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Abstract

Motivation: The recent development of sequencing technologies revolutionized our understanding of the inner
workings of the cell as well as the way disease is treated. A single RNA sequencing (RNA-Seq) experiment, however,
measures tens of thousands of parameters simultaneously. While the results are information rich, data analysis pro-
vides a challenge. Dimensionality reduction methods help with this task by extracting patterns from the data by
compressing it into compact vector representations.

Results: We present the factorized embeddings (FE) model, a self-supervised deep learning algorithm that learns
simultaneously, by tensor factorization, gene and sample representation spaces. We ran the model on RNA-Seq
data from two large-scale cohorts and observed that the sample representation captures information on single gene
and global gene expression patterns. Moreover, we found that the gene representation space was organized such
that tissue-specific genes, highly correlated genes as well as genes participating in the same GO terms were
grouped. Finally, we compared the vector representation of samples learned by the FE model to other similar mod-
els on 49 regression tasks. We report that the representations trained with FE rank first or second in all of the tasks,
surpassing, sometimes by a considerable margin, other representations.

Availability and implementation: A toy example in the form of a Jupyter Notebook as well as the code and trained
embeddings for this project can be found at: https://github.com/TrofimovAssya/FactorizedEmbeddings.

Contact: s.lemieux@umontreal.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA sequencing (RNA-Seq) data offer a snapshot into all the cellu-
lar processes at a specific time. Since the development of high-
throughput sequencing, a multitude of other types of -omics experi-
ments have appeared. RNA-Seq remains nonetheless the most
accessible functional characterization of a biological sample. It is
sufficiently mature to be applied in a clinical context and large-scale
datasets of several thousands samples are readily available. In
practice, once aligned and quantified, each RNA-Seq experiment
yields (for a human sample) a vector of 20K to 60K gene expression
values, depending on the gene annotation selected. Most analyses
involving transcriptomic data, however, apply some kind of filtering
on the genes by either selecting some of them, grouping them by
function, or most of the time applying some type of dimensionnality
reduction (Gibbons and Roth, 2002; Gönen, 2009; Kim and Kim,
2018).

Dimensionality reduction algorithms popular in bioinformatics
analyses are principal components analysis (PCA), t-stochastic

neighbourhood embeddings (t-SNE) (Van Der Maaten et al., 2009)
and uniform manifold approximation and projection (UMAP)
(McInnes et al., 2018). They all compress and encode (embed) the
data into a new vector representation. While this is often done on
samples, it is seldom done on genes. We found that gene representa-
tions are mainly computed in the context of clustering and factoriza-
tion of genes into meta-genes (Brunet et al., 2004; Lemieux et al.,
2017), with the ultimate goal of looking for molecular patterns in
the gene expression data.

Some teams argue for a similarity between gene expression
and bag-of-word representations of text corpora (Asgari and
Mofrad, 2015; Ng, 2017), linking their work to that of Mikolov
et al. (2013) and Pennington et al. (2014), who introduced dis-
tributed vector representations of words to the field of natural
language processing. Upon training their models on word co-
occurrences in context, they found that their representation of
words captured some semantic relationships. This result is con-
sistent with the distributional hypothesis in linguistics, where
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words with similar meaning will be found in similar contexts
(Harris, 1954).

Inspired by their seminal work, Du et al. have used gene co-
expression data to train gene embeddings they called gene2vec,
and reported that their embeddings extract information of both
gene type (protein coding, lncRNA, etc.) as well as tissue speci-
ficity (Du et al., 2019). Recently, Schreiber et al. have published
Avocado, a deep neural network tensor factorization tool speci-
alized in epigenomics data, that learns a representation of the
human genome, allowing for imputation of epigenomics data
and other related tasks (Schreiber et al., 2019). Lastly, similar
work by Choy et al. showcased a shallow artificial neural net-
work (ANN) to represent genes and samples in high-
dimensional embedding spaces, while simultaneously extracting
information about genes and samples (Choy et al., 2019). Choy
et al. reported that they were able to cluster cancers according
to gene expression into meta-groups that may then be used for
predicting immune checkpoint therapy responders (Choy et al.,
2019).

In principle, the model proposed by Choy et al. (2019) yields
an attractive for data-mining double representation of genes
and samples. In this aticle, we extend the idea behind simultan-
eously training a distributed representation for genes and sam-
ples, presented in Choy et al. (2019) to the notion of factorized
embeddings (FE), an ANN that learns independent embedding
spaces to represent factors of RNA-Seq data. We present the
general framework of the FE model and compare it, when pos-
sible, to the models from Choy et al. (2019) and Du et al.
(2019), as well as other standard dimensionality reduction algo-
rithms such as t-SNE, UMAP and PCA. We show that FE cap-
ture biologically meaningful information and are reusable in
auxiliary tasks that involve predicting some biological features
of the dataset.

2 Approach

We term FE the idea behind training a distributed representation
for genes or samples by factorized tensor decomposition. In tran-
scriptomics, to describe a single gene expression value, we refer
to ‘gene Y in sample X’; we propose to treat both samples and
genes as factors that contribute to characterizing the data.
Learning a FE of the data would be learning an embedding space
for each of the factors that contribute to the gene expression
value variation.

2.1 The factorized embeddings model
Each gene expression measurement is a single positive real number.
Each single measurement xij is minimally characterized by a sample i
it came from and a gene j it is measuring. Both the sample and the
gene are the minimal descriptors for this single gene expression
measurement. There may also be other additional descriptors that
may influence the gene expression measurement, such as patient,
batch, sex, race, etc. The data are cast into a narrow format, where
each single measurement xij for sample i and gene j is described by a
series of descriptors.

For clarity, the dataset was built using the two minimal descrip-
tors: The data X is an N�M array, where there are N samples each
of M gene expression measurements.

X ¼ ½x1; x2; . . . ; xN �

So, an RNA-Seq sample i is represented by a vector of M real
values.

xi ¼ ½xi;1; xi;2; . . . ; xi;M�

For each sample i and for each gene j in X, an entry in the dataset
is created. X is transformed into the following two vectors, where
the first contains indices tuples and the second the measured gene
expressions xi;j:

ð1; 1Þ
ð1; 2Þ

..

.

ði; jÞ
..
.

ðN;MÞ

2
6666666664

3
7777777775

x1;1

x1;2

..

.

xi;j

..

.

xN;M

2
6666666664

3
7777777775

Here, each entry in the table on the right is a gene expression
measurement for sample i for all genes 1 to M. The table on the left
is the descriptor table, where the identity of the sample i as well as
the corresponding gene j are recorded. The descriptor table is the in-
put for the neural network, where each doublet of values is an ex-
ample, while the table on the right contains the targets.

We built a neural network where each of the inputs is embedded
in a low-dimensional space of size k. For each field in the inputs, a
function f maps a descriptor into a k-dimensional space f : N! R

k.
These spaces are referred to in the text as embedding or representa-
tion spaces. All k-dimensional coordinates in embeddings space are
concatenated and serve as input for a multi-layer perceptron (MLP).
The embedding of an input pair of descriptors (i, j) (e.g. sample i
and gene j) is done with two functions fsample : i! zsample and fgenes :
j! zgene resulting in the following concatenated input for the MLP:
½zsample; zgene�, where Zsample and Zgene are the k-dimensional embed-
ding spaces in which are represented, respectively, the samples 1
through N and the genes 1 through M.

The concatenated embedding coordinates are then fed through a
series of fully connected layers (collectively referred to as g) and the
final output layer is a single linear neuron, predicting the gene ex-
pression x̂ij for the corresponding descriptors sample i and gene j.

gðzsample; zgeneÞ ¼ x̂ij

All parameters (fh; hs; hgg) for each layer as well as the embed-
ding functions (ffhs

; fhg
g) are optimized together by gradient descent

with a mean-squared error (MSE) loss:

L ¼ 1

N

XN
i¼1

XM
j¼1

ðghðfhs
ðiÞ; fhg

ðjÞÞ � xijÞ2

This model functions with the assumptions that both the samples
and features are independent and identically distributed (IID)
amongst themselves (Murphy, 2012). While this may technically not
be the case, we found most gene expression analyses work under the
assumption of IID genes and IID samples (Maciejewski, 2014).
Moreover, the FE model, by design, attempts to preserve all associa-
tions in the data between samples and features. We found that this
may be in some cases a limitation, especially when the underlying
data structure is not linear in the feature space (Supplementary Fig.
S3). We tested the limits of the FE model on a series of toy datasets
(Supplementary Figs S3–S6) and have made these experiments avail-
able in the Supplementary Material section.

3 Materials and methods

3.1 RNA-Seq data
RNA-Seq data for Genotype-Tissue Expression (GTEx) and The
Cancer Genome Atlas (TCGA) cohorts were downloaded from the
Xena Browser (Goldman et al., 2020). Xena browser offers a plat-
form of re-aligned and quantified data using the same pipeline to
allow for comparison across datasets and across experiments. For
each dataset, the RNA-Seq reads were pseudo-aligned and quanti-
fied with Kallisto (Bray et al., 2016). Gene expression is represented
by transcript per million (TPM) counts. Values were log-
transformed with log 10ðTPMþ 1Þ.

3.2 Tissue-specificity measures
To group genes by tissue specificity, two methods were used. The
first, the Tau index s as described by Yanai et al. (2005), is a meas-
urement of how tissue-specific a gene expression is, comparing to
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the other samples. Briefly, for each tissue type c in C, the average ex-
pression is calculated for all genes and divided by the maximal
value. Then, for each gene j, the sj is calculated with:

sj ¼
PC

c¼1ð1� xj;cÞ
C� 1

The Tau index yields a single value between 0 and 1 for each
gene. Yanai et al. categorize Tau index values between 0 and 0.3 as
housekeeping genes and values above 0.8 as tissue-specific genes
(Yanai et al., 2005).

The second one, the tissue-type Earth-Mover’s distance (EMD) is
the Wasserstein distance for each tissue type done as following.
Given a gene expression matrix of N samples by M genes, and for a
vector tissues C, where each sample i has a tissue c 2 C. For each
gene j 2M and each tissue c 2 C, we calculate the tissue-specific
EMD as the Wasserstein distance between the gene expression of
gene j for all samples that belong to class c and the ones of other
classes:

dEMDj ;c ¼ dEMDðX½1x2c; j�;X½1x 62c; j�Þ

Thus, for every tissue type, we obtain a measure of information
content for each gene, to distinguish between this tissue type and the
others.

3.3 Replicating the results of similar models
We attempted to replicate the results published by Choy et al.
(2019) in order to use their model for comparison to the FE model.
However, despite significant efforts, we were unable to reproduce
embeddings of the quality they presented using the approach as it is
described in their publication. We therefore could only compare our
FE model on the basis of the published embedding weights available
on the author’s Github. Consequently, for these comparisons, we
trained our FE model on the data processed the same way as
described in their publication. Through this work, we maintain com-
parisons to the Choy model when possible.

For the gene2vec model published by Du et al., since it only cre-
ates representations of genes, we compared in (Section 3.8.1) their
reported gene representation to the one learned by the FE model.

3.4 Benchmarks
For each task, we trained a k-nearest neighbours (kNN) regressor
model. Similar to the kNN classifier, the regressor model finds k
neighbours for a new point and outputs the average value for those
points (instead of the majority class). The kNN was trained on 80%
of the data and tested on 20%; this was repeated 100 times for each
task. The performance was measured as the Pearson correlation co-
efficient between the predicted and the actual value. The choice for
the correlation was to promote proportional values instead of exact
values.

3.5 Statistical tests
To compare performances for classifiers trained on various embed-
dings, we performed an ANOVA test followed by Tukey post hoc
testing. Differences in performance were considered statistically sig-
nificant when the corrected P-value was lower than 0.05.

3.6 Model training
The entire FE model, which includes both embedding spaces and sub-
sequent fully connected layers (see Section 2.1), is trained with a MSE
loss function and tanh activation function, Adam optimizer, a L2
regularisation of 10�5 and a learning-rate of 10�3. The model is
implemented in PyTorch (Paszke et al., 2019) and we release the code
online (https://github.com/TrofimovAssya/FactorizedEmbeddings).
We chose an embedding size of 50-dimensional for both genes and
samples and a MLP of 5 layers, respectively of sizes 250, 150, 100, 50
and 10 (see Supplementary Figs). As a reference, for a dataset of 1
000 samples each of 60k transcript expression measurements, the
model trains 500 epochs in 72 h on an NVIDIA GTX 1080 Ti.

3.7 Reconstruction accuracy of the model
As a sanity check, we first compared pair-wise distances between
1500 random sample pairs in original and reconstructed space
(Fig. 1B). This was done to probe if once the data passes through the
model, it preserves the proportions between samples. We found that
the FE model reconstructs with high accuracy the data (Fig. 1B).

Moreover, unlike the locally linear embeddings (LLE) (Roweis
and Saul, 2000) algorithm or to some extent t-SNE, the FE model is
not guaranteed to preserve sample-sample distances in the embed-
ding space. We however report that it is the case for FE, where pair-
wise distances in original feature space for a random subset of pairs
of samples are preserved in embedding space (Fig. 1C), incidentally
better than t-SNE (Fig. 1D).

We finally probed whether the gene expression reconstruction
was performing well on hard to predict genes. We randomly selected
20 individuals for every tissue type in the GTEx cohort and com-
pared the reconstructed by the FE model transcriptome as follows
(Fig. 1E):

• itself (tissueþ/sexþ/personþ)
• other samples of that tissue type, with matching sex (tissueþ/

sexþ/person-)
• other samples of that tissue type, with opposite sex (tissueþ/

sexþ/person-)
• other tissues for that individual (tissue-/sexþ/personþ)

We found that the reconstruction of the transcriptomes was al-
ways closer to the individual than to other matching tissue samples
(Fig. 1E), with a Pearson’s correlation R2 close to 1. As expected,
other tissues for that individual were always less similar to the pa-
tient than other examples of the same tissue. We also found that de-
pending on the tissue type, the other samples of the same tissue were
at varying degrees of similarity, some closer as seen for Spleen and
Breast and some quite far, such as Blood and Small Intestine
(Fig. 1E). We hypothesize that since each sample represents a bulk
tissue, some tissues might have a higher heterogeneity, with multiple
cell lineages represented in each cell subset (Regev et al., 2017;
Wagner et al., 2016). We limit the comparison in reconstruction to
genes with a tissue-specific Earth-Mover’s distance over the 65th
percentile (see Section 3), in other words, genes with high tissue spe-
cificity. While the 65th percentile was selected arbitrarily, the im-
portance to use percentiles is caused by the fact that the EMD
distribution for genes varies between tissue types and so the cutoff
value might vary from tissue to tissue. We do this because we expect
the large proportion of non-tissue-specific genes (e.g. housekeeping
genes) to be well reconstructed and we want to probe the recon-
struction of challenging genes.

Taken together, these results suggest that the FE model recon-
structs with good accuracy each individual sample and preserves the
sample pair-wise distances in the embedding space.

3.8 Factorized embeddings captures biologically

meaningful information on both samples and genes
We found that similarly to t-SNE, the FE model trained on the
GTEx dataset groups samples by tissue types and the FE model
trained on the TCGA dataset groups samples by cancer types. For t-
SNE, grouping of samples in embedding space depends on sample
pair-wise distances, since this is what t-SNE optimizes locally in the
representation (Van Der Maaten et al., 2009). This characteristic is
however not guaranteed in FE, although we found that it is con-
served (Fig. 1C).

For the results presented in Figure 2, we chose four ‘reporter’
genes or groups of genes (displayed for each column) for the follow-
ing characteristics: (i) MYL2, coding for myosin 2 was chosen since
it is expressed only by a small number of tissues (heart and muscle),
(ii) CD8B, a marker of T cells was chosen because it is expressed in
small quantities by many tissues and in high proportion in blood
and spleen, (iii) XIST, a sex-specific gene, expressed only in tissues
belonging to female individuals and (iv) keratin, a group of proteins
expressed widely in epithelial tissues. For each of these reporter
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genes, we wanted to observe how the level of their expression across
samples was represented in the embedding space. We found that the
FE model learns a space where the predicted gene expression for
genes that are common (keratin) or rare (MYL2) across tissues, re-
gardless of their level of expression (CD8B) is smooth (Fig. 2, lower
row). In contrast, we do not find the same smoothness with the t-
SNE representation of the sample space.

Finally, we observed that the preservation of the smoothness of
the space over the gene expression of XIST did not seem to be im-
portant nor for t-SNE, nor for the FE model, which suggests some
sort of selection of genes by importance for the reconstruction. We
found that this is due at least in part to the fact that the XIST gene
and other sex-specific genes have a lower gene expression profile
and constitute a smaller gene group than tissue-specific genes.
Further details that lead to this conclusion can be found in the
Supplementary Material (Supplementary Fig. S9). We conclude here
that no matter the gene expression pattern, be it restricted to only
some tissues, FE orders samples in embedding space according to in-
dividual gene expression.

Moreover, to verify if the embeddings space is dense, we created
a 2500-point grid over the sample embedding space and for each co-
ordinate we generated a new transcriptome, by running it through
the FE model. The sample embedding space was then coloured by
the imputed gene expression and we report that the FE sample
embedding space is dense and allows for interpolation between sam-
ples (Fig. 2, bottom).

While this visual comparison is possible when the embedding
space is two-dimensional, we wanted to evaluate this property of in-
terpolation with the 50D embeddings. Inspired by the vector arith-
metics in embedding space described in Mikolov et al. (2013), we
performed a similar experiment. We trained an FE model on the
GTEx cohort, where multiple tissues are available for the same indi-
vidual donor. Taking one specific donor-tissue combination, we sub-
tracted the centroid coordinates for that tissue and added the
centroid coordinates for a new tissue. The obtained embedding co-
ordinate was then run through the FE model, to generate a new
prototype transcriptome. This prototype transcriptome was com-
pared to the actual transcriptome for that donor–tissue combination
(ground truth), as well as other donors with either matching tissue
type or sex, similar to (see legend in Fig. 3). We report that the
prototype transcriptome imputed by such vector arithmetics is clos-
est to the ground truth than any other transcriptome (Fig. 3, verified
by an ANOVA test followed by a post hoc Tukey test, corrected P-
value <0.01). Moreover, we observe that the reconstructed tran-
scriptome seems to be somewhat closer to other transcriptomes for
that donor, leading us to conclude that the FE model encodes donor-
specific information.

Yanai et al. have suggested that it would be possible to infer an-
cestral tissue profiles using comparisons between gene expression
profiles (Yanai et al., 2005). At that time they had little tissues avail-
able and found three major groups among tissues: (i) Bone Marrow,
Spleen, Thymus and Lung were grouped together and shared a

Fig. 1. The factorized embeddings (FE) model reconstructs data with high accuracy and preserves sample pair-wise distances. (A) Schema of the FE model. (B) Pair-wise

Euclidean distance preservation between 1500 random pairs of samples in original feature space (gene expression) and reconstructed space. (C, D) The FE-trained representa-

tion preserves more accurately than t-SNE pair-wise distances between samples in the embedding space. (E) The FE model allows for precise imputation of transcriptomes on a

patient-level

i420 A.Trofimov et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa488#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa488#supplementary-data


common ancestor on a higher level with (ii) the Pancreas, Prostate,
Kidney and Liver group. This meta-group in turn shared a common
ancestral gene expression with the third group, consisting of Heart

and Muscle (Yanai et al., 2005). We isolated from both t-SNE, PCA
and FE representations the tissues in question and performed a hier-
archical clustering with complete-linkage on the embedding coordi-
nates of the centroids for each tissue group. The FE model was
found to retain roughly the same hierarchy as described in Yanai
et al. (2005), while t-SNE and PCA did not (Fig. 4). From here we
conclude that the FE model retains global gene expression patterns.
It is however possible that this hierarchy is not retained in t-SNE be-
cause of the nature of the t-SNE algorithm, since it only optimizes
for conservation of local dependencies between points (Moon et al.,
2019).

Finally, to compare the learned sample representations to those
reported by Choy et al., we trained two versions of the FE model: (i)
one only on protein-coding genes, to fit what was described by Choy
et al. and (ii) one using all the dataset. We then evaluated these
embeddings and compared them to others obtained by t-SNE, PCA
and UMAP as well as two instances of the FE model, trained on the
two datasets.

For the easiest task—tumour-type classification—we found that
the weights for embeddings of TCGA cohort published by Choy
et al. did not perform as well as all the other representations (Fig. 5).

Taken together, these results suggest that the FE model captures
biologically relevant information in the sample representation.

3.8.1 The nature of gene embeddings

We then concentrated on the gene embeddings, to probe what kind
of information might be captured by the FE model for individual
genes. While sample embeddings offer a multitude of labels and

Fig. 2. The FE-trained sample embeddings are consistent with individual gene expression levels. (Top and middle). Two-dimensional t-SNE and FE of the GTEx cohort col-

oured by the expression level of the four chosen reporter genes. (Bottom) We generated a 2D grid over the embedding space and for every points on that grid, we generated

using the trained FE model a new prototype sample. We coloured the space by the predicted expression of each reporter gene for those prototypes

Fig. 3. Vector arithmetic properties are conserved in the patient space. For each pa-

tient, we compare the prototype transcriptome obtained by vector arithmetics (see

text) to the ground truth (A), other tissues for the same person (B) as well as other

samples of the same tissue (C, D)
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categories, gene embeddings do not have this type of extensive
categorization.

We compared side-by-side the gene embeddings obtained for the
FE model to the weights provided by Choy et al. (2019) as well as
Du et al. (2019). Both Du et al. and Choy et al. chose to train their
models on a limited set of genes, mainly protein coding, and some
microRNAs (24 447 and 20 531 genes, respectively). For the side-
by-side comparison, we focused on protein-coding genes only, to
mimic what was done by the other teams (Choy et al., 2019; Du
et al., 2019).

We found that both the Choy and the FE models and to some ex-
tent the gene2vec model grouped genes by overall tissue specificity
(Tau index) (Fig. 6, top row). However, we report that the FE model
seems to aggregate genes by the maximal EMD for each tumour
type (Fig. 6, middle row). Finally, for each gene, we selected the tu-
mour type for which it is the most specific (see Section 3). We
grouped tumours according to their tissue of origin and found that
FE organizes genes by tissue specificity (Fig. 6, bottom row).

Besides tissue specificity, gene–gene co-expression (measured by
correlation) drives differential gene expression analyses. We found
that correlated genes were located close-by in gene embedding space
(Fig. 7). However, we found that proximity in location in the gene
embedding space does not necessarily mean correlation in gene ex-
pression (Fig. 7).

Our final way of characterizing genes is their involvement in
common cell processes. To probe the recovery of this gene feature,
we selected a range of Gene Ontology terms (GO terms), by gene set
size (Ashburner et al., 2000). The rationale is that the smaller the
GO term gene set size, the more precise the GO term is. We hy-
pothesize that if the gene embeddings capture gene participation in
similar processes, it should group closer together genes participating
in narrow GO terms and vice versa. We found that FE trained on
GTEx but not the Choy nor the gene2vec embeddings preserve the
relationship between GO term size and max Euclidean distance
(Fig. 8). This may be at least in part attributed to the fact that the
Choy model was trained on the TCGA cohort and Du et al. trained
their model on an amalgam of GEO datasets. Indeed, the change in
dataset drastically changes the recovery of the relationship (Fig. 8C
and D). Taken together, our results show that the gene representa-
tions learned by the FE model capture both gene tissue specificity,
co-expression patterns as well as cellular processes and gene type
(Supplementary Material).

3.9 Validation of the embeddings on auxiliary task
We believe that the nature of the RNA-Seq data offers a rich glimpse
into cell processes that goes beyond just gene expression profiles.
For example, mutations in some regions are reported to alter gene
expression and therefore will leave an imprint of the transcriptome
(Audemard et al., 2018). Moreover, Rappoport et al. report that
their computational method performs in some cases best when
trained on RNA-Seq data, compared to training on various multi-
omics datasets (Rappoport and Shamir, 2018). In our work, we
have shown that the embedding spaces learned by the FE model cap-
ture biologically meaningful information—on gene function and
gene–gene co-expression, patient-specific gene expression as well as
tissue-specific gene expression patterns. We wanted to validate the
usage of the FE model as a dimensionality reduction method in a ser-
ies of tasks that involve other types of assays. Conveniently,
Thorsson et al. used the TCGA RNA-Seq data combined with mi-
croscopy, copy-number variant, whole genome sequencing and add-
itional RNA-Seq data processing pipelines to characterize the
tumours from an immunological point of view (Thorsson et al.,
2018). We obtained from their work a total of 49 additional labels
for the samples of the TCGA cohort. We grouped the labels by the
nature of the additional data or algorithm that was required to ob-
tain these labels. These groups are as follows:

• Cibersort refers to the prediction of infiltration of various im-

mune cells obtained by the Cibersort algorithm (Newman et al.,

2015).

Fig. 4. FE learns general gene expression patterns. For FE as well as t-SNE and PCA

embeddings of the GTEx cohort we performed hierarchical clustering over various

tissues originating of either the mesoderm or the endoderm. We coloured each tissue

as the germ layer of origin

Fig. 5. The FE-trained embeddings outperform all other representation in the predic-

tion of cancer type task. We compared the representations of the FE model trained

on all the data (FE) as well as an FE model trained on protein-coding genes only

(FE_PC), to the downloaded weights for the Choy et al. model, a 50D t-SNE, a 2D

t-SNE, a 50D UMAP and a 50D PCA. Each box and whiskers plot represents the

performance of a five-nearest-neighbour classifier model tested on 20% of withheld

data, reshuffled 100 times
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• Thorsson immune profiles are the final immune profile categories

specified by (Thorsson et al., 2018).
• Immune repertoire is a measure of B cell and T cell receptor di-

versity, requiring a special type of quantification done on bulk

RNA-Seq (Bolotin et al., 2015).
• Genomic instability is a group of tasks that includes measures,

such as incidence of synonymous and non-synonymous muta-

tions, aneuploidy score, homologous recombination defects.
• Microscopy refers to tasks that require interpretation of micros-

copy images of tumour biopsies. Examples of such tasks are

quantification of leukocyte fraction and stromal fractions and es-

timation of intra-tumoural heterogeneity.

We hypothesize that the sample embeddings trained by the FE
model contain enough signal to perform on each of these 49 re-
gression tasks. We compare the FE sample embeddings to the
embeddings obtained by a 50-dimensional t-SNE, UMAP, PCA
as well as a 2-dimensional t-SNE. For each task, we trained a
kNN regressor model on 80% of the dataset and test on a held
out 20%. This process was repeated a total of 100 times
(Supplementary Material). Then, we grouped the tasks by the
type of data and ranked performance-wise the various

Fig. 6. Gene embeddings trained with FE group tissue-specific genes. For the gene representations obtained for the Choy, Du and FE models, we calculated for each gene the

Tau index of tissue specificity and a tissue-specific EMD (Section 3). Each point represents a gene and they are coloured by either Tau index or maximal EMD over all tissues.

The bottom row shows genes coloured by the tissue, to which they are specific, obtained by taking the maximal argument over tissue specificities

Fig. 7. FE groups correlated genes together in embedding space. For randomly

selected pairs of genes at various correlation intervals, we measure the pair-wise

Euclidean distance
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embeddings we compared (Fig. 9 A). We found that the FE
model consistently ranked first performance-wise in 60% of the
tasks overall and second in almost 40% (Fig. 9A). The second-
best embedding was the 50-dimensional t-SNE that ranked first
about 30% of the time and second almost 70% of the time
(Fig. 9A). There is no clear distinction in the performance of the
other three embeddings. We verified if the difference in perform-
ance is statistically significant when comparing FE to other
embeddings using an ANOVA test, followed by a post hoc
Tukey test. We report that the FE-trained sample embeddings
outperformed all three UMAP50D, PCA50D and t-SNE2D al-
most 100% of the time (Fig. 9B). However, while the FE-trained
embeddings ranked higher in performance, the difference was not
always statistically significant when compared to the 50-dimen-
sional t-SNE-trained embeddings (Fig. 9B)—notably, for the gen-
omic instability task, none of the performances was statistically
significant (Supplementary Material).

We examined more closely one of these results, the immune rep-
ertoire task, where the FE-trained embeddings outperformed all
other embeddings (Fig. 9B, bottom row and C). We suspect that the
high performance of the FE-trained embeddings on this task is due
to the link between the tumour type and the immune infiltration.
Indeed, it has previously been reported that immune infiltration
varies by tumour type, amongst other things (Thorsson et al., 2018;
Iglesia et al., 2016). We therefore conclude that at least part of the
good performance of the FE-trained embeddings stems from the per-
formance at the easiest task—the tumour-type categorization
(Fig. 5).

4 Discussion and conclusions

Together with the work of Choy, Shreiber and Du and colleagues, the
FE model fits into a small family of self-supervised learning algo-
rithms that perform tensor factorization of the dataset into separate
latent spaces. We demonstrated the utility and performance of FE on
two large-scale RNA-Seq cohort: TCGA and GTEx. When compared
to the most similar model, published by Choy et al. (2019), we found
that FE captures more biologically meaningful information in the
sample and gene embeddings, which is probably due to the fact that
the FE model but not the Choy model uses a set of fully connected
layers on top of the embeddings layers. Unexpectedly, we found that
the FE model preserves gene expression pair-wise distances in embed-
ding space as well as being coherent with both single gene expressions
across samples and more broad gene expression patterns. Moreover,
we found it possible to perform the same type of vector-space arith-
metics in sample embedding space as described in the works of
Mikolov et al. (2013) and Pennington et al. (2014), transforming one
tissue into the other, while preserving the patient-specific gene expres-
sion profile. This feature is something that non-parametric distance-
based approaches, such as t-SNE, do not allow, since there is no way
to reconstruct the data from the representation.

Finally, we demonstrated the utility of the encoding samples into
a smaller, information-rich representation, by running a total of 49
benchmark tasks that involve predicting results from other assays on
the same samples. We found that FE-trained representations rank
mostly first and sometimes second and outperforms all the other
dimensionality reduction algorithms on all 49 benchmarks. We

Fig. 8. The FE-trained on GTEx gene representations capture GO term participation. We selected GO terms with increasing gene set size (and decreasing specificity) and calcu-

lated for each gene set the maximal intra-set distance in the various embedding spaces. We calculate a Pearson correlation coefficient for (A) Choy, (B) gene2vec (Du), (C) fac-

torized embeddings trained on cancer samples and (D) FE trained on healthy tissues
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found that in a small amount of cases, it is not statistically different
from the performance of a 50-dimensional t-SNE. We would like to
point out one of the possible limitations behind the performance of
the benchmark experiments is that most of these labels are closely
related to the tumour type and therefore some of the outstanding
performance of the FE-trained embeddings may be attributable to
this. Also, we were unable to identify gene categories standing out
within the gene embedding space. This likely reflects the fact that
most genes are multi-functional and involved in several processes
across different tissue types and cancers. It is also unfortunate that
very little categories are available for genes besides GO annotation,
which are mostly derived from the study of healthy tissues. One pos-
sible extension would be to add some notion of gene function and/or
localization that is available in the literature.

An appealing feature of the FE model is that it can, with little
adjustments, be adapted to train on large-scale multi-omics datasets
by introducing supplementary embedding spaces and jointly opti-
mizing as many functions gðÞ (see Sections 2 and 3) as there are sour-
ces of observations, which could very well be additional clinical
information on patients. Embeddings representing spaces shared by
multiple data sources would be constrained to integrate these sour-
ces. This extension would naturally take advantage of the fact that
our approach is not affected by missing data. Importantly, it would
not require that datasets be complete, where all modalities would be
measured for all samples. Furthermore, exploiting this later feature
would support the use of the FE model for missing data imputation.
More challenging would be the extension of the FE model to less
‘categorical’ spaces, a direction we have previously explored, in a
limited context, by adapting the FE model to the work with tran-
script sequences instead of relying on a predefined transcriptome an-
notation (Trofimov et al., 2018). Non-trivial implementation issues,
resulting in poor scalability of the proposed model, have so far lim-
ited its development.

We believe that the FE model is a highly customizable architec-
ture that provides a strong foundation to develop omics-based

predictors based on integrated data sources, resilient to missing data
and provide similar benefits to other dimensionality reduction tech-
niques in extracting patterns from omics data.
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