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Abstract: It is well established that the maternal diet during the periconceptional period affects the
progeny’s health. A growing body of evidence suggests that the paternal diet also influences disease
onset in offspring. For many years, sperm was considered only to contribute half of the progeny’s
genome. It now appears that it also plays a crucial role in health and disease in offspring’s adult
life. The nutritional status and environmental exposure of fathers during their childhood and/or
the periconceptional period have significant transgenerational consequences. This review aims to
describe the effects of various human and rodent paternal feeding patterns on progeny’s metabolism
and health, including fasting or intermittent fasting, low-protein and folic acid deficient food,
and overnutrition in high-fat and high-sugar diets. The impact on pregnancy outcome, metabolic
pathways, and chronic disease onset will be described. The biological and epigenetic mechanisms
underlying the transmission from fathers to their progeny will be discussed. All these data provide
evidence of the impact of paternal nutrition on progeny health which could lead to preventive diet
recommendations for future fathers.
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1. Introduction

It is now well established that maternal imbalanced nutrition during in utero period
impacts offspring’s health and development. The fetal programming (the Barker) hypothe-
sis (or DOHaD, developmental origins of health and diseases) stems from the link between
maternal exposure to environmental factors and the development of complex diseases
in adulthood. It postulates that changes occurring during fetal growth, such as a lack of
nutrients or any environmental stress, can predispose to developing complex diseases in
adulthood [1,2] (Figure 1).

While the consequences of maternal diet on offspring health have been studied for
40 years, they remain partially understood (for review, see [3]). Since the 80s, it has been
recognized that maternal folate deficiency is associated with neural tube defects (NTD) and
intra-uterine growth retardation in the offspring [4]. These observations led to the World
Health Organization (WHO) current recommendations, according to which all women
should take a daily folic acid supplement from the pre-conceptional period until 12 weeks of
gestation to prevent NTD [4]. Alteration of the maternal folate status also has consequences
on birth weight, glucose blood levels, and insulin resistance (reviewed in [5]). Our previous
work using a unique, well-defined animal model based on rats born from dams fed a
methyl-deficient diet during gestation and lactation reported neurosteroidogenesis and
epigenetic alterations associated with cognitive and motor disorders during offspring
postnatal cerebral development [6–8]. Many studies show that maternal micronutrient
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deficiency is associated with an increased risk of cardiovascular disease, obesity, and type
2 diabetes in the offspring. Macronutrients like proteins or fat are also concerned, as
suggested by several studies showing that a low or a high protein intake during pregnancy
is linked to adverse health outcomes for the offspring [9]. Similarly, the quality but not the
quantity of fat and adequate supply of vitamins and minerals plays a critical role during
fetal development [10–12].

Figure 1. Effects of maternal nutrition status and environment exposition on the progeny. The fetal programming
hypothesis postulates that changes occurring during fetal growth, such as a lack of nutrients, can predispose them to disease
in adulthood. The fetal programming hypothesis is completed with the Developmental Origins of Health and Disease
(DOHaD) concept, which includes exposition to toxins and chemicals, use of drugs, infections and other stimulations but
also nutritional status during pregnancy, and early life.

A growing body of evidence now suggests that the male environment and feeding
patterns may also impact the progeny. To complete the DOHaD theory, the concept of
Paternal Origins of Health and Disease (POHaD) was recently introduced (for review,
see [13]). Reports have shown a decline in sperm quality in the past decades, likely due to
environmental expositions or lifestyle factors [14]. Reproductive disorders are numerous
and differ between men and women, the most common being infertility [15]. One of
the common factors leading to infertility is the environmental exposure to toxins before
conception, which influences sperm epigenetic processes (for review, see [16]). These toxics
include environmental pollutants [17], endocrine-disrupting chemicals [18,19], and phar-
maceutical drugs [20]. Lifestyle factors such as diet and exercise [21], alcohol and tobacco
consumption [22], obesity, and trauma and stress situations [16] can influence fertility rates
in humans. Recent studies suggest that the father’s environment may also impact fetal
development and adult offspring health (for review, see [23]), considering the exposition to
toxins or an altered diet could have epigenetic transgenerational consequences [19,24–26].
Deleterious effects issued from fathers are transmitted to the next generations via sperm.
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The underlying mechanisms are still poorly understood, but there is a growing body of
evidence that small non-coding RNAs (sncRNAs) present in the sperm also play a pivotal
role [27–29]. According to Dupont et al. (2019), transmission modalities are different
between mothers and fathers. Transgenerational epigenetic inheritance from an exposed
gestating female occurs when the transmission of the phenotypic alteration reaches the
F3 generation, whereas it occurs in F2 when the male is exposed. Otherwise, the mode of
inheritance is classified as intergenerational [27].

Most of the reported studies focused on rodent models. The epigenetic nature of
transgenerational effects was initially mentioned by the pioneering Dutch famine [30,31]
or the Overkalix cohort [32–35] studies. Many rodent models have been developed with
various dietary modifications. The timing of animals’ exposure to these diets is critical and
clearly influences the various outcomes described in these studies. This report focuses on
the metabolic and molecular impacts of paternal diet (Table 1) on the offspring’s health. It
mainly concerns the most described low nutrient diets like low-protein, fasting, or folic
acid deficiency as well as high nutrient diets, like high sugar or high-fat diet which both
are a health concern. The possible underlying molecular and epigenetic mechanisms will
be discussed.

Table 1. Paternal nutrition status effects.

Effects Paternal Diet References

Metabolism

Body weight and adiposity

Low protein
HFD

Food restriction
FA deficient
High sugar

[21,36–43]

Glucose intolerance or hyperglycemia

Low protein
HFD

FA supplemented
High sugar

[37,38,40,44–47]

Insulin resistance or hyperinsulinemia HFD
High sugar [40,45–47]

Carbohydrate metabolism HFD [42,48]

Lipid metabolism
High sugar

FA deficient or supplemented
Food restriction

[21,44,46,47]

Uricemia High sugar [43,46,47]

Development

Skeleton Low protein
FA deficient [49,50]

Fetal or post-natal growth Food restriction [21]
Spermatogenesis FA deficient [49]

Embryo or placenta abnormalities FA supplemented
HFD [42,48,51–53]

Pregnancy outcomes

Number of plugs/pregnancies HFD
FA deficient [41,42,48,52]

Pre or Post implantation development
HFD

FA deficient
Food restriction

[21,42,48,52]

Morphological retardation HFD
FA deficient [42,48,49]

Postnatal mortality FA deficient or supplemented [51]

Organ and system
dysfunction

Breast cancer Low protein [54]
Diabetic kidney disease High sugar [55]

Cardiovascular system Low protein
High sugar [37,38,43,46,47,55]

Sperm
HFD

High sugar
FA deficient or supplemented

[41,46,51,56,57]

Endocrine system High sugar [46]
Central nervous system FA deficient [36,58]
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2. Epigenetic Mechanisms Involved in the Transgenerational Transmission

It is now evident that paternal exposure to environmental cues, especially an imbal-
anced diet, can affect the later development of the progeny (Figure 2).

Figure 2. Effects of paternal nutrition status and environment on their offspring. The paternal nutritional status can act on
offspring’s growth and metabolism and, therefore, its predisposition to various diseases in adulthood. That is related to
the fetal programming hypothesis because fathers act indirectly on fetal growth. Besides, in the same way as the DOHaD
theory, the POHaD paradigm suggests that the paternal environment could also influence the offspring’s metabolic changes.
Mechanisms underlying all these events are poorly understood, but emerging evidence suggests that it could be transmitted
through the sperm epigenome, notably in the case of negative pregnancy outcomes.

Effects are observed in the F1 generation (intergenerational transmission) and the
subsequent ones (transgenerational transmission). This suggests that molecular clues are
transmitted through the sperm and impact gene expression in the progeny. The likeliest
scenario is that epigenetic marks are delivered by sperm to the zygote. With the advances in
the field of epigenetics, the mechanisms responsible for this transgenerational inheritance
begin to be better understood, with evidence pointing towards the involvement of DNA
methylation, histone modifications, and above all, sncRNAs. All these events can interfere
with each other [59] and are transmissible through the germline to the next generation
without the intervention of genetic mechanisms (for reviews, see [28,60,61]; Table 2). The
methylation process is allowed by methyl donors’ availability provided by one-carbon
metabolism, which is an essential process for DNA methylation and DNA, RNA, and
protein synthesis. Methionine is the precursor of SAM, the primary methyl group donor
in the body’s methylation processes. The availability of methionine is dependent on the
folate and methionine cycles. Therefore, folate status directly impacts epigenetic modifi-
cations [62]. Methylation reactions near gene promoter regions and histones can impact
the transcriptional regulation and make the promoter regions inaccessible to transcription
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factors, and, therefore, influence the transcription of genes. For example, a father’s low
protein diet in mice impairs tRNA fragments content in the sperm during its maturation,
which are responsible for regulating gene expression [25,63]. Moreover, there are also pre-
sumptions about a father transmission to offspring involving small RNAs in mice [64–66],
which are detailed in recent reviews [27–29].

Table 2. Epigenetic and RNA alteration induced by fathers’ nutrition status.

Effects Paternal Diet References Comments

Epigenetic alterations

Sperm DMRs 1
Low protein

FA deficient or
supplemented

[51,54] Paternally imprinted
gene H19

DNA methylation

Low protein
HFD

FA deficient
Food restriction

[38,39,49,56]

Genes involved in
neurological and

autoimmune disease,
diabetes, cancer, autism

and schizophrenia
Gene expression and

transcriptome High sugar [63,67] H3K9-me3 regulators
and Polycomb

Sperm mutations FA deficient or
supplemented [57] DNA fragmentation

and tandem repetitions

RNA changes

Sperm mRNA content
and/or expression

levels

Low protein
HFD

High sugar
FA sufficient

[24,25,39,40,64,65,67–69]

Metabolic disorders,
lipid metabolism,

embryonic
development and
spermatogenesis

sncRNA

Low protein
High sugar [25,69] tRNA and tsRNA

HFD
FA supplemented [39,68] piRNA

Low protein HFD
FA supplemented [25,39,40,44,64–66]

miRNA let-7 species
miR-19 species miR-182

miR-183 miR-340
miR-193b miR-204

1 DMRs for differentially methylated regions.

DNA methylation is the most studied epigenetic mark. It is a dynamic modification
that is erased and reset during two rounds of reprogramming, one in primordial germ
cells during gametogenesis and the other one later in the preimplantation embryo. Mice
studies on various nutritional models, including high fat, low protein, undernutrition,
or folate deficiency, suggest that only a small number of sperm loci are differentially
methylated according to paternal feeding [24,49,51,70–72]. Moreover, a limited subset of
them is maintained in offspring’s tissues [73]. In a paternal mouse model fed a high-fat diet
and leading to glucose intolerance in the F1 offspring, a genome-wide comparison between
the transcriptome and DNA methylation indicates that differential DNA methylation is
not responsible for changes in gene expression [74].

The role of histone modifications in paternal intergenerational inheritance is unclear,
mainly because only a few studies have focused on these epigenetic marks. Moreover,
chromatin in sperm displays a different organization than in somatic tissues. Histones
are replaced by transition proteins and then by protamines during spermatogenesis. Only
a small fraction of the human sperm chromatin escapes this remodeling [75]. The fact
that the remaining sperm histone modifications are transmitted to the embryo suggests
a role beyond fertilization. However, histone positioning was similar in sperm from
lean or obese men, whereas DNA methylation and sncRNA content were modified [76].
Feeding male mice with a high-fat diet for ten weeks induced H3K4me1 enrichment at
transcription regulatory genes compared to controls and changes in hepatic expression
levels of 7 genes in the offspring [77]. Paternal sugar in Drosophila was reported to alter
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H3K9 and H3K27me3 deposition in the zygote, with chromatin state rewiring later in
the adult progeny, which was associated with obesity susceptibility [78]. To further point
towards a role of histone modification in transgenerational inheritance despite the lack
of studies, mice paternal overexpression of the gene coding for the H3K4 demethylase
(KDM1A, also known as LSD1) affects development and survival in offspring [79].

Last but not least, sncRNA content in the sperm is affected by diet and has been the
center of interest in recent years. Despite cytoplasm and RNA are ejected at the end of
spermatogenesis, there remain mRNA fragments and several types of sncRNA in mature
spermatozoa: the well-described miRNAs, piRNAs, endo-siRNAs, and tRNA-derived
fragments, these being the most abundant in the spermatozoa [29]. Recent studies suggest
that these sncRNAs are the molecules enabling the paternal transmission to the progeny, as
injecting sperm RNA content in fertilized oocytes is sufficient to recapitulate the phenotype
in the progeny. Effects of a high-fat or low protein diet on sncRNA were the most described
(reviewed in [28]), with a significant role of tRNA-derived fragments. tRF-Gly-GCC levels
were increased in the sperm of male mice fed a low protein diet. The expression of targets
of these tRNA-derived fragments was consequently diminished in embryos [25].

3. Impact of Paternal Folic Acid Intake on Progeny’s Health
3.1. Paternal Folate Deficiency

Folate, an essential vitamin B, is a pivotal molecule in the one-carbon metabolism.
Folate participates in S-adenosylmethionine (SAM) synthesis, which plays a significant role
in many biological processes like DNA, RNA, and protein methylation [80]. SAM is also es-
sential in the amino acid [80] or lipid metabolism and hormonal synthesis [81] or nucleotide
synthesis [64]. Since the 80s, it is recognized that maternal folate deficiency is associated
with NTD and more subtle changes in offspring development [4]. A lowered maternal fo-
late status has other consequences in offspring, such as intrauterine growth retardation, low
birth weight, hyperglycemia, and insulin resistance (reviewed in [5]). There are emerging
shreds of evidence that paternal folate intake also impacts the offspring’s health and disease
onset. A recent study highlighted that offspring of paternal folate deficient rats are more
susceptible to develop anxious and depressive traits [36]. In 2013, a mouse study reported
by Lambrot et al. showed that a low paternal folate intake during the periconceptional
period alters the sperm epigenome and can be linked to adverse pregnancy outcomes, such
as a reduced pregnancy rate post-implantation loss, fused and abnormal placentas [49].
Folate status influences reproductive health in humans, especially the gestation duration
when fathers have a 4 mg/day folate intake [52] (for review, see [82]). There is a higher
frequency of developmental abnormalities in mice like craniofacial malformations, limb
defects, muscle and/or skeletal development delay [49]. Moreover, offspring of the folate-
deficient fathers (0.3 mg/kg) display lateness in the meiosis appearance at postnatal day
12. No significant difference in sperm counts, spermatogenesis, nor testis morphology was
observed in adulthood [49], while Yuan et al. found an impaired spermatogenesis process
in the same conditions [56], and Swayne et al., report a decreased sperm count [57]. Other
rodent studies showed paternal folate deficiency impacts placental folate transport [53],
DNA methylation and/or mutation [57,58,83,84], and Igf-2 expression level in the fetal
brain [83,84].

3.2. Paternal Folate Supplementation

Paternal supplementation is also being investigated. According to Ly et al., it might
affect embryo abnormalities with an increase in the offspring sired by F1 males fed with a
20-fold folate sufficient diet compared with folate-deficient fathers [51]. The authors found
that there was no difference in the number of pups or the body weight in the F1 litter sizes
at birth, but they measured a significant decrease in the sperm count at postnatal day 200
when males were fed 20-fold folate sufficient diet (40 mg/kg) [51]. At weaning, a supple-
mented diet negatively impacted the F2 litter sizes and increased the postnatal mortality in
the same manner as when fathers were fed with a folate-deficient diet [51]. Furthermore, el-
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evated paternal methyl-donor consumption affects cognitive and neural function, especially
hippocampus-dependent learning and memory function and hippocampal synaptic plastic-
ity [85]. Chicken studies highlighted that paternal folic acid supplementation could impact
spermatozoa mRNA expression [44] and induce transgenerational metabolic changes [68].

In summary, it appears that both folate deficient and supplemented diets could have
an intergenerational impact on the offspring [86]. Thus, paternal folate intake is as crucial
as maternal intake, and it must be taken into consideration for further recommendations.

4. Depleted Paternal Diets and Their Effects on the Progeny
4.1. Impact of a Paternal Low-Protein Diet

Obesity results from an imbalance between energy intake and energy expenditure and
is influenced by genetic predisposition and/or epigenetic inheritance and transgenerational
effects [87,88]. For instance, the protein content of the paternal diet influences offspring
metabolism. When fathers are fed a low protein diet (LPD) in mice, pups are more
prone to glucose intolerance, metabolic and cardiovascular dysfunctions, impaired skeletal
development, and altered patterns of bone mineral deposition [24,37,38,50]. Moreover,
male pups of LPD fathers are heavier [37], whereas female pups are lighter than control
pups [54]. Alteration in offspring vascular function was also reported [89] and an increased
risk of developing breast cancer in female offspring [54]. Offspring gene expression is
altered, especially genes involved in cholesterol and lipid synthesis pathways [24,90]. It
also negatively affects gene expression of various AMPK pathways in the blastocysts
but positively affects genes regulating fetal growth, with up-regulation of genes coding
for nutrient transporter in the placenta and imprinted genes involved in fetal growth
regulation [38,54]. Taken together, these results suggest that paternal LPD could have an
adverse effect on the offspring, with females slightly more affected than males.

4.2. What about Paternal Food Restrictions?

Since the Dutch famine, there are pieces of evidence that poor maternal nutrition
during the conception period could lead to negative consequences, not only for mental
but also for physical health. Most studies focused on later life health, considering the
exposure time, and developing tissues or organs, the early gestational period being the
most vulnerable time. Offspring of people subjected to famine has an increased risk of type-
2 diabetes, heart disease, depression, and schizophrenia, as well as premature aging [86].
Similar effects seem to occur in undernourished African populations (for review, see [86]).
However, most of these data concern mother exposition to undernutrition, and there are few
studies concerning father fasting. When fathers are fasting, both male and female progeny
display a decreased glycemia and an increased serum corticosterone level, but there are also
changes in the serum IGF-1 concentration in the offspring [91]. Using a 70% restriction diet,
McPherson et al. reported that paternal food restriction impairs preimplantation embryo
development, global methylation, and function of sperm with possible consequences on
their fertility. This caloric restriction also had consequences of a reduced postnatal weight
and growth retardation, with an increase of dyslipidemia and adiposity prevalence in
the offspring [21]. A study in Caenorhabditis elegans also highlighted that paternal food
restriction affects both males’ and females’ progeny’s fat content [92]. McPherson et al.
further investigated the father’s antioxidant and vitamin supplementation (vitamin B9,
C, E, lycopene, selenium, zinc, and green tea extract) and showed that oxidative status in
their sperm is correlated with the progeny growth [21]. Supplementation of food-restricted
fathers reversed the effects on offspring’s adiposity and weight. Food restriction affected
gene expression in a sex-specific manner in the progeny and was partially reversed by
antioxidant and vitamin supplementation [21]. Human [93] and rodents [94,95] studies
provide evidence that food restriction also positively impacts blood glucose levels, insulin
sensitivity, adiposity, and type-2 diabetes risk. As for the effects at the cellular level, many
studies underline the involvement of DNA repair, autophagy, adaptive cellular stress
response signaling pathways, mitochondrial health, stem cell-based regeneration, and
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long-term metabolic effects in the mechanisms related to intermittent fasting [96]. Another
study developed on mice embryos suggests that mothers could modulate the effects of
paternal caloric restriction on offspring development. In fact, the authors observed absence
or reversed effects on the progeny between embryo transfer and natural mating [97].
Furthermore, paternal dietary changes before conception could impact offspring’s behavior,
since an anxiolytic-like behavior has been described in adulthood [98].

5. Effects of Enriched Paternal Diets on Offspring
5.1. Consequences of a Paternal High-Fat Diet

A paternal high-fat diet (HFD) may influence metabolic outcomes and obesity in
human offspring [99,100] (for review, see [101]). In animal models, this diet is known
to induce a transgenerational body-weight reduction in the rat pups at postnatal day
3 [39], but an increase for older offspring in mice [40,48,102,103] with a higher body fat
mass [41,102,103]. Rodent fathers fed with an HFD can transmit pancreatic β-cell dysfunc-
tion and glucose intolerance to their F1 female offspring [45] and an altered response to
insulin in F1 male offspring [40]. Further investigations on retroperitoneal white adipose
tissue demonstrate that numerous metabolic pathways in offspring are impacted, such as
cellular and mitochondrial response to stress, cell survival and death, telomerase signalling,
cellular growth and proliferation, and cell cycle [104]. Paternal consumption of HFD gives
genetic signatures linked to chronic degenerative diseases and early aging, both in pancre-
atic β-cell and retroperitoneal white adipose tissue of their offspring [45,104]. Furthermore,
paternal HFD exposure can lead to an increased risk of chronic kidney disease [102] and
to the development of a metabolic syndrome-like phenomenon [103]. Moreover, Zhou
et al. report that paternal HFD results in cognitive impairments in the F1 pups but not
in the F2 generation in mice. These impairments are linked to decreased hippocampal
neurogenesis. These results are potentially due to the increased methylation of the BDNF
gene promoter transmitted by F0 spermatozoa [105]. When fathers are fed an HFD, mating
female mice show a reduced number of plugs and pregnancies, possibly because of their
20% sperm motility decreases [41]. In vitro fertilization with sperm from fathers fed with
an HFD shows a delay in the preimplantation development of embryos and a reduced
frequency of blastocyst formation, and a decreased ability of embryos to implant in the
uterine wall. Blastocyst biological processes are also concerned; changes in the carbohy-
drate metabolism with an increased glycolysis pathway and pyruvate uptake, and reduced
mitochondrial membrane potential [42,48]. Additional reports showed that it could also
lead to adverse pregnancy outcomes like a reduced rate of ongoing pregnancy, placental
and fetal weights, and morphological retardation such as a retarded limb morphology and
a decreased crown–rump length [42,48]. These data suggest that paternal HFD negatively
impacts embryo physiology and its adult health status in rodents.

5.2. Impacts of a Paternal High-Sugar Diet

As a low-protein diet or an HFD, paternal high sugar nutrition adversely affects
their offspring. A high-sugar diet is a health concern. It is known that this diet has a
deleterious impact on human physiology [43,55]. Excess intake of sugars like glucose or
fructose has consequences on cardiovascular and metabolic diseases. Fructose is currently
added to industrialized food [106], and its overconsumption induces an increased hepatic
triacylglycerol concentration, hypercholesterolemia, hypertriglyceridemia, and an alter-
ation in glucose metabolism with hyperinsulinemia in both mothers and fathers [46,47].
Consequently, for their offspring, if mother or father alone, or both, are subjected to a
high-fructose diet, a decreased adiponectin concentration but an increased leptin level,
as well as increased blood pressure, uricemia, and genital fat are observed [46,47]. When
parents are both fed a high-fructose diet, there are more severe effects on offspring’s liver
metabolism in association with increased inflammatory markers [46] (for review, see [107]).
In the same way, another study in Drosophila shows that a paternal high-sugar diet could be
linked to altered energy homeostasis in the offspring. However, it did not affect the growth
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and the development of the offspring, but stably reprogramed their metabolism [67,78,108].
The study conducted by Nätt et al. show that RNA sperm contents change rapidly in
response to a high-sugar diet in human. They used a two-step strategy in which each
participant was his own control [69]. In this study, they reported that the sperm count
was unaffected, but some specific subtypes of tsRNAs were up-regulated in response to
a high-sugar diet. Then, they compared with obese men who also have an alteration in
their tsRNAs sperm contents [69]. The combination of high-sugar with a high-fat diet
results in a dysfunction of the reproductive system with an earlier testicular descent in
the F1 generation [109]. The authors also observed a statistical difference in the A and
B phases penile glans morphology ages in F1 and F2 generations when males are fed a
hypercaloric diet. This hypercaloric diet is also known to increase fat mass in rats [80,109]
and in mice [64,81]. These earlier studies suggest that a high sugar or a hypercaloric diet
could affect both the offspring’s metabolism and reproductive parameters.

6. Conclusions and Perspectives

The maternal nutrition status strongly influences fetal development and growth, but
it becomes more and more evident that both parents’ nutritional status acts on offspring’s
health and disease in adulthood (for review, see [110]). Diet modifications in fathers,
whether it is an excess or a restriction of nutrients, lead to negative pregnancy outcomes
and/or metabolic changes in their progeny. Changes during critical periods of the embryo
and fetal development may have long-term consequences [59,111]. The differences between
the duration and/or the period of exposition to an altered diet have to be considered, as
well as the model that is used, animals or a human study. For instance, a paternal HFD
exposition before mating induces a decreased [39] body weight during early postnatal days
in the mice offspring while it is increased at later life in a rat model [40,48]. Furthermore,
another study made on rats shows that maternal, but not paternal, HFD affects both F1
male and female offspring’s phenotypic parameters (blood glucose level, plasma insulin,
and leptin, HOMA, percentage of body fat). Plasma leptin levels are also affected in the F2
generation from F1 females fed an HFD [112]. These results are inconsistent with the study
of Masuyama et al. [103], who reported an effect of paternal diet on pup’s metabolism.
An explanation could be the animal model used, rat vs. mice, and/or the differences
between the diet composition used: 34% vs. 62% fat, 23% vs. 18% protein, 43% vs. 20%
carbohydrate [103,112].

It is important to note that some inherited epigenetic signatures are preserved between
species like the fly, mouse, and human [78]. Besides epigenetic mechanisms, human studies
are focusing on the genetic aspects of POHaD. Kong et al. sequenced the entire genome of
Icelandic people to study their genome-wide de novo mutation rate. The single-nucleotide
polymorphism mutation rate diversity was linked to the father’s age at conception, with no
effect of the mother’s age [113]. They further studied how sex-dependent differences in the
maintenance and development of germ cells affect their mutability. They observed that the
mother’s age was more responsible for the increased number of clustered mutations than
the father’s age. The authors also highlighted that de novo mutation clusters are greater in
the maternal genome than in paternal ones [114,115]. Both maternal and paternal age at
conception are essential factors of transmitting de novo mutations to the progeny. Besides
age, environmental exposures, including diets, may also impact de novo mutation rate in
fathers with possibly transgenerational consequences. Further investigations are needed to
understand how father’s diet and/or exposition to environmental factors can influence the
disease onset of their children during adulthood. The literature on the topic in humans is
slightly limited and should be prioritized in the future.

All these shreds of evidence highlight the importance of the father’s nutritional status
during the periconceptional period for providing an efficient fetal development and growth
of the progeny. All these events are adaptive and may change during life to confer, or not,
predisposition for chronic disease onset in adulthood. Despite all these data, the underlying
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mechanisms remain poorly understood and should be investigated in the future in order
to provide fathers with optimal dietary recommendations.
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