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Abstract

Background: We investigated the associations of reproductive factors with the percentage of epithelium, stroma,
and fat tissue in benign breast biopsy samples.

Methods: This study included 983 cancer-free women with biopsy-confirmed benign breast disease (BBD) within
the Nurses’ Health Study and Nurses’ Health Study Il cohorts. The percentage of each tissue type (epithelium,
stroma, and fat) was measured on whole-section images with a deep-learing technique. All tissue measures were
log-transformed in all the analyses to improve normality. The data on reproductive variables and other breast
cancer risk factors were obtained from biennial questionnaires. Generalized linear regression was used to examine
the associations of reproductive factors with the percentage of tissue types, while adjusting for known breast
cancer risk factors.

Results: As compared to parous women, nulliparous women had a smaller percentage of epithelium (3 = —0.26,
95% confidence interval [Cl] —041, —0.11) and fat (B = —0.34, 95% Cl — 0.54, —0.13) and a greater percentage of
stroma (3 = 0.04, 95% Cl 0.01, 0.08). Among parous women, the number of children was inversely associated with
the percentage of stroma (3 per child = —0.01, 95% CI —0.02, — 0.00). The duration of breastfeeding of = 24
months was associated with a reduced proportion of fat (3 = —0.30, 95% CI — 0.54, — 0.06; p-trend = 0.04). In a
separate analysis restricted to premenopausal women, older age at first birth was associated with a greater
proportion of epithelium and a smaller proportion of stroma.

Conclusions: Our findings suggest that being nulliparous as well as having a fewer number of children (both
positively associated with breast cancer risk) is associated with a smaller proportion of epithelium and a greater
proportion of stroma, potentially suggesting the importance of epithelial-stromal interactions. Future studies are
warranted to confirm our findings and to elucidate the underlying biological mechanisms.
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Background

Breast cancer remains the most commonly diagnosed
cancer in women in the USA and worldwide [1]. The
vast majority of breast tumors are carcinomas that arise
from the breast epithelium. Sarcomas of the breast are
exceedingly rare and are thought to originate from stro-
mal components of the breast (< 1% of all breast tumors)
[2]. It has long been recognized that women with a
greater proportion of fibroglandular breast tissue (com-
bined epithelium and stroma) as reflected on a mammo-
gram (also referred to as breast density) are at a greater
risk of breast cancer [3]. While several breast cancer risk
factors are suggested to influence breast tissue compos-
ition and thus subsequent breast cancer risk, the epi-
demiological evidence on these relationships remains
very limited.

Reproductive factors related to childbearing are also
recognized as breast cancer risk factors. Parity, younger
age at first birth, and breastfeeding are associated with
reduced breast cancer risk [4-8]. A longer period be-
tween menarche and first pregnancy, on the other hand,
is associated with increased breast cancer risk [9-12].
Whether any of these factors could influence adult
breast tissue composition is unclear.

Some previous studies of associations between repro-
ductive factors and mammographic breast density, a
well-established strong risk factor reflective of relative
amounts of fibroglandular vs. fatty tissue content on the
mammogram, found inverse associations of parity and
positive associations of age at first birth and duration of
breastfeeding with breast density [13—18]. In our recent
study of reproductive factors and breast density, parous
women as compared to nulliparous women had lower
percent breast density (proportion of fibroglandular tis-
sue out of the total breast area), smaller absolute dense
area (area of fibroglandular tissue), and greater non-
dense area (area of adipose tissue). The positive associa-
tions of breastfeeding with absolute dense and non-
dense areas were limited to premenopausal women,
while the positive association of the age at first child’s
birth with percent density and the inverse association
with the non-dense area were limited to postmenopausal
women [19]. Despite this evidence on the associations of
reproductive factors with tissue composition on mam-
mograms, only a few studies have examined these associ-
ations using direct measurement of tissue components
in the non-malignant breast tissue of cancer-free
women. Gabrielson et al. found positive associations of
parity and duration of breastfeeding with epithelial area
[20], while an earlier study on associations of reproduct-
ive factors with the proportion of epithelium or stroma
found no such associations [21].

In this study, we aimed to assess the associations of
several reproductive variables (parity, age at first birth,
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breastfeeding, time since last pregnancy, and duration of
the time between menarche and first birth) with the ex-
tent of epithelial, stromal, fibroglandular, and fat tissue
in non-malignant breast tissue from benign breast bi-
opsy samples using prospective data in cancer-free
women from the Nurses’ Health Study (NHS) and
Nurses” Health Study II (NHSII) and a deep-learning
computational pathology method for tissue composition
assessment.

Materials and methods

Study population

Our analysis included cancer-free women (controls)
from the nested case-control study of breast cancer con-
ducted among the subcohort of women with biopsy-
confirmed benign breast disease (BBD) in the NHS and
NHSII cohorts [22, 23]. These prospective cohorts
followed registered nurses in the USA who were 30-55
years (NHS) or 25-42 years old (NHSII) at enrollment.
After the administration of the initial questionnaire, the
information on breast cancer risk factors (body mass
index [BMI], reproductive history, postmenopausal hor-
mone [PMH] use, and alcohol use) and any diagnoses of
cancer or other diseases (including BBD) was updated
through biennial questionnaires which were then con-
firmed via medical record review [13, 24]. Details of this
nested case-control study and the BBD assessment have
been previously described [22, 23].

Early NHS questionnaires (1976, 1978, and 1980)
asked whether the participant had ever been diagnosed
with “fibrocystic disease” or “other BBD” and whether
she had been hospitalized in relation to this diagnosis.
Beginning in 1982, the NHS questionnaires specifically
asked about a history of biopsy-confirmed BBD (fibro-
cystic disease or other BBD). The initial 1989 NHS II
questionnaire and all subsequent biennial questionnaires
also asked the participants to report any diagnosis of
BBD and to indicate whether it was confirmed by biopsy
or aspiration.

Cases were women with biopsy-confirmed BBD who
reported a diagnosis of breast cancer during 1976-1998
for the NHS and 1989-1999 for the NHSII following
their BBD diagnosis. Using incidence density sampling,
four women with biopsy-confirmed BBD who were free
of breast cancer at the time of the matching case’s diag-
nosis (controls) were matched to the respective case on
the year of birth and year of benign breast biopsy [25].
We attempted to obtain BBD pathology records and ar-
chived biopsy specimens for all cases and controls from
their hospital pathology departments; our ability to ob-
tain biopsy blocks did not significantly differ by case and
control status. Women were excluded if they had evi-
dence of in situ or invasive carcinoma or unknown le-
sion type at the time of benign breast biopsy (22 cases
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and 12 controls). Only controls from this nested case-
control study were used to examine the associations of
reproductive factors with the extent of different tissue
types. Out of 1907 controls, 983 had tissue readings, and
information on reproductive factors was included in this
analysis. Women with and without available tissue read-
ings (as explained under the “Whole-slide image acquisi-
tion” section) had similar distributions of breast cancer
risk factors.

The study protocol was approved by the institutional
review boards of the Brigham and Women’s Hospital
and Harvard T.H. Chan School of Public Health and
those of participating registries as required. Consent was
obtained or implied by the return of questionnaires.

Benign breast biopsy confirmation and BBD subtypes
Hematoxylin and eosin (H&E) breast tissue slides were
retrieved for biopsy-confirmed BBD patients who gave
permission to review their biopsy records. The slides
were independently reviewed by one of three patholo-
gists in a blinded fashion, i.e., the evaluating pathologists
were blinded to the type of BBD noted on the original
diagnosis [26, 27]. Any slide identified as having either
questionable atypia or atypia was jointly reviewed by two
pathologists. For each set of slides, a detailed worksheet
was completed, and the benign breast biopsy was classi-
fied according to the categories of Page et al. [28] as
non-proliferative, proliferative without atypia, or atypical
hyperplasia (ductal or lobular hyperplasia) [22].

Whole-slide image acquisition

H&E slides were digitized into whole-slide images at x
20 (n = 93) or x40 (n = 890) using the Panoramic
SCAN 150 (3DHISTECH Ltd., Budapest, Hungary). For
women with good-quality slides, up to six slides from
different tissue blocks were digitized. H&E slides that
were not digitized were due to poor quality, slides too
thick to fit into the scanner, and plastic mounting cover-
slips. Attempts to create new H&E slides were not al-
ways possible due to missing (or returned to hospital)
blocks, old style blocks not created using tissue cassettes,
or poor-quality blocks [29]. Slides were successfully digi-
tized for approximately 80% of all control women in the
original nested case-control study.

Quantification of epithelium, stroma, and fat

Whole-slide images were processed using a deep-
learning computational pathology method to segment
BBD tissues into epithelial, stroma, and fat regions. Tis-
sue image analysis included normal terminal duct lobu-
lar units (TDLUs) and BBD lesions (referred to as “non-
malignant” throughout this manuscript). Details of the
image analysis method and its performance are de-
scribed elsewhere [30]. Briefly, to evaluate the tissue
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segmentation network, precision, recall, and Dice simi-
larity coefficient were calculated using the held-out test
set (n = 48). Dice similarity coefficient is the harmonic
mean of precision (i.e., sensitivity) and recall (i.e., posi-
tive predictive value) and assesses how accurate the au-
tomated segmentation compares with ground truth on a
pixel-wise basis. The range for Dice similarity coefficient
is from O to 1, with 1 indicating perfect overlap. The ma-
jority of the precision, recall, and Dice similarity coeffi-
cient values of the tissue segmentation network and
nuclei detection were > 0.75 [30]. For more details about
the nuclear segmentation network, please refer to the
previously published methods paper by Vellal et al. [30].
For each whole-slide image, our method computed
total, epithelial, stromal, and adipose tissue areas in
pixels. We next calculated the average percent of each
tissue type out of the total area across all available slides
for each woman (median = 3, range 1-4), weighted by
the total tissue area of the slides. We examined the asso-
ciations of reproductive factors with the percentage of
each of these individual tissue regions as well as com-
bined epithelial and stromal tissue (fibroglandular area).

Reproductive variables

The data on age at menarche, parity, age at first birth,
and breastfeeding were available from baseline and
biennial questionnaires, completed closest to the date of
the biopsy. Among all eligible controls with tissue read-
ings, the completeness of the data on parity was 98.3%.
Among parous women with tissue readings, information
on age at first birth and breastfeeding was available for
98.4% and 94.1% of the sample, respectively. Age at me-
narche was available for 99.6% of the sample. For 4
women with missing age at menarche, a median value in
the study sample was imputed, as done in previous stud-
ies [31-33]. Time since the last pregnancy was available
for 86.3% of the study sample.

Age at first birth was categorized as < 25, 25-29, and >
30 years. Parity was defined both as a binary variable
(nulliparous, parous) as well as categorical (1, 2, 3, and >
4 children). Additionally, the number of children among
parous women was modeled as a continuous variable.
Age at first birth was modeled both as a categorical (<
25, 25-29, and > 30 years) and as a continuous variable.
Information on breastfeeding was collected one time (on
the 1986 questionnaire), and women were asked to re-
port the total months of breastfeeding. Lifetime duration
of breastfeeding (sum of breastfeeding duration across
all births) was classified as none to <1, 1 to < 12, 12 to
< 24, and > 24 months. Age at menarche was modeled
both as a categorical (<12, 12, 13, and > 13 years) and as
a continuous variable. The time interval between menar-
che and first birth as well as the time since the last preg-
nancy was modeled as continuous variables.
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Covariate information

Information on breast cancer risk factors was obtained
from the biennial questionnaires closest to the date of the
biopsy. Women were considered to be postmenopausal if
they reported (1) no menstrual periods within the 12
months before biopsy with natural menopause, (2) bilat-
eral oophorectomy, or (3) hysterectomy with one or both
ovaries retained and were 54years or older for ever
smokers or 56 years or older for never smokers [34, 35].

Statistical analysis

We used multivariate linear regression to examine the
associations of parity, age at first birth, breastfeeding,
and the interval between menarche and first birth with
the proportion of epithelial, stromal, fibroglandular, and
fat tissues. Because tissue type measures were non-
normally distributed, we used log-transformed values in
all the regression analyses to improve normality. The
risk estimates were adjusted for age (continuous), body
mass index (BMI, continuous), a family history of breast
cancer (yes vs. no), alcohol use (none, >0 to < 5, > 5g/
day), age at menarche (<12, 12, 13, > 13), menopausal
status/postmenopausal hormone use (pre-, post-/no hor-
mones, post-/past hormone use, post-/current hormone
use, post-/unknown hormone use status), and study co-
hort (NHS, NHSII). Additionally, in the analysis of the
association of breastfeeding, the estimates were adjusted
for parity and age at first birth. In the analysis of the as-
sociations of parity and age at first birth, the risk esti-
mates were mutually adjusted for these two variables. In
the analysis for the interval between menarche and first
birth, the estimates were adjusted for parity.

The analyses of all reproductive variables except nulli-
parity and age at menarche were limited to parous
women only. Parity, age at first birth, and age at menar-
che were modeled both as continuous and categorical,
and breastfeeding was modeled as categorical. The low-
est category for parity (1 child), age at first birth (<25
years), and breastfeeding (0 to < 1 month) were used as
the reference. To assess the overall trend for each of the
categorical reproductive variables, we used respective
medians within each category. The time since the last
pregnancy as well as the duration of the interval between
menarche and first birth were modeled as continuous
variables. As in our prior study on reproductive factors
and mammographic breast density, some of the associa-
tions were limited to either pre- or postmenopausal
women; in the secondary analysis, we examined these as-
sociations separately in premenopausal women; the
small sample of postmenopausal women (n = 290) in
our study did not allow us to draw meaningful conclu-
sions for this stratum. Finally, to account for the poten-
tial influence of BBD lesions on the study findings, we
additionally adjusted all models for the type of the BBD.
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In addition to the main approach, we used the SAS
Proc Glimmix procedure which accounts for non-
normal data distributions to examine the associations
with tissue types using their original continuous scale.
The analyses were performed using the SAS software
(version 9.4, SAS Institute, Cary, NC, USA).

Results

In this study of 983 cancer-free women, 299 (30.4%) had
non-proliferative disease, 559 (56.9%) had proliferative
disease without atypia, and 125 (12.7%) had atypical
hyperplasia, consistent with previously reported distribu-
tions of these BBD subtypes [27]. The distribution of dif-
ferent tissue types across these subtypes in our study is
presented in Supplementary Table 1. The average pro-
portion of epithelium, stroma, and fat in our study sam-
ple was 9.1% (range 0.5-52.2%), 72.4% (range 23.6—
99.0%), and 18.5% (range 0-71.3%), respectively.

In our study sample, the average age at the biopsy was
42 years (range 19-58 years). A majority of the women
were premenopausal at the biopsy (62.3%). The majority
of women were parous (89.9% for premenopausal and
92.8% for postmenopausal), and the majority of parous
women had at least two children (87.0% for premeno-
pausal and 93.7% for postmenopausal) and breastfed for
at least 1 month (58.8% for premenopausal and 50.4%
for postmenopausal). The average age at first birth was
25 years (range 15-40 years) for premenopausal women
and 25years (range 16-37years) for postmenopausal
women. Age-adjusted characteristics of pre- and post-
menopausal women in the study by nulliparous status
are presented in Table 1.

In multivariate analysis (Table 2), being nulliparous
was significantly associated with a reduced proportion of
epithelium (nulliparous vs. parous p = - 0.26, 95% confi-
dence interval [CI] -0.41, -0.11) and fat tissue (nul-
liparous vs. parous 3 = — 0.34, 95% CI - 0.54, - 0.13) and
an increased proportion of stroma (nulliparous vs. par-
ous p = 0.04, 95% CI 0.01, 0.08). The duration of breast-
feeding of 24 months or longer was associated with a
reduced proportion of fat (breastfeeding > 24 vs. 0 to <
1month, f = -0.30, 95% CI -0.54, - 0.06; p-trend =
0.04). As during pregnancy and lactation, terminal duct-
lobular units undergo differentiation with a simultan-
eous reduction in surrounding fat cells [36], we explored
the potential effect of postpartum involution on the ob-
served associations of breastfeeding with the proportion
of fat by additionally adjusting these models for time
since the last pregnancy. We observed a slight attenu-
ation of the effects (p = - 0.22, 95% CI - 0.47; 0.03 with
adjustment vs. = —0.30, 95% CI - 0.5; - 0.06 without
adjustment). The findings also did not reach statistical
significance (p-trend = 0.10), likely due to the smaller
number of observations in these models (790 vs. 816)
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Table 1 Age-adjusted characteristics of women at the time of the biopsy, stratified by menopausal status and parity
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Characteristic Premenopausal, n = 601

Nulliparous, n = 61

Parous, n = 540

Postmenopausal, n = 290

Nulliparous, n = 21

Parous, n = 269

Mean (SD)
% epithelium 8.8 (4.8)
9% stroma 76.1 (10.3)
% fat 151 (11.2)
% fibroglandular tissue® 84.9 (11.2)
Age (years)° 36.2 (7.4)
Age at menopause (years) NA
Body mass index (kg/mz) 242 (54)
Alcohol use (g/day) 42 (4.7)
Parity NA
Age at first birth (years) NA
Age at menarche (years) 13.0 (1.1)
Percentages®
Breastfeeding
0to < 1 month NA
1 to < 12months NA
12 to < 24 months NA
2 24 months NA
Family history of breast cancer 10
Smoking status
Never smoked 61
Past smoker 20
Current smoker 20
Postmenopausal hormone use
Never used NA
Past use NA
Current use NA
Unknown status NA
Benign breast disease subtypes
Non-proliferative 23
Proliferative without atypia 70
Proliferative with atypia 7

104 (7.0) 46 (2.8) 7.2 (6.1)
74.5 (11.0) 740 (10.7) 67.3 (12.6)
15.1 (109) 213 (99 255 (13.5)
84.9 (10.9) 78.7 (9.9) 745 (13.5)
415(73) 55.1 (7.5) 57.3 (6.5)
NA 445 (4.9) 484 (5.1)
24.1 (45) 245 (2.4) 25.1 (4.0)
54 (88) 43 (38) 5.5 (8.6)
27(12) NA 32(15)
25.1 (3.6) NA 249 (3.2)
125 (1.4) 129 (0.8) 12.7(1.3)
41 NA 50

32 NA 37

18 NA 10

10 NA 3

10 22 17

56 24 49

28 45 34

16 31 17

NA 12 29

NA 3 21

NA 74 32

NA 12 18

32 39 27

58 45 55

10 15 18

Note: Values are means (SD) and percentages and are standardized to the age distribution of the study population

Abbreviations: SD standard deviation, NA not applicable
Fibroglandular tissue represents combined epithelium and stroma
BValue is not age adjusted

“Percentages are calculated based on non-missing values

due to missing data on the time since the last pregnancy.
Finally, we found no interaction of time since the last
pregnancy with breastfeeding (p for interaction = 0.40).
Parity was associated with a reduced proportion of
stroma (B per one child = - 0.01, 95% CI - 0.02, — 0.00;
p-trend 0.02), and having a first child at age 25-29 years
was associated with a larger proportion of epithelial tis-
sue (age at first birth 25-29 vs. < 25 years, p = 0.12, 95%
CI 0.03, 0.21), though there was no clear pattern for this

association. The time since the last pregnancy as well
as the duration of the interval between age at menar-
che and first birth was not associated with any of the
tissue measures. None of the reproductive factors was
associated with the proportion of fibroglandular tis-
sue. The patterns of associations of the reproductive
factors with tissue types were similar in the statistical
analyses with the secondary modeling approach (Sup-
plementary Table 2).
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Table 2 Associations of reproductive variables with the percentage of different tissue types (log-transformed) in benign breast

biopsy samples (3 coefficients and 95% confidence intervals)

Reproductive factor Number Tissue type
% epithelial % stroma % fat % fibroglandular®
Nulliparity®
Nulliparous 86 -0.26 (=041, -0.11) 0.04 (0.01; 0.08) —0.34 (-054,-0.13) 0.01 (- 0.02; 0.05)
Parous 880 Ref Ref Ref Ref
Breastfeeding, months®
Oto<1 361 Ref Ref Ref Ref
1to< 12 279 0.03 (-0.07; 0.13) 0.02 (-0.01; 0.04) —0.06 (-0.18; 0.07) 0.01 (-0.01; 0.04)
1210 < 24 119 0.08 (- 0.05; 0.22) 0.01 (- 0.03; 0.04) —005 (- 022;,0.12) 0.01 (= 0.03; 0.04)
224 57 0.04 (- 0.15; 0.23) 0.02 (- 0.03; 0.08) —0.30 (- 0.54;, — 0.06) 0.03 (-0.02; 0.07)
p-trend 816 0.39 043 0.04 0.34
Parity®
1 82 Ref Ref Ref Ref
2 292 0.11 (- 0.05; 0.27) —0.02 (- 0.06; 0.02) —0.05 (- 0.25;0.15) 0.01 (-0.03; 0.05)
3 269 0.12 (- 0.05; 0.28) —0.03 (- 0.08; 0.01) 001 (=0.19; 0.22) —0.01(-0.05; 0.03)
24 223 0.16 (- 0.02; 0.33) —0.05 (= 0.10; — 0.00) 0.04 (-0.18; 0.26) —0.02(-0.06; 0.03)
p-trend 866 0.13 0.02 032 017
Parity continuous® 866 0.03 (- 0.00; 0.07) —0.01 (= 0.02; —0.00) 0.01 (- 0.03; 0.06) —0.01 (-0.01; 0.00)
Age at first child’s birth®
<25 445 ref ref ref ref
25-29 331 0.12 (0.03; 0.21) —0.01 (- 0.03; 002 —0.09 (- 0.20; 0.03) 0.01 (= 0.01; 0.03)
230 90 0.07 (- 0.08; 0.23) —0.03 (- 0.07;001) —0.04 (- 023;0.15) —0.01 (-0.05; 0.03)
p-trend 866 0.13 0.16 044 0.85
Age at first birth continuous 866 0.04 (-0.02;0.11) —0.01 (-0.02; 0.01) —0.03 (=0.11;0.05) —18x 107 (-001; 0.02)
(per 5 years)®
Age at menarche’
<12 176 —0.09 (-0.22; 0.04) —0.01 (- 0.05; 002 0.07 (=0.12; 0.25) —0.01 (-0.05; 0.02)
12 275 —0.13 (=024, - 0.01) —0.04 (-0.07; —0.01) 0.10 (- 0.06; 0.26) —0.05 (-0.07;, -=0.02)
13 287 —0.06 (-=0.17; 0.05) —0.03 (= 0.06; —0.00) —-001 (=0.17;0.15) —0.03 (- 0.05; —0.00)
>13 228 ref ref ref ref
p-trend 966 0.07 0.23 0.24 0.11
Age at menarche continuous 966 0.15 (- 0.01, 0.30) 0.02 (- 0.02, 0.06) —0.11(=033,0.11) 0.03 (- 0.01, 0.06)
(per 5 years)f
Time between menarche and 866 0.02 (- 0.04; 0.08) —0.01 (-=0.02; 0.01) —0.01 (= 0.09; 0.06) —17 %107 (= 0.02; 001)
age at first birth, continuous
(per 5 years)?
Time since the last pregnancy, 839 —0.05 (-0.12; 0.02) —~002 (-0.04-3.0x 107 0.05 (—0.03; 0.14) —002 (- 0.04; —30x 1079

continuous (per 5 years)©

Fibroglandular tissue represents combined epithelium and stroma
PAdjusted for age (continuous), BMI (continuous), age at menarche (< 12, 12, 13, > 13), a family history of breast cancer (yes/no), menopausal status/
postmenopausal hormone use (premenopausal, postmenopausal/no hormones, postmenopausal/past hormones, postmenopausal/current hormones,
postmenopausal/unknown hormone use status), NHS cohort (NHSI, NHSII), and alcohol use (none, >0 to < 5, > 5 g/day)
“Among parous women only: adjusted for age (continuous), BMI (continuous), age at menarche (< 12, 12, 13, > 13), parity, age at first child’s birth, a family history
of breast cancer (yes/no), menopausal status/postmenopausal hormone use (premenopausal, postmenopausal/no hormones, postmenopausal/past hormones,
postmenopausal/current hormones, postmenopausal/unknown hormone use status), NHS cohort (NHSI, NHSII), and alcohol use (none, >0 to < 5, >5 g/day)
4Among parous women only: adjusted for age (continuous), BMI (continuous), age at first birth, age at menarche (< 12, 12, 13, > 13), a family history of breast
cancer (yes/no), menopausal status/postmenopausal hormone use (premenopausal, postmenopausal/no hormones, postmenopausal/past hormones,
postmenopausal/current hormones, postmenopausal/unknown hormone use status), NHS cohort (NHSI, NHSII), and alcohol use (none, >0 to < 5, >5 g/day)
€Among parous women only: adjusted for age (continuous), BMI (continuous), parity, age at menarche (< 12, 12, 13, > 13), a family history of breast cancer (yes/
no), menopausal status/postmenopausal hormone use (premenopausal, postmenopausal/no hormones, postmenopausal/past hormones, postmenopausal/current
hormones, postmenopausal/unknown hormone use status), NHS cohort (NHSI, NHSII), and alcohol use (none, >0 to < 5, >5 g/day)
fAdjusted for age (continuous), BMI (continuous), parous status (nulliparous, parous), a family history of breast cancer (yes/no), menopausal status/postmenopausal
hormone use (premenopausal, postmenopausal/no hormones, postmenopausal/past hormones, postmenopausal/current hormones, postmenopausal/unknown
hormone use status), NHS cohort (NHSI, NHSII), and alcohol use (none, >0 to < 5, >5 g/day)
9Among parous women only: adjusted for age (continuous), BMI (continuous), parity, a family history of breast cancer (yes/no), menopausal status/
postmenopausal hormone use (premenopausal, postmenopausal/no hormones, postmenopausal/past hormones, postmenopausal/current hormones,
postmenopausal/unknown hormone use status), NHS cohort (NHSI, NHSII), and alcohol use (none, >0 to < 5, > 5 g/day)
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Among premenopausal women (Table 3), being nul-
liparous was associated with a greater proportion of
stroma (nulliparous vs. parous B = 0.06, 95% CI 0.02,
0.10) and a smaller proportion of epithelium (nullipar-
ous vs. parous } = —0.22, 95% CI - 0.38, - 0.06) and fat
(nulliparous vs. parous p = -0.32, 95% CI -0.56, —
0.08). Greater parity and older age at first birth were
both associated with a greater proportion of epithelium
and a smaller proportion of stroma. The time since the
last pregnancy as well as the duration of the interval be-
tween age at menarche and first birth was not associated
with the proportion of any of the tissue types. These pat-
terns of associations were similar with the secondary
modeling approach (Supplementary Table 3). Finally, the
findings did not change after additional adjustment for
the BBD subtype (Supplementary tables 4 and 5).

Discussion

In this study of 983 cancer-free women, being nullipar-
ous was associated with having a smaller percentage of
epithelium and fat and a greater percentage of stroma,
while the greater number of children was associated with
a smaller percentage of stroma. Breastfeeding for 24
months or longer was associated with a decreased per-
centage of fat. No associations were observed for the
interval between menarche and age at first birth and the
positive associations of age at first birth with the per-
centage of epithelium and inverse associations with the
percentage of stroma were seen in premenopausal
women.

Consistent with our findings on the associations of
nulliparity with epithelium, a recent study by Gabrielson
et al. of core biopsy samples of non-malignant breast tis-
sue from 153 cancer-free women found a greater pro-
portion of epithelium in parous as compared to
nulliparous women (parous vs. nulliparous = 0.56, p =
0.07) [20]. In contrast, an earlier study by Gertig et al.
within NHS found no associations of parity with the
proportion of epithelium or stroma. Compared to our
study, this study was small (n = 300) and used a different
method of computer-assisted image analysis [21]. Finally,
even though neither of the previous studies found asso-
ciations of parity with the proportion of stroma, Gabriel-
son et al. observed inverse associations with stromal
proliferation [20].

Breast tissue changes during pregnancy have been sug-
gested as possible reasons for the long-term protective
effect on breast cancer risk [37]. The influence of full-
term pregnancy on the breast tissue appears to be com-
plex and some of the suggested mechanisms include
changes in hormonal signaling in the breast, gene
methylation and expression changes, long-term reduc-
tion in the levels of circulating hormones, and life-long
reduction in the number of mammary stem cells [4, 10,
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38-40]. Previous studies also suggest that hormonal
changes during pregnancy may also influence the stro-
mal composition, but the evidence remains inconsistent
[16, 41, 42]. Interestingly, in nulliparous women in our
study, we observed a smaller proportion of epithelium
but a larger proportion of stroma. These findings suggest
that the increased risk of breast cancer in nulliparous
women might potentially be driven by the dominating
stroma and epithelial-stromal interactions that play a
pivotal role in normal mammary gland function by con-
trolling and regulating normal processes in the breast
and suppressing the expression of preneoplastic pheno-
types [43, 44]. Further, despite these findings for stroma
and epithelium, we did not observe associations with the
percentage of fibroglandular tissue which could further
indicate that the relative contributions of stroma and
epithelium might be more important than their absolute
amount. Importantly, in our previous investigation of as-
sociations of reproductive factors with breast density, we
observed greater percent breast density in nulliparous as
compared to parous women. A few previous studies sug-
gested that the degree of mammographic breast density
is driven predominantly by the changes in the extent
and composition of stroma rather than epithelium [45—
47]. Thus, these relationships appear complex and war-
rant further investigation. Finally, as previous studies
show heterogeneity in the association of reproductive
factors with molecular breast cancer subtypes, our find-
ings might help to explain eventually the underlying
mechanisms behind these associations. However, as our
study did not look at the associations with breast cancer
outcomes and was limited to cancer-free women only,
we are unable to discuss this further in the context of
our findings.

In our study, older age at first birth was associated
with a greater proportion of epithelium and a smaller
proportion of stroma, but these findings were limited to
premenopausal women. We did not find any associations
of the length of the time period between menarche and
first birth with any of the tissue types. Gabrielson et al.
found a marginally positive association of age at first
birth with the proportion of epithelium, but the results
were not significant in the small stratum (n = 55) of pre-
menopausal women [20], and Gertig et al. did not find
any associations [21]. Younger age at first birth may re-
duce subsequent breast cancer risk by earlier induction
of cellular differentiation in the breast [48]. However, it
remains unclear if the observed associations may repre-
sent the result of the long-lasting effects of this
differentiation.

We report inverse associations of breastfeeding dur-
ation with the proportion of fat tissue. Consistent with
our findings, Gabrielson et al. found inverse associations,
though only marginally significant associations of
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Table 3 Associations of reproductive variables with the percentage of different tissue types (log-transformed) in benign breast

biopsy samples of premenopausal women (3 coefficients and 95% confidence intervals)

Reproductive factor Number Tissue type
% epithelial % stroma % fat % fibroglandular®
NuIIiparityb
Nulliparous 61 —0.22 (- 0.38; — 0.06) 0.06 (0.02; 0.10) —-032 (- 0.56; -0.08) 0.03 (-0.01; 0.06)
Parous 540 Ref Ref Ref Ref
Breastfeeding, months®
Oto< 1 210 Ref Ref Ref Ref
Tto< 12 162 —0.06 (- 0.18; 0.06) 0.04 (0.01; 0.07) —0.11 (= 0.28; 0.06) 0.03 (= 0.00; 0.05)
12to <24 92 —-002 (-0.17;0.13) 0.01 (- 0.03; 0.06) —-002 (-0.24;0.19 0.00 (- 0.03; 0.04)
224 47 —0.09 (-0.30; 0.11) 0.04 (- 0.02; 0.09) —0.18 (- 048; 0.11) 0.02 (= 0.02; 0.07)
p-trend 511 053 033 039 0.57
Parityd
1 62 Ref Ref Ref Ref
2 190 0.27 (0.10; 0.44) —0.02 (-0.07;003) -0.17 (- 042; 0.07) 0.02 (- 0.02; 0.06)
3 167 0.25 (0.08; 0.43) —0.04 (- 0.09; 0.01) —-003 (-0.29;0.22) —0.00 (- 0.04; 0.04)
24 108 0.34 (0.14; 0.53) —0.06 (-0.11; —0.00) 0.03 (- 0.25; 0.30) —0.01 (- 0.05; 0.04)
p-trend 527 0.01 0.02 0.25 023
Parity continuous® 527 0.07 (0.02; 0.11) —0.02 (- 0.03; - 0.00) 0.03 (- 0.03; 0.10) —0.01 (- 0.02; 0.00)
Age at first child's birth®
<25 263 Ref Ref Ref Ref
25-29 205 020 (0.10; 0.31) —0.01 (- 0.04; 0.02) —-0.19 (=034, -003) 002 (-001; 0.04)
230 59 0.23 (0.06; 0.40) —0.05 (-0.10; — 0.00) 0.01 (- 0.24; 0.26) —0.01 (- 0.05; 0.03)
p-trend 527 <001 0.05 0.58 0.99
Age at first birth continuous 527 0.10 (0.03; 0.17) —001 (- 0.03;0.071) —0.04 (- 0.14; 0.06) 45 %1072 (= 0.01; 0.02)
(per 5years)®
Age at menarche'
<12 115 —0.10 (- 0.25; 0.06) —0.01 (- 0.05; 0.03) 0.10 (-0.13;0.33) —0.02 (- 0.05; 0.02)
12 174 —0.14 (- 0.28; — 0.00) —0.03 (- 0.06; 0.01) 0.07 (- 0.14; 0.28) —0.03 (- 0.07; —0.00)
13 187 —001 (- 0.14;,0.13) —-0.02 (- 0.05; 0.02) —-002 (-0.22; 0.18) —0.01 (= 0.04; 0.02)
>13 125 Ref Ref Ref Ref
p-trend 601 0.06 061 0.24 0.14
Age at menarche continuous 601 0.16 (- 0.02, 0.33) 0.01 (- 0.04, 0.05) —0.13 (=040, 0.13) 0.03 (- 0.02, 0.07)
(per 5 years)f
Time between menarche and 527 007 (-80x 107 0.14) —001 (-0.03; 0.01) —-001 (=0.11; 0.09) —-9.0x 1073 (- 0.02; 0.02)
age at first birth, continuous
(per 5 years)?
Time since the last pregnancy, 501 —0.04 (-0.12; 0.05) —002 (-0.04;38 % 107°) 007 (—0.04; 0.19) —002 (-0.04; 21 x 107

continuous (per 5 years)®

Fibroglandular tissue represents combined epithelium and stroma
bAdjusted for age (continuous), BMI (continuous), age at menarche (< 12, 12, 13, > 13), a family history of breast cancer (yes/no), NHS cohort (NHSI, NHSII), and
alcohol use (none, >0 to < 5, >5 g/day)
“Among parous women only: adjusted for age (continuous), BMI (continuous), age at menarche (< 12, 12, 13, > 13), parity (1, 2, 3, and >4 children), age at first
child’s birth (<25, 25-29, and >30 years), a family history of breast cancer (yes/no), NHS cohort (NHSI, NHSII), and alcohol use (none, >0 to < 5, >5 g/day)

4Among parous women only: adjusted for age (continuous), BMI (continuous), age at first birth (<25, 25-29, and >30 years), age at menarche (< 12, 12,13, > 13), a
family history of breast cancer (yes/no), NHS cohort (NHSI, NHSII), and alcohol use (none, >0 to < 5, >5 g/day)
€Among parous women only: adjusted for age (continuous), BMI (continuous), parity (1, 2, 3, and >4 children), age at menarche (< 12, 12, 13, > 13), a family history
of breast cancer (yes/no), NHS cohort (NHSI, NHSII), and alcohol use (none, >0 to < 5, >5 g/day)
fAdjusted for age (continuous), BMI (continuous), parous status (nulliparous, parous), a family history of breast cancer (yes/no), NHS cohort (NHSI, NHSII), and
alcohol use (none, >0 to < 5, >5 g/day)
9Among parous women only: adjusted for age (continuous), BMI (continuous), parity (continuous), a family history of breast cancer (yes/no), NHS cohort (NHSI,
NHSII), and alcohol use (none, >0 to < 5, >5 g/day)
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breastfeeding with the percentage of adipose tissue in
the breast (p = - 0.55, p = 0.05) [20]. Studies on breast
tissue remodeling after lactation in humans are very lim-
ited though some studies suggest that the protective ef-
fect of breastfeeding on breast cancer risk may be
related to the increased cellular proliferation and epithe-
lial exfoliation of breast tissue during lactation with sub-
sequent apoptosis after discontinuation of breastfeeding
that could result in the elimination of cells which may
have DNA damage [4, 10, 38—40]. Animal models sug-
gest that with discontinuation of lactation, the breast tis-
sue undergoes postpartum involution and remodeling as
the result of apoptosis, regression of alveoli, and adipo-
cyte repopulation [36, 49]. During lactation, mammary
gland adipose tissue undergoes significant remodeling
with replacement of adipocytes by mammary alveolar
structures and their subsequent re-differentiation (“re-
version”) back into adipocytes after weaning [50].
Whether this reversion completely restores the previous
tissue structure and whether this mechanism could be
applied to humans is unknown. Finally, some recent
studies also suggest that women who breastfed may have
lower adiposity as reflected in their BMI which could
also affect the amount of adipose tissue in the breast
[51]. In our study, however, we observed no correlation
between BMI and breastfeeding (correlation coefficient
= -0.01, p = 0.75), and the estimates for the duration of
breastfeeding in all models were adjusted for BML

To our knowledge, this is the largest study to date ex-
ploring the associations of several reproductive variables
with the proportion of epithelium, stroma, fibroglandu-
lar, and fat tissues. The analysis used data from the
Nurses’ Health Study and Nurses’ Health Study II, estab-
lished cohorts with more than 30 years of follow-up,
confirmed benign breast disease status and comprehen-
sive information on breast cancer risk factors. Our study
has a few limitations. Despite the prospective nature of
the cohort, a measurement error for a few select repro-
ductive variables especially in postmenopausal women is
possible. For example, previous studies had conflicting
findings on the accuracy of recall for age at menarche
[52—-54] which could potentially influence the results for
associations of the interval between menarche and first
birth with tissue measures. Some reports suggest that re-
call inaccuracy for breastfeeding in older women can
affect the estimated associations between breastfeeding
and health outcomes [55]. Next, the proportion of nul-
liparous women in our study (10%) is comparable to the
proportion among cancer-free women from other stud-
ies (range 4-14% [56-59]), including those in NHS/
NHSII [60, 61]. As our study includes only cancer-free
women with clinically indicated biopsy resulting in BBD
diagnosis and since the analysis of the whole-slide im-
ages included both the background normal tissue as well
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as benign lesions, the findings are expected to be
generalizable to cancer-free women with BBD. Next, as
whole-slide images included both normal tissue and le-
sions, we additionally adjusted our models for BBD sub-
types to explore their influence on the study findings,
and the results remained unchanged. Finally, due to the
small proportion of postmenopausal women in our study
sample (n = 290), we were unable to perform an analysis
within this stratum.

Conclusions

We investigated the associations of several reproductive
variables related to childbearing with the extent of epi-
thelial, stromal, fibroglandular, and fat tissue. Our find-
ings suggest that nulliparous women are more likely to
have a lower percentage of epithelium and fat and a
greater percentage of stroma as compared to parous
women, potentially suggesting the importance of
epithelial-stromal interactions. Parous women with a
greater number of children appeared to have a smaller
proportion of stroma. In premenopausal women, youn-
ger age at first birth was associated with a larger propor-
tion of epithelium and a smaller proportion of stroma.
Future studies are warranted to confirm our findings
and to elucidate the underlying biological mechanisms.
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