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Introduction. Prenatal programming secondary to maternal protein restriction renders an inherent susceptibility to neural
compromise in neonates and any addition of glucocorticosteroids results in further damage. This is an investigation of consequent
global gene activity due to effects of antenatal steroid therapy on a protein restriction mouse model.Methods. C57BL/6N pregnant
mice were administered control or protein restricted diets and subjected to either 100 𝜇g/Kg of dexamethasone sodium phosphate
with normosaline or normosaline alone during late gestation (E10–E17). Nontreatment groups were also included. Brain samples
were collected on embryonic day 17 and analyzed by mRNA microarray analysis. Results. Microarray analyses presented 332
significantly regulated genes. Overall, neurodevelopmental genes were overrepresented and a subset of 8 genes allowed treatment
segregation through the hierarchical clustering method. The addition of stress or steroids greatly affected gene regulation through
glucocorticoid receptor and stress signaling pathways. Furthermore, differences between dexamethasone-administered treatments
implied a harmful effect during conditions of high stress. Microarray analysis was validated using qPCR. Conclusion. The effects of
antenatal steroid therapy vary in fetuses according to maternal-fetal factors and environmental stimuli. Defining the key regulatory
networks that signal either beneficial or damaging corticosteroid action would result in valuable adjustments to current treatment
protocols.

1. Introduction

The concept of the fetal genome is no longer that of a static
framework inherited from paternal and maternal sources but
a malleable scaffold constantly adapting to stimuli. This is
most evident in studies involving fetal programming due
to the effects of nutritional variation and glucocorticoid
exposure [1]. Here, we examined the resulting fetal molec-
ular preconditioning due to antenatal steroid therapy using
a protein-restriction mouse model. This model was first
designed in a previous study [2] as a novel approach to
evaluate postnatal adaptive responses due to varied prenatal
nutritional conditions and the addition of stress or steroids.

Molecular evidence revealed that prenatal programming sec-
ondary to maternal protein restriction rendered an inherent
susceptibility to neural compromise in neonates and any
further addition of antenatal steroids may be detrimental to
these already injury-prone offspring.Thus, an examination of
underlyingmolecularmechanisms in the fetus waswarranted
to elucidate the effects seen postnatally.

Understanding any subtle changes in the fetus induced by
these factors and their correlation with phenotypic outcomes
in the adult would facilitate early detection of either well-
being or disease. Current biomolecular techniques such as
microarray analysis have allowed the investigation of global
gene expression and subsequently, the parallel data mining
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of gene transcripts of interest as well as the discovery of
new gene involvement. Moreover, gene expression profiles
through clustering of significant genes have shown promising
potential as diagnostic panels. All these have led to the
rapid identification of biomarkers for disease conditions
and their associated regulatory pathways [3]. Using these
advancements, a panoramic view of genetic movement in
utero is presented.

2. Materials and Methods

2.1. Experimental Animals. Female C57BL/6N mice about 6
weeks old provided by the Institute for Animal Experimenta-
tion, Tohoku University Graduate School of Medicine, were
maintained under controlled lighting (12-hour light cycles)
and temperature (24∘C). These were allowed for free access
to food (AIN-93G: Oriental Yeast Co., Ltd., Tokyo, Japan)
and water during a 2-week acclimatization period after which
each female was time mated with a male.

2.2. Treatment Groups. Pregnant females (𝑛 = 36) were then
housed singly and administered either control (C) or protein
restricted (PR) diets ad libitum all throughout pregnancy
(Embryonic stage, E0 to E17). These were then further subdi-
vided into 6 groups and subjected to either plain normosaline
solution (C-S, PR-S) or 100 𝜇g/Kg dexamethasone sodium
phosphate (Decadron, MSD K.K., Tokyo, Japan) in normos-
aline solution (C-D/S, PR-D/S) by subcutaneous injection
daily during late gestation (E10 to E17). Nontreatment groups
were also included (C, PR). All injections were performed
between 12 nn and 2 pm. Maternal weights on days E0, E10,
and E17 were recorded, as well as fetal weights on E17. On
embryonic day 17, whole brain samples collected from 2male
and 2 female fetuses from each litter were supercooled in
liquid nitrogen and stored at −80∘C.

2.3. DNA Chip Analysis. A total of 6 Toray 3D-Gene
Mouse Oligo chip 24K (Toray Industries, Inc., Tokyo, Japan)
microarrays were analyzed per treatment. Each chip utilized
a 0.5 𝜇g portion of combined total RNA from a matched
pair of male and female samples. RNA was amplified
and labeled using an Amino Allyl MessageAmp II aRNA
Amplification kit (Life Technologies Japan Ltd.) according
to the manufacturer’s instructions. Each sample of aRNA
was labeled with fluorescence Cy3 or Cy5 and cohybridized
at 37∘C for 16 hours. These were subsequently washed and
dried. Hybridization signals were scanned using Scan Array
Express (Perkin Elmer, MA, USA) and global background
analysis was performed using GenePx Pro (MDS Analytical
Technologies, CA, USA). All 36 arrays were then normalized
together as one experiment to reduce nonbiological variabil-
ity.

2.4. Quantitative PCR (qPCR). To validate microarray
results, qPCR was performed on 2 selected genes, micro-
tubule-associated protein 1b (Mtap1b) and 3-hydroxy-3-
methylglutaryl-CoA synthase 1 (Hmgcs1), using the C and
C-D/S treatments. Total RNA was extracted from whole fetal

brains (𝑛 = 6 per treatment) using QIAzol Lysis Reagent
(QIAGEN, Hilden, Germany) and cleaned with an AllPrep
DNA/RNAMini kit (QIAGEN, Hilden, Germany) according
to the manufacturer’s protocol. Complimentary DNA was
synthesized using the Superscript III First-Strand Synthesis
System (Invitrogen, Carlsbad, CA) and quantitative PCR was
conducted with EXPRESS SYBR GreenER Supermix with
Premixed ROX (Invitrogen, Carlsbad, CA) on an Eppendorf
Realplex2 Mastercycler (Eppendorf, Hamburg, Germany).
Amplified transcripts were quantified and normalized
against hypoxanthine phosphoribosyltransferase 1 (Hprt1).
Primer sequences of the selected genes and housekeeping
gene are provided.

2.5. Statistical Analysis. Microarray data were subjected
to 𝑡-test analyses with standard Bonferroni correction for
multiple comparisons. The 𝑃 value was set at 0.05 and
a threshold of 1.5-fold was applied to determine signifi-
cantly regulated genes. These were subjected to an ontolog-
ical review and a subset of neurodevelopmental genes for
genetic profiling was determined by hierarchical clustering.
Targeted gene transcripts of interest on the microarrays
were treated to one-way ANOVA with post-hoc analysis
(Bonferroni post-test). Confirmation of selected genes by
qPCR was validated through Fold Change Analysis (thresh-
old of 1.5-fold). Data management, statistical analysis, and
gene ontology were performed using geWorkbench software
(https://gforge.nci.nih.gov/frs/?group id=78) and MGI Gene
Ontology Tools (http://www.informatics.jax.org/gotools/).

3. Results

3.1. Mouse Model. Mean maternal weight gain patterns,
between groups, were similar before (E0 to E10) and during
treatment (E10 to E17). Mean fetal brain to body weight
indices on sampling day E17 were not significantly different
(Figure 1).

3.2. Global Gene Changes. Microarray analyses of 23,522
probe transcripts presented 10,946 genes without absent
calls or unreadable hybridization signals. There were more
upregulated genes as compared to downregulated genes
across all treatment groups (Figure 2, Table 1). The combined
number of significant genes regulated from all treatment
groups versus the control was 332 (Figure 3). Subsequent
gene ontology analysis revealed that ongoing cell organiza-
tion and biogenesis, developmental processes, and transport
were most rampant in the global expression survey. The
discovery of genes uniquely activated per treatment and
sharing similar ontologies facilitated individual treatment
characterization (Table 2(a)). Associated genes were found
for protein restriction, cell adhesion genes in both PR-D/S
only (Col1a1, Atp1b2, Ctnnd1, Rpsa, and Fat4), and PR-S only
(Cdh2, Edil3, andAstn1); for dexamethasone treatment, stress
response genes in both C-D/S only (Brsk1, Rarres2), and PR-
D/S only (Klk8, Myo6, Ndufa6, Col1a1, Mapk8, and Phlda3);
and for both protein restriction, dexamethasone treatment,
and DNA metabolism genes for PR-D/S only (Tcf3, Mapk8).

https://gforge.nci.nih.gov/frs/?group_id=78
http://www.informatics.jax.org/gotools/
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Figure 1: Effects of treatment on animal models. (a) Each data point represents maternal weight as mean ± SEM (𝑛 = 4 per treatment).
Two-way ANOVA indicates a significant treatment effect (𝑃 < 0.0001) and time effect (𝑃 < 0.0001). Bonferroni posttest indicates that all
treatments were similar to the C group. (b) Mean fetal brain to body weight indices across treatments ± SEM were not significantly different
by one-way ANOVA (𝑛 = 96).

Overall, neurodevelopmental genes were overrepresented
among those significantly regulated (Table 2(b)) and were
associated with nervous system development (Pbx3, Eif2b5,
Nlgn1, Mark4, Atp2b2, Nrxn3, Ncam1, Tnik, Slitrk1, Cdh2,
Synj1, Palm, Nrp1, Rpl24, Mtap2, Rpgrip1, Pou3f2, Gabrb3,
Lrp6, Sulf2, Ank3, Ccdc88a, Atrx, Nr2c2, Opa1, Abi2,Mtap1b,
Tcf3, Syne1, Mapk8, Golga2, Atxn2, Gfra1, Snap91, Slitrk5,
Celsr2, Emx2, Klk8, Myo6, Scn2a1, Sema3c, and Kif5c); gen-
eration of neurons (Pbx3, Nlgn1, Atp2b2, Ncam1, Tnik, Slitrk1,
Cdh2, Synj1, Palm, Nrp1, Rpl24, Mtap2, Rpgrip1, Pou3f2,
Gabrb3, Lrp6, Ank3, Ccdc88a, Abi2, Mtap1b, Tcf3, Syne1,
Mapk8, Golga2, Atxn2, Gfra1, Slitrk5, Snap91, Celsr2, Emx2,
Klk8,Myo6, Sema3c,Kif5c,Robo2,Arhgef2, Brsk1, Pou3f4, and
Sox11); neuron differentiation (Pbx3, Nlgn1, Atp2b2, Ncam1,
Tnik, Slitrk1, Cdh2, Palm, Nrp1, Rpl24, Mtap2, Rpgrip1,
Pou3f2, Gabrb3, Lrp6, Ank3, Ccdc88a, Abi2, Mtap1b, Tcf3,
Syne1, Mapk8, Golga2, Gfra1, Atxn2, Slitrk5, Snap91, Celsr2,
Emx2, Klk8, Myo6, Sema3c, Kif5c, Robo2, Brsk1, Pou3f4, and
Sox11); neurogenesis (Pbx3, Eif2b5, Nlgn1, Atp2b2, Ncam1,
Tnik, Slitrk1, Cdh2, Synj1, Palm, Nrp1, Rpl24, Mtap2, Rpgrip1,
Pou3f2, Gabrb3, Lrp6, Ank3, Ccdc88a, Abi2, Mtap1b, Tcf3,
Syne1, Mapk8, Golga2, Atxn2, Gfra1, Slitrk5, Snap91, Celsr2,
Emx2, Klk8, Myo6, Sema3c, Kif5c, Robo2, Arhgef2, Brsk1,
Pou3f4, and Sox11); neuron development (Pbx3, Abi2, Mtap1b,
Syne1, Mapk8, Golga2, Nlgn1, Atxn2, Gfra1, Snap91, Slitrk5,
Celsr2, Atp2b2, Ncam1, Tnik, Slitrk1, Klk8, Cdh2, Myo6,
Sema3c, Palm, Kif5c, Nrp1, Rpl24, Robo2, Mtap2, Rpgrip1,
Brsk1, Pou3f2, Gabrb3, Ank3, and Ccdc88a); and neuron
projection development (Abi2, Mtap1b, Syne1, Mapk8, Golga2,
Nlgn1, Atxn2, Gfra1, Snap91, Slitrk5, Celsr2, Ncam1, Tnik,
Slitrk1, Klk8, Cdh2, Myo6, Sema3c, Palm, Kif5c, Nrp1, Rpl24,
Robo2, Mtap2, Brsk1, Pou3f2, Ank3, and Ccdc88a).

Table 1: Summary of significantly regulated genes. Determination
of upregulated and downregulated significant genes based on paired
𝑡-tests with standard Bonferroni correction for multiple compar-
isons (𝑃 < 0.05; thresholds of >1.5 for upregulated genes and < −1.5
for downregulated genes).

𝑡-test∗ Regulated genes Fold change
↑(>1.5) ↓(< −1.5)

C versus PR 4 0 0
C versus C-D/S 751 91 24
C versus PR-D/S 974 158 44
C versus C-S 896 141 25
C versus PR-S 1125 184 40
∗

𝑃 < 0.05.

3.3. Gene Expression Profiling. A subset of 8 genes out of
332 was filtered through the hierarchical clustering method
allowing segregation of treatments (Figure 4). An assess-
ment of individual biological themes within the subset
revealed neurodevelopmental roles and distinct causal rela-
tionships with glucocorticoid treatment and protein restric-
tion (Table 3).

3.4. Targeted Genes of Interest. The addition of stress or
steroids (-S and -D/S groups) greatly affected gene reg-
ulation leading to further investigation of genes related
to glucocorticoid and stress signaling pathways. Mapk8,
Fkbp5, Mkp-1, Pp2A, Akt, and Gsk3 exhibited expression
patterns across treatment groups that corresponded to an
overall reduction in glucocorticoid receptor (GR) activity
in the -D/S and -S groups. Most significant of which
were the marked differences between C-D/S and PR-D/S
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Figure 2: Volcano plots of individual 𝑡-test analyses using Standard Bonferroni correction and 𝑃 < 0.05 between the control group and all
other treatment groups.

(Mapk8, Gsk3, and Mtap1b) emphasizing the disparate effect
on varying nutritional conditions due to dexamethasone
administration (Figures 5(a) and 5(b)).

3.5. Quantitative PCR Validation. qPCR results demon-
strated a good agreementwith themicroarray data forMtap1b
and Hmgcs1 (Figure 6).

4. Discussion

The maternal-fetal compartment serves to cushion the fetus
from environmental stimuli, but beyond normal circum-
stances, prenatal conditioning invariably occurs. Microarray

analysis allowed for a panoramic view of gene activity along
two levels: through the global expression of genes and
through individual treatment groups and their association
with one another. In general, ongoing cell organization and
biogenesis, developmental processes, and transport were
most rampant in the global expression survey (Table 2(a)).
The dominance of these particular gene groups is expected in
the developing fetus just as genes for growth and maturation
are more likely activated in neonates. Regardless, these
increased gene frequencies most likely demonstrate conse-
quent fetal reactions to acquired insults from protein restric-
tion and glucocorticoid exposure either as compensatory
regulation or protective feedback. They signaled changes
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C-D/S; (D) PR-D/S; (E) C-S; (F) PR-S.

within a fetus long previously believed to be immune prior
to the conception of the Barker theory [12].

Interestingly, neurodevelopmental genes were overrep-
resented among the significantly regulated genes. This was
exemplified by recurring themes in biological processes
related to ongoing brain development during fetal stages:

multipotent progenitor differentiation and neuronal migra-
tion. Their increased expression over other gene systems
emphasized the significance of fetal neuroplasticity even to
the detriment of visceral organ growth similar to physiologic
brain sparing. This also underlined the early dependence
on brain-controlled pathways that trigger bodily functions
during stages when less developed organs have not yet
attained full functional independence.

Our mouse model simulated conditions of multifacto-
rial environmental impact. The isolation of distinct genes
associated with individual factors of protein restriction,
dexamethasone, and stress were complimentary to known
gene networks.

4.1. Protein Restriction Associated with Cell Adhesion Genes.
Maternal nutrition plays a critical role in fetal growth and
development. Studies of these genes uniquely regulated in
both PR-D/S (Col1a1, Atp1b2, Ctnnd1, Rpsa, and Fat4) and
PR-S only (Cdh2, Edil3, and Astn1) emphasized the crucial
role of nutritional factors in maintaining the integrity of cell
interaction. Col1a1, a known marker of fibrosis and aging,
has been linked to alterations in oxidative and antioxidant
defense capacity in cells due to poor maternal nutrition
[13]. On the other hand, modifications in Atp1b2, Edil3, and
Astn1 during development lead to glial dysfunction [14–16].
Moreover, various studies on nutritional factor effects and
progenitor cell differentiation included Ctnnd1, Fat4, and
Cdh2 [17–19].

4.2. Dexamethasone Associated with Stress Response Genes.
Fetal dexamethasone exposure impairs development in var-
ious cell types eliciting a dose-dependent stress response
[20]. In the brain, the pituitary is the site of action
of administered dexamethasone in the blockade of stress
induced hypothalamic-pituitary axis (HPA) activation. The
latter involves the stimulation of brain receptors, primarily,
those of glucocorticoid receptors (GR) by both exogenous
and endogenous corticosterone. During conditions of stress,
the HPA axis releases reactive feedback which suppresses
increased excitability allowing recovery from stress induced
activation and facilitation of memory storage. The addition
of dexamethasone can partially deplete the brain of corti-
costerone and in turn suppress the fetal HPA axis. Studies
that included the genes uniquely regulated in C-D/S (Brsk1,
Rarres2) and PR-D/S (Klk8, Myo6, Ndufa6, Col1a1, Mapk8,
and Phlda3) report their important roles in neuroregulation
and adaptation to stress responses during brain development
[21–25]. Furthermore, expression patterns of targeted genes
related to stress signaling pathways revealed decreased GR
activity: Mapk8 (mitogen activated protein kinase 8) and
Fkbp5 (FK506 binding protein 5), bothGR inhibitors [26, 27],
were increased in the -D/S and -S groups; Mkp1 (mitogen
activated protein kinase phosphatase 1) and Pp2a (protein
phosphatase 2), both Map kinase inhibitors [28, 29], were
decreased in the -D/S and -S groups (Figure 5(a)).

4.3. Convergent Effects of Maternal Nutrition and Dexam-
ethasone Associated with DNAMetabolism. Genes associated
with PR-D/S only (Tcf3 and Mapk8) on microarray analysis,
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Figure 5: Targeted genes of interest related to stress signaling pathways. (a) One-way ANOVA of gene expression patterns revealing an
overall reduction of glucocorticoid receptor (GR) activity includedMapk8, Fkbp5,Mkp1, and Pp2A. (b) One-way ANOVA of gene expression
patterns for Akt and Gsk3 andMtap1b revealing ongoing neurodysgenesis (𝑛 = 6 per treatment; mean ± SEM; one-way ANOVA 𝑃 < 0.0001;
Bonferroni ∗𝑃 < 0.05 and ∗∗𝑃 < 0.1).
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Figure 6: qPCR validation of microarray analysis. Two neurodevelopmental genes, Mtap1b and Hmgcs1, that were significantly changed
between C and C-D/S groups in the microarray analysis (represented as mean hybridization signals + SEM) were compared with qPCR
(mean ± SEM transcript signals normalized against Hprt1). When comparing non-logged fold changes by the ratio method, there was an
overall good agreement between qPCR and microarray analysis with a fold change of at least 1.5∗ observed. (𝑛 = 6 per treatment).

as well as two targeted genes (Akt and Gsk3) all function in
metabolic gene networks, especially for glucose metabolism
in DNA synthesis. Here, their specific expression patterns
between -D/S groups underscored themost significant obser-
vation in this study, which was the apparent harmful effect of
dexamethasone to fetuses in highly stressed conditions (PR-
D/S). A diagram interrelating the targeted genes of interest
with regard to GR activity is shown in Figures 7(a) and
7(b). Previous reports have stated that a loss of GR activity
reduces dexamethasone inhibition of Akt (thymoma viral
protooncogene 1), which in turn decreases Akt inhibition of
Gsk3 (glycogen synthase kinase 3), a proapoptotic gene [30–
32].This beneficial effect was seen in the C-D/S group. But in
the PR-D/S group, a highly stressed condition, dexametha-
sone was evidently harmful. This disparate pattern between
C-D/S and PR-D/S, significant in Mapk8, Gsk3, and Mtap1b
(𝑃 < 0.0001), denotes the possibility of ongoing altered
neurodevelopment or even neurodysgenesis (Figure 5(b)).

The process of data mining revealed the association
between regulated genes unique to individual treatment

groups and certain biologic processes. Their correlation pro-
vided a better understanding of underlying pathophysiology
and a glimpse of key pathways for future focused studies. One
possible application is the development of gene panels for
genetic expression profiling as diagnostic tools. Hierarchical
clustering programs currently allow the generation of gene
maps to be capable of distinguishing between phenotypes.
In our simulation, highly regulated neurodevelopmental
genes were used and these successfully segregated treatments
between microarrays (Figure 4).

Our findings strengthen our previous study’s asser-
tion that fetal programming secondary to maternal protein
restriction renders an inherent susceptibility to neural com-
promise in offspring and that the addition of dexamethasone
to this vulnerable group results in further injury. In future
studies, the investigation of both sex-specific and transgen-
erational effects is necessary as glucocorticoids influence
endocrinological pathways differently in males and females.
Also, timing of exposure to glucocorticoids as well as dosage
studies is no less relevant especially in the light of reported
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Figure 7: A diagram interrelating the targeted genes of interest with regards to conditions in the control and -D/S groups. (a) Control group
and (b) -D/S groups.

evidence that a single course of therapy profoundly affects the
fetal HPA axis [33–35].

In conclusion, the effects of antenatal steroid therapy
can vary for each fetus according to maternal-fetal factors
and concurrent environmental stimuli. Further elucidating
regulatory networks that canmark the turning point between
beneficial or damaging corticosteroid actions would result
in valuable adjustments of current treatment protocols. The
ability to recognize conditions highly vulnerable to damage
would also expand the possibility of tailored medicine more
suitable to each individual’s needs. Current biomolecular
techniques are powerful tools in this field of study but
further validation between animal and true clinical models
is required.
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