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Abstract 

Background: This study aimed to evaluate the artificial intelligence (AI)-based coronary artery calcium (CAC) quanti-
fication and regional distribution of CAC on non-gated chest CT, using standard electrocardiograph (ECG)-gated CAC 
scoring as the reference.

Methods: In this retrospective study, a total of 405 patients underwent non-gated chest CT and standard ECG-gated 
cardiac CT. An AI-based algorithm was used for automated CAC scoring on chest CT, and Agatston score on cardiac 
CT was manually quantified. Bland-Altman plots were used to evaluate the agreement of absolute Agatston score 
between the two scans at the patient and vessel levels. Linearly weighted kappa (κ) was calculated to assess the reli-
ability of AI-based CAC risk categorization and the number of involved vessels on chest CT.

Results: The AI-based algorithm showed moderate reliability for the number of involved vessels in comparison to 
measures on cardiac CT (κ = 0.75, 95% CI 0.70–0.79, P < 0.001) and an assignment agreement of 76%. Considerable 
coronary arteries with CAC were not identified with a per-vessel false-negative rate of 59.3%, 17.8%, 34.9%, and 34.7% 
for LM, LAD, CX, and RCA on chest CT. The leading causes for false negatives of LM were motion artifact (56.3%, 18/32) 
and segmentation error (43.8%, 14/32). The motion artifact was almost the only cause for false negatives of LAD 
(96.6%, 28/29), CX (96.7%, 29/30), and RCA (100%, 34/34). Absolute Agatston scores on chest CT were underestimated 
either for the patient and individual vessels except for LAD (median difference: − 12.5, − 11.3, − 5.6, − 18.6 for total, 
LM, CX, and RCA, all P < 0.01; − 2.5 for LAD, P = 0.18). AI-based total Agatston score yielded good reliability for risk 
categorization (weighted κ 0.86, P < 0.001) and an assignment agreement of 86.7% on chest CT, with a per-patient 
false-negative rate of 15.2% (28/184) and false-positive rate of 0.5% (1/221) respectively.

Conclusions: AI-based per-patient CAC quantification on non-gated chest CT achieved a good agreement with 
dedicated ECG-gated CAC scoring overall and highly reliable CVD risk categorization, despite a slight but significant 
underestimation. However, it is challenging to evaluate the regional distribution of CAC without ECG-synchronization.
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Background
Coronary artery calcium (CAC) score is a robust imag-
ing surrogate of atherosclerosis burden and has been 
proven to be a useful tool for cardiovascular disease 
(CVD) risk stratification and primary prevention with 
well-established clinical evidence [1–3].

CAC is traditionally evaluated on dedicated electro-
cardiography (ECG)-gated non-contrast cardiac CT 
and reported as a total Agatston score at the patient 
level [4]. However, several studies have indicated that 
the number of coronary arteries with positive CAC 
added to the total Agatston score for risk stratifica-
tion and prediction of cardiac events [5–9]. Both 
total Agatston score and regional distribution of CAC 
should be reported as recommended in the latest CAC 
data and reporting system (CAC-DRS) [4].

Recently, CAC quantification on non-gated chest 
CT has emerged as an alternative to standard CAC 
scoring on ECG-gated cardiac CT, regardless of sub-
optimal image quality [10–12]. Since cardiovascular 
risk factors also contribute to non-cardiovascular dis-
eases such as lung cancer, participants would benefit 
from CAC scoring for assessment of the risk of CVD 
and lung cancer on chest CT without additional radia-
tion exposure [10–13]. Previous studies implied that 
the calcium regional distribution combing with total 
Agatston score should be evaluated across non-gated 
and ECG-gated scans, however, it has not been vali-
dated in direct comparison with measurements on 
ECG-gated CT scans [9, 14].

It is time-consuming and challenging for manual CAC 
scoring and even more difficult to identify the involve-
ment of individual coronary arteries on non-gated chest 
CT since there are frequent motion artifacts and noise. 
Algorithms based on artificial intelligence (AI) have 
shown the potential for efficient CAC scoring on chest 
CT [11, 15–18]. A few latest studies have validated the 
accuracy of AI-based vessel-specific or even lesion-
specific CAC quantification on ECG-gated cardiac CT 
[4, 19, 20]. However, it remains unknown whether AI-
based automated vessel-specific CAC assessment on 
chest CT is comparable to dedicated measurements 
on cardiac CT and how the CAC distribution would 
affect the accuracy of quantification of total CAC score. 
The comprehensive comparison is essential because it 
would be helpful for the improvement of the AI algo-
rithm and facilitate the utility of automated CAC scor-
ing on routine chest CT examinations.

Therefore, this study aimed to investigate the perfor-
mance of AI-based automated quantification of the total 
CAC score and risk categorization and vessel-specific 
CAC assessment on non-gated chest CT, using standard 
CAC scoring on ECG-gated cardiac CT as a reference 
standard.

Materials and methods
Study participants
From 1st August 2019 to 31st December 2020, 3982 
patients with known or suspected coronary artery dis-
ease underwent standard ECG-gated cardiac CT, and 516 
of them underwent routine non-contrast non-gated chest 
CT for lung cancer screening or other diagnosis pur-
poses, such as routine physical examination, in the same 
session. The median time gap between ECG-gated car-
diac CT and non-gated chest CT was 2 days (interquar-
tile range [IQR] 1–4 days) and ranging from 0 to 18 days.

The exclusion criteria are shown in Fig. 1. Eight patients 
were excluded because the thin slices images are not 
available, and seven patients were excluded because of 
coronary origin anomalies. Metal implantation (n = 58) 
included coronary stent (n = 45), coronary bypass grafts 
(n = 6), prosthetic valves (n = 5) and permanent pace-
makers (n = 4). Since motion artifacts are an inherent 
limitation of chest CT without ECG synchronization, 
patients with motion artifacts were not intentionally 
excluded, only those with extremely severe motion arti-
facts and a high level of noise that it was difficult to iden-
tify coronary artery and CAC even manually (n = 37). 
Finally, 405 patients were included in this study (Fig. 1).

ECG-gated cardiac CT and diagnostic chest CT were 
retrospectively and anonymously collected. The need for 
informed consent was waived by our Institutional Review 
Board.

CT imaging protocols
ECG‑gated non‑contrast cardiac CT
The acquisition protocols of dedicated prospective 
ECG-gated non-contrast cardiac CT are summarized 
in Table  1. Standard cardiac CT scan was in sequential 
mode at a tube voltage of 120 kVp and automated tube 
current modulation (CARE Dose 4D, Siemens Health-
ineers, Erlangen, Germany) with sets of reference mAs 
at 80 and a matrix size of 512 pixels. Trans axial images 
were reconstructed using the medium sharp convolu-
tion kernel (Qr36) with a 3.0-mm section thickness and 
an increment of 1.5 mm. The center phase of the cardiac 
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Fig. 1 Flow chart showing inclusion and exclusion of patients

Table 1 Protocols of non-gated chest CT and ECG-gated CT

a median (interquartile range); bmedian (interquartile range)

CAC  Coronary artery calcium, CT Computed tomography, ECG Electrocardiography, DLP Dose-length production, ED Effective dose

Chest CT ECG-gated Cardiac CT

Scanner SIEMENS Definition SIEMENS Definition AS TOSHIBA AquilionOne SIEMENS Force

N 202 98 105 405

Rot.(s) 0.5 0.5 0.5 0.25

Exposure Time/Rot.(s) 0.5 0.5 0.5 0.15

Pitch 0.95 1.2 0.83 NA

Collimator (mm) 1.2 × 24 0.6 × 64 0.5 × 32 1.2 × 40

Inplane resolution (mm) 0.77 × 0.77 0.73 × 0.73 0.78 × 0.78 0.33 × 0.33

Convolution Kernel B30f, B35f B30f, B35f FC18 Qr36f

DLP(mGy*cm)a 186 (164–243) 284 (213–347) 338 (251–416) 35 (28–33)

EDvol(mSv)b 2.6 (2.3–3.4) 4.0 (3–4.9) 4.7 (3.5–5.8) 0.5 (0.4–0.5)

Slice thickness (mm) 1.5 1.5, 2.0 2.0 3.0

Increment (mm) 1.2 1.2,1.5 1.5 1.5
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cycle to trigger the scan was 40% or 70% of the R-R inter-
val according to the patient’s heart rate.

Non‑gated non‑contrast chest CT
As shown in Table  1, non-contrast non-gated chest CT 
was performed on multiple scanners. The tube voltage 
was 120 kVp, and the tube current was modulated auto-
matically. Images were reconstructed with a standard soft 
convolution kernel with slice thickness varying from 1.5 
to 2.0 mm and a matrix size of 512 pixels.

Radiation dose
To calculate the effective dose (ED) of the cardiac and 
chest CT, the dose-length product (DLP) was multiplied 
by the conversion coefficient (k = 0.014) [21, 22].

CAC measurements
CAC scoring on ECG‑gated cardiac CT
CAC scores on ECG-gated cardiac CT were evaluated 
using semiautomatic software on a dedicated worksta-
tion (CaScoring, Syngo. Via VB20; Siemens Health-
ineers, Erlangen, Germany) with a threshold of 130 HU 
and minimum area of 1.0   mm2 [23]. CAC lesions were 
manually annotated to the left main trunk (LM), left 
anterior descending artery (LAD), circumflex (CX), and 
right coronary artery (RCA) by two radiologists (J.Y and 
H.SH) with over 10 years of experience in cardiovascular 
imaging independently. The discrepancies were resolved 
through discussion and CAC scores were then averaged. 
The number, volume  (mm3), effective calcium mass (mg), 
and Agatston score of CAC were recorded for the patient 
and individual arteries. The Agatston score of each coro-
nary artery and total Agatston score were used for analy-
ses and served as a reference.

AI‑based CAC scoring on non‑gated chest CT
All non-gated chest CT images were imported into com-
mercially available AI-based automated CAC scoring 
software (CACScoreDoc; ShuKun Technology, Beijing, 
China), which was implemented at a regular worksta-
tion to calculate the CAC score. Details of the AI-based 
algorithm are described in Additional file  1. Briefly, 
this software was based on a deep learning algorithm 
and was trained on multi-scanner and multi-hospital 
anonymized external chest CT databases. A two-step 
deep learning workflow was used to accomplish cardiac 
segmentation, and coronary artery calcified lesion seg-
mentation and classify them according to the branches 
[see Additional file 1: Fig. 1]. Based on the segmentation 
results, the volume, mass, and Agatston scores within 
the coronary tree (LM, LAD, CX, and RCA) were calcu-
lated and recorded.

Manual CAC scoring on chest CT
The distribution of CAC involvement in each coronary 
artery was also manually evaluated on non-gated chest 
CT, that is a previous test to assess the feasibility and 
possible effects without ECG-synchronization. More 
details are included in the Additional file 2.

Number of vessels with CAC 
Agatston scores were rounded and classified as Agatston 
score = 0 and Agatston score ≥ 1 to determine the 
absence and presence of CAC. The number of vessels 
with CAC was calculated as an ordinal variable indicat-
ing the cumulative involvement of the LM, LAD, CX, and 
RCA on both chest and cardiac CT, and patients were 
classified into N1(1-vessel), N2(2-vessels), N3(3-vessels), 
and N4 (4-vessels) according to CAC-DRS, and N0 indi-
cates no calcium involvement of arteries [4, 9].

CAC risk categories
The participants were classified into four risk groups 
based on the total Agatston score on non-gated chest 
CT and ECG-gated cardiac CT according to CAC-DRS: 
very low risk (A0, CAC = 0), mild risk (A1, CAC = 1–99), 
moderate risk (A2, CAC = 100–299), and moderate to 
severe risk (A3, CAC ≥ 300) [4].

Statistical analysis
Normally distributed continuous data are presented as 
the mean ± standard deviation and non-normally distrib-
uted data as median and IQR (25th–75th percentile).

Cohen’s linearly weighted kappa (κ) was calculated 
to assess the reliability of AI-based classification of the 
number of vessels with CAC in comparison to measure-
ment on cardiac CT. The per-vessel sensitivity, speci-
ficity, and the false-negative and false-positive rates of 
automated identification of involved coronary arteries on 
chest scans were calculated. The mismatched AI-based 
Agatston scores and risk category shifts on non-gated 
chest CT were reviewed by two radiologists. Potential 
causes for errors were identified via discussion.

In patients or individual arteries with positive CAC on 
ECG-gated cardiac CT, the correlation of the Agatston score 
between non-gated chest CT and ECG-gated cardiac CT 
was assessed using the Spearman correlation coefficient (ρ), 
and the Agatston score difference between the two scans 
was evaluated using the Wilcoxon signed-rank test.

Agreement and reliability between the two scores were 
reported following previously published guidelines [24]. 
Bland-Altman plots with 95% limits of agreement were 
used for the evaluation of the agreement of the Agatston 
score between the two methods. Due to the half-normal 
distribution of CAC difference between the two methods, 
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the 95% limits of agreement in Bland–Altman plots were 
calculated for total and vessel-specific Agatston scores 
using a regression model in previous studies [25].

The reliability of AI-determined Agatston risk categori-
zation on chest CT was evaluated using Cohen’s linearly 
weighted kappa (κ) in comparison to the reference stand-
ard on cardiac CT, and the proportion of agreement was 
determined. The kappa was interpreted following a previ-
ous report [26].

Two-tailed P values < 0.05 were considered statistically 
significant. Statistical analyses were conducted using 
SPSS V27.0 (IBM Corp, Armonk, NY, USA).

Results
Patient characteristics
Characteristics of all 405 included patients are shown in 
Table 2. The mean age was 59.6 ± 11.8 years, and 42.0% 

were female. The median body mass index (BMI) was 
24.8 (IQR 22.8–27.4).

Number of vessels with CAC 
Table 3 compares the classification of the number of ves-
sels with CAC between chest CT and ECG-gated cardiac 
CT. The AI-based algorithm showed moderate reliabil-
ity for the number of involved vessels in comparison to 
that on dedicated cardiac CT (κ = 0.75,95%CI 0.70–0.79, 
P < 0.001) and an assignment agreement of 76%. The 
patients were divided into three groups according to 
Agatston score on ECG-gated cardiac CT. The over-
all accuracy of assignment of number of involvement 
was 44.7%, 46.5%, and 57.9% on non-gated chest CT for 
patients with ECG-gated CAC score of 1–99 (A1), 100–
299 (A2), and ≥ 300 (A3) respectively (Fig. 2).

Per-vessel analyses showed that the AI-based algo-
rithm yielded a sensitivity of 40.7% (22/54 vessels), 82.2% 
(134/163 vessels), 65.1% (56/86 vessels) and 65.3% (64/98 
vessels), with false-negative rates of 59.3% (32/54 vessels), 
17.8% (29/163 vessels), 34.9% (30/86 vessels), and 34.7% 
(34/98 vessels) for LM, LAD, CX and RCA respectively, 
and a specificity of 99.2% (348/351 vessels), 98.4% (238/242 
vessels), 99.4% (317/319 vessels) and 100% (307/307 ves-
sels) for LM, LAD, CX and RCA respectively. False posi-
tives were observed in 0.9% of LM (3/351 vessels), 1.7% of 
LAD (4/242 vessels), 0.6% of CX (2/319 vessels).

For false negatives of LM CAC, the main causes were 
motion artifacts (56.3%, 18/32 vessels), and segmentation 
error (43.8%, 14/32 vessels). The motion artifact was the 
only cause for false negatives of LAD, CX, and RCA. The 
leading cause of false positives was segmentation error, 
that is, misidentification of calcium on adjacent coronary 
arteries or structures such as the aorta, pericardium, rib, 
or lymph node. None of the RCA with no CAC on car-
diac CT was falsely identified as calcified artery on chest 
CT. Figure  3 shows some examples of discordant pairs 
between chest CT and ECG-gated cardiac CT.

Table 2 Patient characteristics

a mean ± standard deviation, bmedian (interquartile range)

CAC  Coronary artery calcium, ECG Electrocardiography, CVD Cardiovascular 
disease

Characteristic

Age (years)a 59.6 ± 11.8a

Sex

 Female n (%) 170 (42.0)

 Male n (%) 235 (58.0)

Body mass index (kg/m2)b 24.8 (22.8–27.4)b

Hypertension n (%) 130 (32.1)

 Systolic blood pressure (mmHg)a 127 ±  17a

Hyperlipidaemia n (%) 180 (44.4)

Diabetes n (%) 40 (9.9)

Tobacco abuse

 Current smoker n (%) 154 (38.0)

 Ex-smoker n (%) 24 (5.9)

Family history of CVD n(%) 24 (5.9)

Table 3 Automated number of involved vessels on chest CT versus measurements on cardiac CT

N0 No involved vessels with CAC, N1 Patients with 1-vessel CAC, N2 Patients with 2-vessel CAC, N3 Patients with 3-vessel CAC, N4 Patients with 4-vessel CAC; Bold 
values indicate concordant classification between the two methods

Refernce Number of vessels_Cardiac CT

Automated Number of vessels_
Chest CT

N0 N1 N2 N3 N4 Total

N0 220 24 1 3 0 248

N1 1 40 24 12 1 78

N2 0 0 23 12 4 39

N3 0 0 1 17 13 31

N4 0 0 0 1 8 9

Total 221 64 49 45 26 405
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Quantification of absolute CAC score
In patients with positive CAC on ECG-gated cardiac 
CT(n = 184), the correlation between chest CT and 
ECG-gated cardiac CT for the total Agatston score was 
very strong (Spearman coefficient ρ = 0.95, P < 0.001). 
Among coronary arteries with positive CAC, the cor-
relation between the two methods was strong for the 
Agatston score of LAD, CX, and RCA (ρ = 0.88, 0.80, and 
0.81 respectively, all P < 0.001), but only moderate for the 
Agatston score of LM (ρ = 0.58, P < 0.01).

The absolute Agatston scores at the patient and ves-
sel levels are summarized in Table  4. Analyses for each 
risk category showed that the difference between the 
two scores tended to increase as CAC increased. Total 
Agatston score was significantly underestimated for all 
participants and each CAC risk group, especially in the 
category of ≥ 300 (median 570.8 vs. 519.1, P < 0.01), as 
well as the CAC score on RCA (median 188.5 vs. 78.8, 
P < 0.01).

Bland–Altman plots showed a slightly systematic 
underestimation of the total Agatston score but relatively 
narrow limits of agreement (Fig. 4A). For vessel-specific 
CAC scores, Bland–Altman plots showed good agree-
ment between non-gated chest CT and standard ECG-
gated cardiac CT for CAC scores on LAD with narrower 

limits of agreement (Fig.  4C). In contrast, there was a 
slight but significant underestimation of AI-based CAC 
scores of LM, CX, and RCA compared to standard meas-
urements on ECG-gated cardiac CT. Most discordant 
pairs were below the median bias, and the limits of agree-
ment were relatively wider (Fig. 4B, D, E).

CVD risk categorization
The confusion matrix in Table 5 compares the CVD risk 
categorization based on the Agatston score between the 
two methods. AI software assigned 351 patients to cor-
rect Agatston risk stratification defined by the ECG-
gated Agatston score with a linearly weighted κ value 
of 0.86 (95%CI 0.83–0.90; P < 0.001), and an assignment 
agreement of 86.7%.

In all fifty-four misclassified patients, forty-seven 
shifted downward and seven shifted upward by one cat-
egory. Regarding the presence and absence of CAC, the 
per-patient false-negative rate was 15.2% (28/184) and 
the per-patient false-positive rate was 0.5% (1/221).

Discussion
In this study, AI-based automated Agatston scores on 
non-gated chest CT were compared with standard meas-
urements on ECG-gated cardiac CT at the patient and 
vessel levels. The AI-based method only yielded mod-
erate reliability for the identification of the number of 
arteries with CAC on chest CT, with a high false-nega-
tive rate of LM, CX, and RCA with CAC except for LAD. 
Nevertheless, the agreement of automated quantification 
of the total Agatston score on chest CT was good in com-
parison to standard ECG-gated CAC scoring, and the 
reliability for risk categorization was high.

Although AI-based algorithms have yielded an almost 
perfect vessel-specific CAC assessment on EC-gated car-
diac CT [19, 20], the performance could be substantially 
reduced without EG-synchronization. LM showed a high 
false negative rate and lower Agatston score correlation 
to the reference standard compared to other vessels. It is 
difficult for automated distinguishing CAC on LM from 
lesions on adjacent LAD and CX calcium or aortic, mitral 
valvular lesions on chest CT, and even for manual CAC 
detection on ECG-gated cardiac CT, [10, 13, 14, 17, 18] 
or manual measurements on chest CT [see Additional 
file  2: Table  1]. Among all coronary arteries, RCA was 
more susceptible to motion artifacts than other arteries 
due to its higher velocity during the cardiac cycle, which 
is sometimes unevaluable even with ECG triggering [27]. 
The false negatives of CAC involvement in individual 
coronary arteries would result in the underestimation of 
the number of involved vessels, especially for the N3(3-
vessels) and N4(4-vessels) groups. Given that CAC in LM 
and increased number of involved vessels may add an 

Fig. 2 Comparison of the number of vessels with CAC between 
non-gated chest CT and ECG-gated cardiac CT. The patients with 
positive CAC are classified into 3 groups according to standard CAC 
scores on ECG-gated cardiac CT (A1:1–99,A2:100–299,A3: ≥ 300).
Note that among patients of category A1, twenty-eight are falsely 
identified as N0 on chest CT. The color bar on the top indicates the 
category shifts of the number of involved vessels. (0 = correctly 
identification, 1 = 1vessel not identified, 2 = 2 vessels not identified, 
3 = 3vessels not identified and 4 = 4 vessels are not identified)
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incremental prognostic value to the total Agatston CAC 
score, this would be a specific shortcoming of chest CT for 
per-vessel CAC scoring compared to dedicated cardiac CT 

[11, 14, 19, 20]. A motion-correction algorithm is desirable 
and segmentation accuracy should be improved for the AI 
algorithm, as indicated in a previous phantom study [28].

Fig. 3 Examples show potential causes of discordances of Agatston scores between chest CT and cardiac CT. For each case(A-H), the upper row 
is AI-based scoring on chest CT, and the lower row is the manual measurement on cardiac CT. CAC lesions were annotated with different colours 
(i.e., green for LM, yellow for LAD, blue for CX, red for RCA, and pink for non-coronary calcifications). A. False negatives due to motion artifact, B. 
Underestimation due to motion artifact (Agatston score:57.7 versus 225.0 between chest CT and cardiac CT). C. False positive due to image noise 
on chest CT, it is not identified because of tiny size and lower density (< threshold of 130HU) on standard cardiac CT. D. Overestimation due to 
motion artifact (Agatston score:126.0 versus 88.0 between chest CT and cardiac CT). E. Segmentation error, CAC of LM (green on cardiac CT) is 
falsely identified as calcification of LAD (yellow on chest CT). F. Segmentation error combined with motion artifact, CAC of LM (green on cardiac 
CT) is wrongly identified as CAC of LAD (yellow on chest CT) and blurred due to motion artifact. G. Segmentation error, calcification of liver is 
misidentified as CAC of RCA. H. Segmentation error, part of CAC of LAD is misidentified as non-coronary calcification, resulting in underestimation 
(Agatston score:48.1 versus 713.2 between chest CT and cardiac CT)
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Further analyses found that the underestimation 
of the number of involved vessels most frequently 
occurred in patients with Agatston score ranging from 
1 to 300, especially in patients with the CAC category 
of 1–99. Without ECG-triggering, the coronary artery 
involvement with smaller or less dense calcium would 
be more easily misclassified due to motion artifact, 
imaging noise, or partial volume effects. The accuracy 
of the number of involved vessels was similar even with 
manual measurement within intermediate CAC scores 
[see Additional file 2: Table 2 and Fig. 1). Several previ-
ous studies indicated that the regional calcium distri-
bution provided significantly incremental prognostic 
value in patients with intermediate Agatston scores 
(1–300), but not in Agatston scores of > 300 [8, 9, 29]. 
Therefore, this would be a major drawback of non-
gated vessel-specific CAC scoring for risk stratification 
and prognosis prediction.

Although there was only moderate reliability in the 
assessment of the regional distribution of CAC, auto-
mated quantification of Agatston score at the patient 
level on chest CT showed a good agreement in compari-
son to cardiac CT. This may be attributed to considerable 
heterogeneity between the number of involved vessels 
and total Agatston score [5, 7, 9]. The majority of patients 
with a Agatston category of 1–99 have CAC in one vessel, 
and 4-vessel CAC mainly contributed to a Agatston score 
of > 300 [9, 29]. Among all four main coronary arteries, 
LAD was the most common location of positive CAC. 
Automated quantification of CAC was more correct 
in LAD than measurements in other involved arteries. 
Moreover, the effects of underestimation of individual 
CAC scores will be offset by summing all per-vessel CAC 
scores together. Taking together, regardless of the sub-
stantial underestimation of vessel-specific CAC, total 
Agatston score on chest CT was accurate using the AI-
based algorithm.

It should be emphasized that the total Agatston score 
rather than the number of involved vessels is a major 
metric of CAC and an established surrogate for CVD 
risk stratification, and there is no sufficient evidence 
to change risk stratification based on the number of 
involved coronary arteries [4]. From this point of view, 
it is of clinical significance that automated quantification 
of CAC score on chest CT was comparable to standard 
ECG-gated CAC scoring, despite a slight but systemic 
underestimation (median difference − 12.5). The findings 
were similar to the results in previous reports on chest 
CT with a high-temporal high-pitch CT, but the differ-
ence between the two scores was relatively larger in the 
current study [30, 31]. Nevertheless, it is of note that the 
imaging protocols of chest CT in our study were much 
more various. The results of the current CT were in line 
with the previous study with that of multiple protocols 
and strengthened the previous conclusion by direct com-
parison to dedicated ECG-gated cardiac CT [17]. Since 
image acquisition protocols may not necessarily satisfy 
the 2016 SCCT guidelines, it is meaningful that the AI-
based per-patient CAC scoring on daily routine chest CT 
examination across multiple protocols was comparable to 
the measurements on dedicated ECG-gated CT [32].

Compared to the reference on ECG-gated cardiac CT, 
the reliability of non-gated chest CT for CVD risk cate-
gorization was strong based on the total Agatston score 
(agreement of assignment 86.7% and weighted κ 0.86). 
This result was consistent with previous studies that 
compared manual CAC scoring on chest CT in compari-
son to ECG-gated cardiac CT or manual measurement 
on non-gated CT [15–17, 33]. According to a standard 
reference on cardiac CT, AI misclassified 28 patients into 
the category of zero with a per-patient false-negative 

Table 4 Automated total and per-vessel non-gated Agatston 
scores versus ECG-gated measurements

ECG Electrocardiography, AI Artificial intelligence, CAC  Coronary artery calcium

Agatston_ECG Agatston_AI P value

All CAC >  0a Total (n = 184) 73.1(26.2–
256.2)

63.3(11.6–
221.8)

< 0.001

LM (n = 54) 41.2(9.3–114.7) 0(0–50.4) < 0.001

LAD (n = 163) 56.6(15.3–
147.2)

45.7(8.5–142.8) 0.18

CX (n = 86) 31(5.7–81.9) 17.5(0–73.9) < 0.01

RCA (n = 98) 46(10–141.1) 14.8(0–79.5) < 0.001

Risk  Categoryb

1–99 Total (n = 103) 30.6(9.9–51.9) 13.9(0–39.5) < 0.001

LM (n = 16) 8.3(1.9–27.3) 0(0–0) < 0.001

LAD (n = 83) 17.1(4.4–38.8) 12(0–32.4) < 0.01

CX (n = 32) 9.3(2.7–32.1) 0(0–21) < 0.001

RCA (n = 37) 9.9(2.2–27.2) 0(0–14.4) < 0.001

100–299 Total (n = 43) 163.3(140–
245.9)

142.4(95–
223.1)

0.02

LM (n = 15) 41.4(15.3–82.1) 0(0–49.2) 0.11

LAD (n = 42) 126.9(77.5–
151.2)

99.7(43.8–
145.5)

0.20

CX (n = 19) 23.7(12–33.9) 5.3(0–55.3) 0.26

RCA (n = 25) 50.7(11.7–
105.2)

14.3(0–93.3) 0.02

≥ 300 Total (n = 38) 570.8(423.1–
889.2)

519.1(310–
922.7)

< 0.01

LM (n = 23) 103.2(58.1–
220.6)

9.4(0–122.8) 0.08

LAD (n = 38) 270.5(141.8–
444.7)

298(150.6–
457.1)

0.24

CX (n = 35) 114.4(32.2–
199.1)

81.5(17.4–
184.7)

0.24

RCA (n = 36) 188.5(104.2–
318.2)

78.8(18–222) < 0.001
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rate of 15.2%. Since a CAC score of zero has a special 
power for the prediction of very low CVD risk and the 
CAC-based CVD category was recommended for statin 
treatment, the underestimation of the CVD risk category 
would impact the initial therapy decision or preventive 
strategy [4, 34, 35]. Nevertheless, this may be a com-
mon shortcoming of AI-based algorithms for CAC scor-
ing [15, 17]. In this study, most patients (129/183) with 

discordant total Agatston scores between the two meth-
ods were assigned to correct risk categories although 
there was a downward shift trend of risk category. These 
results further indicated that the error of the absolute 
total Agatston score may be acceptable for risk categori-
zation, only those near the cutoff would lead to the shift 
of category and may have potential effects on clinical 
practice [30, 31, 36].

Fig. 4 Bland–Altman plots of Agatston scores of CAC. Dashed lines show 95% limits of agreement. The average score from ECG-gated CAC 
scoring and AI-based automated quantification on non-gated CT is plotted against the difference between the two methods, the difference is 
Agatston score on chest CT minus the measurement on cardiac CT. The plots reveal underestimated calcium scores with the automated method 
on non-gated CT and an increasing difference with a high average score. A regression of absolute difference (X) is performed, and 95% limits of 
agreement (Y) are calculated as follows: Y = (− 8.25 + 5.26 *X0.5)*1.96 *(π/2)0.5 for Total Agatston score (A), Y = (− 17.53 + 10.96*X0.5)*1.96 *(π/2)0.5 for 
Agatston scores of Left main trunk (LM) (B), Y = (− 19.95 + 7.38*X0.5)*1.96 *(π/2)0.5 for Agatston scores of left anterior descending artery (LAD) (C), 
Y = (− 50.70 + 13.76*X0.5)*1.96 *(π/2)0.5 for Agatston scores of circumflex (CX) (D) and Y = (− 19.22 + 10.07*X0.5)*1.96 *(π/2)0.5 for Agatston scores of 
Right coronary artery (RCA)(E) respectively
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There were several limitations to this study. First of all, 
it is a retrospective study with a small sample size, nev-
ertheless, the distribution of the number of vessels with 
CAC and combing Agatston category was similar to pre-
vious reports [9]. Although it is difficult to identify the 
number of involved vessels in non-gated CT even with 
manual visualization, it is essential to investigate longi-
tudinal prognosis value of the automated Agatston score 
and the regional distribution of CAC on non-gated chest 
CT. Second, the thin slice thickness images were directly 
used for CAC scoring, this would be the concern of bias, 
nevertheless it might be reasonable since previous study 
showed the accuracy of thin and standard 3-mm slices 
are similar [37]. Last, Standard rather than low-dose non-
gated chest CT was performed in the study, although 
the radiation dose was close to the recommendation in 
guidelines for lung screening CT [38, 39].

Conclusion
AI-based automated quantification of CAC scores from 
non-gated chest CT was comparable to the standard 
CAC scoring using ECG-gated CT with good agreement 
and high reliability. However, it is challenging to evalu-
ate vessel-specific CAC without ECG synchronization. It 
would support CAC quantification on non-gated CT as a 
clinical approach for cardiovascular risk prediction inte-
grated with chest CT, but the motion-correction algo-
rithm and more powerful segmentation are desirable and 
eligible participants should be selected.
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