
polymers

Article

Electrohydrodynamic-Jet (EHD)-Printed
Diketopyrrolopyroole-Based Copolymer for OFETs
and Circuit Applications

Kyunghun Kim 1,†, Se Hyun Kim 2,†, Hyungjin Cheon 3, Xiaowu Tang 2 , Jeong Hyun Oh 4,
Heesauk Jhon 5 , Jongwook Jeon 6,*, Yun-Hi Kim 3,* and Tae Kyu An 4,*

1 Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
kim3034@purdue.edu

2 School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan,
Gyeongbuk 38541, Korea; shkim97@yu.ac.kr (S.H.K.); tangxiaowu@naver.com (X.T.)

3 Department of Chemistry and RIGET, Gyeongsang National University, Jin-ju 660-701, Korea;
tott22@hanmail.net

4 Department of Polymer Science & Engineering, Korea National University of Transportation, 50 Daehak-Ro,
Chungju 27469, Korea; ohjh1206@naver.com

5 Department of Electrical, Information and Communication Engineering, Mokpo National University,
Mokpo 530729, Korea; kindro1@mokpo.ac.kr

6 Department of Electrical and Electronics Engineering, Konkuk University, Seoul 05029, Korea
* Correspondence: jwjeon@konkuk.ac.kr (J.J.); ykim@gnu.ac.kr (Y.-H.K.); taekyu1985@ut.ac.kr (T.K.A.)
† These authors contributed equally to this work as first authors.

Received: 17 October 2019; Accepted: 22 October 2019; Published: 26 October 2019
����������
�������

Abstract: We report the employment of an electrohydrodynamic-jet (EHD)-printed
diketopyrrolopyrrole-based copolymer (P-29-DPPDTSE) as the active layer of fabricated organic
field-effect transistors (OFETs) and circuits. The device produced at optimal conditions showed a
field-effect mobility value of 0.45 cm2/(Vs). The morphologies of the printed P-29-DPPDTSE samples
were determined by performing optical microscopy, X-ray diffraction, and atomic force microscopy
experiments. In addition, numerical circuit simulations of the optimal printed P-29-DPPDTSE OFETs
were done in order to observe how well they would perform in a high-voltage logic circuit application.
The optimal printed P-29-DPPDTSE OFET showed a 0.5 kHz inverter frequency and 1.2 kHz ring
oscillator frequency at a 40 V supply condition, indicating the feasibility of its use in a logic circuit
application at high voltage.

Keywords: electrohydrodynamic-jet printing; diketopyrrolopyrrole; organic field-effect transistors;
compact model; ring oscillator

1. Introduction

A variety of developed polymeric semiconductors have shown good electrical performances and,
in many cases, outperform their metal oxide (ZnO, etc.) and amorphous silicon counterparts [1–3].
The planar structures of the polymeric chains have been shown to give rise to increased extents of
molecular self-assembly and well-developed microcrystalline domains, and thereby high electrical
performances with field-effect mobilities (µFETs) of over 70 cm2/(V·s) in organic field-effect transistors
(OFETs) [4,5]. Various printing technologies, such as capillary force lithography and roll-to-roll coating,
as well as aerosol jet, inkjet, and electrohydrodynamic-jet (EHD) printing, have been recently used to
deposit and pattern polymeric semiconductors [6–9].

EHD printing has proven to be a particularly cost-effective and simple printing tool [10]. This
printing tool generates a strong electrostatic field between a nozzle tip and a substrate to eject ink directly
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from the nozzle, and, as a result, can produce diverse fine patterns of polymeric semiconductors
from the micro- to nano-scale without the need for any pre-patterned topographical or chemical
pattern [11–13]. In addition, EHD printing is suitable for printing semiconducting polymers because of
the relatively high viscosities of such polymer inks, compared to those of small-molecule inks; as a
result, this printing tool can produce high-resolution patterns of polymeric semiconductors [14].

In this study, we demonstrated EHD printing of a diketopyrrolopyrrole (DPP)-based copolymer,
namely poly[2,5-bis(7-decylnonadecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-(1,2-bis(5-(thiophen-
2-yl)selenophen-2-yl)ethene) (P-29-DPPDTSE), as shown in Figure 1a, to fabricate patterned OFETs.
DPP-based copolymers constitute a kind of donor-acceptor (D-A) conjugated copolymer and have
been studied intensively due to their planar backbones and strong inter/intramolecular charge
transport [15,16]. Various DPP-based copolymers have been investigated for use in OFETs [5,16–21].
Of these copolymers, for this study, we chose P-29-DPPDTSE in a previously reported investigation
due to its high field-effect mobility (µFET) [5]. The EHD-printed P-29-DPPDTSE films made using
this copolymer showed moderate surface roughness and homogeneous crystalline morphology.
EHD-printed films showed typical p-type behavior with µFETs of about 0.45 cm2/(V·s) when annealed
at 200 ◦C. To investigate the properties of printed P-29-DPPDTSE OFETs, specifically to study the
morphological properties of their films, we analyzed them using optical microscopy (OM), atomic
force microscopy (AFM), and X-ray diffraction (XRD). In addition, to confirm the feasibility of using
EHD-printed P-29-DPPDTSE OFETs in a high-voltage logic circuit operation, a compact model library
to describe the electrical behaviors of P-29-DPPDTSE OFETs was developed. By implementing the
developed compact model library into a circuit simulator such as SPICE, we successfully evaluated the
high-voltage-logic operation of a p-type organic inverter and ring oscillator with, respectively, 1.2 kHz
operating frequencies in a 40 V supply condition.
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Figure 1. (a) Molecular structure of P-29-DPPDTSE and (b) schematic diagram showing the
electrodynamic (EHD) printing process.

2. Experimental

2.1. Materials

P-29-DPPDTSE was prepared by using the previously reported method [5]. The number average
molecular weight and polydispersity index (PDI) of the polymer were measured by carrying out
room-temperature gel permeation chromatography with a polystyrene standard calibration together
with tetrahydrofuran as the eluent. The number average molecular weight and PDI of P-29-DPPDTSE
were determined to be 35,700 g/mol and 1.65, respectively.
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2.2. Morphological Characterization

The crystal structures of EHD-printed P-29-DPPDTSE were characterized using two-dimensional
grazing-incidence wide-angle X-ray scattering (2D-GIWAXS) performed at the 3C beamline of
the Pohang Accelerator Laboratory (PAL), Pohang, Korea. AFM experiments were conducted
using a Multimode Illa (Veeco Inc. PL, USA) operating in tapping mode with a silicon cantilever.
The P-29-DPPDTSE samples used in the XRD and AFM studies were printed using the EHD jet on an
octadecyltrichlorosilane (ODTS)-modified silicon wafer to mimic the device fabrication process and
then dried under a vacuum at room temperature. After this deposition of the polymer, the samples
were annealed at 200 ◦C for 10 min to test the effect of thermal annealing.

2.3. Device Fabrication and Measurements

To fabricate OFETs based on P-29-DPPDTSE, we used heavily N-doped silicon with a 100 nm-thick
thermally grown layer of SiO2 as a dielectric. The capacitance of the dielectric layer was 30 nFcm−2.
OFET properties of the P-29-DPPDTSE were characterized in a bottom gate/top contact architecture with
gold source/drain electrodes. The surface of the silicon oxide, before being modified with ODTS, was
first cleaned with a piranha solution [H2O2 (40 mL)/concentrated H2SO4 (60 mL)] for 20 min at 280 ◦C,
rinsed with distilled water several times, and treated with ozone for 15 min. Then the SiO2 dielectric
was treated with an ODTS monolayer and with toluene for 90 min at room temperature. EHD printing
was then used to deposit the P-29-DPPDTSE semiconductor layer on the ODTS-treated SiO2 dielectric.
For the fabrication of printed OFETs, EHD-jet printing of P-29-DPPDTSE was conducted using an EHD
printer (Enjet, Suwon, Korea) operated using its cone-jet mode. A metallic nozzle holder attached to
a glass syringe in the EHD printer was filled with a 1 wt% P-29-DPPDTSE solution in chloroform.
The P-29-DPPDTSE solution was ejected at a flow rate of 0.10 µL/min using a syringe pump through
a nozzle with a diameter of 50 µm. To apply an electrostatic field between the nozzle and the Au
substrate ground, a supply voltage of 2.5 kV was generated by an installed power supply. The printing
speed and working distance were fixed at 5 mm/s and 100 µm, respectively. The entire process was
interfaced with a computer and monitored using a CCD (charge-coupled device) camera. Finally,
Au source and drain electrodes (100 nm thickness) were deposited by carrying out thermal evaporation
through a shadow mask (with the channel region having a length (L) of 50 µm, and width (W) of
1000 µm). The OFET devices were annealed at 200 ◦C for 10 minutes under a nitrogen atmosphere.
OFET device measurements were taken in an N2-purged glove box (H2O, O2 < 0.1 ppm) using both
Keithley 2400 and 236 source/measure units. The µFET values were extracted in the saturation regime
from the slope of the source-drain current.

2.4. Computational Simulations

In the development process of inorganic semiconductors such as silicon, the industry uses the
evaluation results of dynamic circuit characteristics in actual application circuits as the main indexes.
Therefore, in OFET development, it is important to examine the performance when applied to more
practical application circuits by performing dynamic AC (alternating current) analysis in addition to
device measurement and analysis in steady-state DC (direct current) state. In this process, an inverter
circuit, a standard cell, which is the most basic logic application, is mainly used for benchmarking
between different technologies. Other standard cell circuits, such as NAND and NOR, could be
expanded, but in this work, an inverter was selected as the main benchmark circuit as in many
inorganic semiconductor technology development works.

In order to apply the P-29-DPPDTSE-based OFET to the integrated circuits, it was essential to
provide a design environment using an electronic design automation (EDA) tool, and to do so, a
compact model capable of describing electrical characteristics such as I-V (current-voltage) and C-V
(capacitance and voltage) under various design bias conditions of OFETs was required. A compact
model consisting of analytical equations was implemented in the SPICE (Simulation Program with
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Integrated Circuit Emphasis) design tool. Then, the circuit optimization was performed by simulating
the characteristics of the design circuit for various bias conditions and device sizes in conjunction
with other circuit-constituting elements. In order to verify the high-voltage logic circuit characteristics
of the synthesized OFETs, Synopsys’ HSPICE was used, specifically to simulate dynamic circuit
characteristics in conjunction with extracted BSIM4 (Berkeley Short-channel IGFET (Insulated-Gate
Field-Effect Transistor) Model 4) model parameter libraries for describing electrical characteristics
of each device. Note that BSIM4, which is a widely used industry-standard model and provides
various fitting parameters, was used. For the dynamic AC analysis, it is important to extract the model
parameters for the electric behaviors. The feasibility of applying BSIM4 to OFETs has already been
confirmed in our previous work [22]. Note that, in the developed model library, the gate leakage
current and the parasitic capacitance between the gate and source/drain can be negligible due to
the use of a very thick gate oxide and due to the fringe field due to the use of a very large device
area, respectively.

3. Results and Discussion

EHD printing was used to fashion P-29-DPPDTSE as the active layers of the OFETs
(Figures 1b and 2a). Previous studies by the Kim group optimized the thermal annealing conditions for
the device fabrication [5]. The morphologies of the EHD-printed P-29-DPPDTSE lines were intimately
related to its electrical properties when used as active layers in the OFETs. Patterned P-29-DPPDTSE
lines were characterized by using AFM (Figure 2b,c). The pristine P-29-DPPDTSE sample and that
annealed at 200 ◦C showed root-mean-square (RMS) roughness values of 2.20 nm and 2.03 nm,
respectively, with the annealed sample more clearly showing a granular morphology. Molecular
packing of P-29-DPPDTSE in the printed lines was investigated by taking XRD measurements of them
(Figure 3). Both the pristine and annealed P-29-DPPDTSE lines showed (001), (002), and (003) XRD
peaks along the out-of-plane direction. The pristine P-29-DPPDTSE sample yielded a (001) diffraction
peak at q = 0.23 Å−1, with an interlayer distance of 27.3 Å. By contrast, the annealed P-29-DPPDTSE
sample yielded a (001) peak at q = 0.22 Å−1, with an increased interlayer distance of 28.6 Å. This result
may have been due to a straightening of bent side chains as a result of thermal annealing.
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To obtain more accurate information about the crystallinity of the EHD-printed P-29-DPPDTSE
patterns, coherence lengths were extracted from the (001) diffraction peaks in the out-of-plane profiles
of the samples (Figure 3c), with these lengths determined as 2π/FWHM (FWHM: full width at
half-maximum of the peak). As summarized in Table 1, compared to the (001) peak for the pristine
P-29-DPPDTSE sample, that for the annealed sample showed a lower FWHM value, yielding a greater
coherence length of 400.7 Å. This result was indicative of a smaller grain boundary of the annealed
P-29-DPPDTSE sample, which could reduce the barrier for changes to efficient transport [23,24].

Table 1. Results of the crystallographic analysis of E-jet-printed P-29-DPPDTSE crystals. d(001) denotes
the d-spacing value of the (001) plane. The coherence lengths were determined from the full width at
half-maximum of the peak (FWHM) values of the (001) peaks in Figure 3.

Conditions Crystallographic Parameters Value

pristine

q (Å−1) at (001) plane 0.23

d-spacing (Å) 27.32

FWHM (Å−1) 0.03005

Coherence length (Å) 209.0

200 ◦C annealed

q (Å−1) 0.22

d-spacing (Å) 28.56

FWHM (Å−1) 0.01568

Coherence length (Å) 400.7

The electrical characteristics of the EHD-printed P-29-DPPDTSE films (Figure 4) were evaluated
by fabricating typical bottom-gate/top-contact OFETs. The P-29-DPPDTSE OFET devices annealed at
200 ◦C showed (Table 2) a hole µFET of 0.45 cm2/(V·s) with an on/off ratio of 3.0 × 103, while the OFETs
without thermal annealing showed a much lower hole µFET of 0.09 cm2/(V·s) with an on/off ratio of 6.3
× 102. To better understand the circuit operation, the electrical behaviors of the synthesized OFETs
were modeled by using the Berkeley Short-Channel IGFET Model 4 (BSIM4) [22,25]. As shown in
Figure 5a, the extracted BSIM4 model (lines) reproduced the measured P-29-DPPDTSE OFET (symbols)
quite well and could accurately simulate the circuits in conjunction with a circuit simulator, such as
SPICE. As shown in Figure 5b, the logic-circuit performances of the p-type OFET inverter with an
operating frequency of 0.5 KHz were evaluated; these values were well modeled by the developed
BSIM4 model library.
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Figure 4. (a) Transfer and (b) output curves from an annealed P-29-DPPDTSE organic field-effect
transistor (OFET).

Table 2. Performance measures of various OFETs with different PQCTQx films.

P-29-DPPDTSE Mobility
(cm2/V·s) On/off

As-cast 0.09 6.3 × 102

Annealed at 200 ◦C 0.45 3.0 × 103
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Figure 5. (a) The results of fitting BSIM4 model parameters to OFET device data. Symbols and
lines represent the measurements and Simulation Program with Integrated Circuit Emphasis (SPICE)
simulation results, respectively. (b) Transient waveform of a P-29-DPPDTSE OTFT-based inverter.

The inverter gate we tested basically consisted of one resistive load, RL (∼60 MΩ), and one driver
OFET with W/L values of 1000/50 µm (see inset schematic of Figure 6a). When the input voltage (Vin)
was in a low-voltage state (0 V), the p-type OFET acted as a shortened switch and pulled the output
voltage (Vout) to the DC supply, supply voltage (VDD). On the other hand, the transistor was in the
open state, and finally, Vout was pulled down by the resistor RL to ground as Vin reached a high-voltage
state (VDD). Figure 6a,b show, respectively, the acquired voltage-transfer curves and the inverter gains
of the designed inverter for supply voltages ranging from 20 V to 40 V. Performance parameters such
as the minimum output high voltage (VOH), maximum output low voltage (VOL), rising time (tR),
falling time (tF), and propagation delay time (tP) of the inverter for various supply voltages are also
summarized in the table of Figure 6b [26].
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When the circuit performance of the EHD-printed P-29-DPPDTSE OFET in this work is compared
to the circuit performance of the Poly(quinacridone-quinoxaline), PQCQx, polymer-based OFET from
our previous work [25], it is observed that EHD-printed P-29-DPPDTSE OFET shows much better
performance than the previous work. Since the two OFET devices target different operating voltages,
it is difficult to make a direct comparison. Therefore, we compared the two OFET devices at the
same over-drive voltage defined by the threshold voltage and the supply voltage difference for a fair
comparison. Comparing the logic inverter gain to a similar over-drive voltage case (VDD = 40 V in this
work), the gain of the EHD-printed P-29-DPPDTSE OFET is 6.91, and the gain of the PQCQx OFET is
3.20, which shows that the EHD-printed P-29-DPPDTSE OFET has better logic circuit performance.

Additionally, as depicted in Figure 7, a five-stage ring oscillator composed of a designed inverter
with resistive load was also evaluated. The output terminal (Vout) of the last stage was connected to
the input terminal of the first stage with a feedback path. An output oscillation frequency (fOSC) of
1.2 kHz was measured for a VDD of 40 V, and fOSC increased as the supply voltage (VDD) was increased,
as plotted in Figure 7c.
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Figure 7. (a) Schematic diagram of a 5-stage ring oscillator circuit using a resistive load inverter,
in which L/W = 50/1000 µm, and RL(load) ~60 MΩ. (b) The transient (dynamic) simulation results for
the experiment in which VDD was increased with time; here, the organic BSIM4 model was used.
(c) Propagation delay and ring oscillator fOSC as a function of VDD.
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4. Conclusions

In this work, a conjugated P-29-DPPDTSE polymer based on both a DPP unit and a selenophene
vinylene selenophene unit was applied in EHD-printed OFETs and simulated in circuits. The thermally
annealed OFET device showed a high field-effect mobility value at 0.45 cm2/(Vs). The morphologies of
the printed P-29-DPPDTSE samples were determined by carrying out OM, XRD, and AFM experiments,
and a designed inverter and ring oscillator using P-29-DPPDTSE-based OFETs were shown to
successfully realize a logic operation with, respectively, frequencies of 0.5 kHz and 1.2 kHz at a 40 V
supply condition.
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