number of publications
followed. In the course of the 1930s, commercial colorimeters became more readily available and
reagents for colorimetric analytical determination of specific metals were developed. The colorimetric
methods revolutionalized the analysis of biological materials and allowed the determination of
molecular and ionic species in a vast array of physiologically active species or metabolites [273]. The
quantitative analysis of iron was of especial interest and the intense red colour of the [Fe(bpy)3]2+ cation
(ε = 8650 M−1 cm−1, λmax = 522 nm) attracted early attention. Hill [274] and others [106,119,275–285]
developed colorimetric methods for the determination of iron as [Fe(bpy)3]2+ in biological materials.
McFarlane noted the similarity of the absorption spectra of aqueous cobalt(II) nitrate solutions and
[Fe(bpy)3]2+ and proposed the former as a colorimetric standard for calibration [279]. This colorimetric
method rapidly became the method of choice for the analysis of iron in a wide range of materials
and the technique was applied, inter alia, to the determination of the iron content of hematin and
cytochrome c [286], water [287–290], milk [291], beer [292,293], other foodstuffs [294–301], soil and
minerals [302–306], teeth [307,308], blood [285,309–314] and other biological materials [315–319] and
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homeopathic formulations [320]. It was recognized that the methods using bpy for the determination
of iron gave a measure of the "available" iron, and any Fe that was strongly bound in heme proteins
or ferritin would not necessarily be included in the total iron [321,322]. In view of the emerging
recognition that bpy formed complexes with most metals investigated, the effects of other metal ions
on the accuracy of the determination of iron was studied [284,323,324]. Protocols were developed
for the orthogonal determination of iron and copper in biological samples using bpy and carbamate,
respectively [325].

An interesting application of bpy was reported by Koenig, who developed a method for the
determination of aluminium as Al2O3 in which interference by iron(III) was minimized by a protocol
in which the iron was reduced by hydroxylamine and coordinated to bpy before the aluminium oxide
was precipitated. The thermodynamic and kinetic stability of [Fe(bpy)3]2+ is sufficiently high that
Fe2O3 was not precipitated under these conditions [326].

The red colour is specific to the iron(II) complex of bpy, but methods for the analysis of iron(III)
or materials containing iron in multiple oxidation states were developed involving reaction with
bpy (or phen) in the presence of a reducing agent such as ascorbic acid [327], phenols [328] or sulfur
compounds [328]. Various modifications of the analytical protocols were described for turbid, highly
coloured or fresh biological samples [280].

The characteristic coloured complexes of bpy with other metals were also used for their analysis. In
the presence of the reducing agent tin(II) chloride, molybdenum compounds gave a characteristic deep
red-violet coloration allowing the detection of Mo down to micromolar concentrations [98,99]. Salts of
[Fe(bpy)3]2+ with inorganic anions are typically insoluble making them of use in the microchemical
analysis of these species [278] and was utilized in an early method for the qualitatitive detection of Ta
and Nb by the precipitation of characteristic crystalline tantalate or niobate salts [329].

In addition to the direct determination of iron by bpy, the complexes [Fe(bpy)3]2+/3+ have found
application as redox indicators. The standard redox potential, E◦ of this couple is ≈ +1.08 V in aqueous
solution and the reduction of blue [Fe(bpy)3]3+ to red [Fe(bpy)3]2+ is accompanied by a dramatic
visual change. An early review of iron coordination chemistry dating from 1928 appears to be the
first recognition of Blau’s observation of the redox couple [330]. With a subsequent colorimetric
determination of iron(II) as [Fe(bpy)3]2+, methods for the determination of vitamin C (ascorbic
acid) [331], vitamin E (tocopherol) [332–337] were developed based upon the quantitative reduction of
Fe3+ by the analytes. Most of these methods utilize mixtures of bpy and iron(III) compounds, which in
the presence of reducing agents that can reduce the iron(III) to iron(II) develop the characteristic red
[Fe(bpy)3]2+ colour which can be quantified colorimetrically.

5.4. Biological Studies

In studies on the activation of arginase by iron complexes, rats with iron-deficient livers were
obtained after a diet containing bpy [338]. It had previously been established that feeding rats with bpy
resulted in decreased absorption of iron and consequent and inhibition of hemoglobin formation [339].
In parallel, it was shown that [Fe(bpy)3]2+ itself could activate arginase [340]. However, studies of
the absorption, metabolism and physiological impact of [Fe(bpy)3](SO4) showed that modest blood
levels could cause convulsions, inhibit respiration and have occular effects [341,342]. Another early
study showed that [Fe(bpy)3](SO4), together with other iron compounds, deactivated calf spleen
proteases [343]. Although catalase is inhibited by simple iron(II) salts, neither bpy nor [Fe(bpy)3]2+

salts affect its activity [344]. Neither pepsin nor the cathepsins are inhibited by bpy [345]. Although
the biological effects of [Fe(bpy)3]2+ were beginning to be documented, the stability of the complex led
Eicholtz to classify it with the porphyrins and the hexacyanoferrates as a type of compound in which
the iron is not biologically available [346].
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5.5. Physicochemical Properties

The 1930s were characterized by the development of new spectroscopic and physicochemical
methods as well as the increasing availability and utilization of instrumentation for
routine measurements.

Jaeger described the crystalline form of bpy as early as 1934 [86] and the first Raman spectrum of
bpy was reported by Bonino in 1934 [347]. In two remarkable early papers, Yamasaki reported the
electronic absorption spectra of the complexes [M(bpy)3]Cl2 (M = Cu, Co, Zn, Ni, Fe), [Mn(bpy)2Cl2],
[Co(bpy)2Cl2]Cl, [Co(bpy)2(CO3)]Cl and [Co(bpy)3]Cl3 [348,349]. Every modern chemist should read
these papers to appreciate how non-trivial such measurements were in the 1930’s.

5.6. Other Applications

In a very early example of what we would now call organocatalysis, the effects of various additives
on the autoxidation of linoleic acid and related compounds was studied, and bpy shown to be rather
effective [350].

6. Conclusions

We have followed the story of the ligand 2,2′-bipyridine from its birth to the celebration of its
fiftieth birthday in 1939. In these fifty years, we have seen coordination chemistry develop from the
first days of the Werner model to a fully established discipline. Along the way, the fundamental aspects
of coordination chemistry were debated and chelating ligands such as bpy played a crucial role in
the development of our modern understanding. At the same time, techniques for investigating the
structures of molecules in ever more intimate detail were developing, giving us an insight into the
nature of matter. One feature that emerges from the coordination chemistry studies, is that many
“simple” compounds had structural complexities that were not suspected when first reported.

The story of bpy is not over. In its second century of life, bpy continues to be one of the
metal-binding domains of choice for introduction into supramolecular and nanoscale materials. I am
certain that bpy ligands will continue to serve us, occasionally confuse us and always edify us.
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