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Abstract

Molecular morphometrics is an emerging third dimensional aspect of fungal species delimi-

tation. They have been demonstrated to be more informative than conventional barcoding

methods. Hence in this study, foliar endophytic fungal (FEF) assemblages in three Magno-

liopsida plants were delimited using nuclear ribosomal internal transcribed spacer 2 (ITS2)

sequence—secondary structural features based phylogenetic analysis, also known as

molecular morphometrics. A total of 392 FEF isolates were obtained from the Aglaia elaeag-

noidea, Flacourtia inermis, and Premna serratifolia leaves and grouped into 98 morpho-

types. Among these host plants, P. serratifolia showed the maximum percentage of

colonization frequency. Representatives of each morphotype was sequenced and subjected

to further molecular characterization. The results revealed that morphotypes were belonged

to the phylum of Ascomycota, distributed over two classes (Sordariomycetes (68.59%) and

Dothideomycetes (31.41%)), 6 orders and 19 genera. Based on compensatory base

changes (CBC) analysis and absolute identity of ITS2 structure, 21, 20 and 23 species were

recognized from A. elaeagnoidea, F. inermis, and P. serratifolia respectively. Diversity indi-

ces were higher in A. elaeagnoidea, despite it accounted for a modest 16.8% of total isolates

recorded in this study. The genus Colletotrichum was predominant in A. elaeagnoidea

(39%) and P. serratifolia (48%). Similarly, Diaporthe (43%) was dominant in F. inermis. Sev-

eral host-specific species were also observed. This study concludes that these plants host

diverse species of Ascomycota. To the best of our knowledge, this is the first detailed report

on FEF diversity from these plants. Also, the inclusion of ITS2 secondary structure informa-

tion along with the sequence provides a further dimension to resolve the inherent problems

in identification of fungal species.
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Introduction

Foliar fungal endophytes are asymptomatic inhabitants of healthy plant leaves for all or part of

their life cycle [1–3]. Such co-evolution of endophytic fungi and host likely existed when plants

colonized land (since 400MYr), thus contributing a long and significant role in steering the

evolution of fungal life on earth [4,5]. Endophytes, transmitted from one generation to another

through infected host tissues (seeds, vegetative propagules) or fungal spores [5,6], may confer

the host with physiological/fitness benefits over its competitors [7]. They have been proven as

a fascinating source of structurally novel and biologically active secondary metabolites [8–12].

Also, the fungal endophytes have been catalogued to produce plant bioactive compounds and

their analogs, thus making them a promising source of novel compounds with great potentials

in medicinal, agricultural and industrial arenas [12,13]. Scientific communities also have

renewed their interests in bio-prospecting these microorganisms to avoid large-scale harvest-

ing of medicinal plants [12,14].

Almost all plant species serve as a repository for one or more endophytic organisms [15–

17]. Investigation of endophytic assemblages in a plant over space and time is a laborious pro-

cess which in fact is complicated with the intricacies of fungal systematics and phylogenetics

[18]. The morphological and reproductive characters are predominantly subjective and fall

short of providing unequivocal species delimitations. Hence, the molecular data are embraced

in fungal systematics and phylogenetics [19]. Several genetic markers are in use for molecular

identification of fungi. Among the molecular markers used in fungal identification, nuclear

ribosomal internal transcribed spacer (ITS) region has been the most widely used marker and

is the formal fungal DNA barcode. The majority of the earlier reports reveal that ITS outper-

forms other genetic markers in phylogenetic reconstruction of diverse eukaryotes [20–23]. It

provides better discrimination of closely related species, besides offering higher success rates

in PCR and sequencing experiments [19,24]. The molecular identification is often achieved

through similarity searches among archived sequence data from public databases; however,

caution has to be excised to avoid false identification [15,25,26]. The erroneous—incomplete

entries in public databases and lack of reliable public reference data set have been the major

setbacks in molecular identification of fungi [27,28]. Recent progresses in addressing the

above issues look promising and have resulted in well-curated databases like UNITE (https://

unite.ut.ee/search.php#fndtn-panel2) and Q-Bank (http://www.q-bank.eu/fungi/) [29,30].

However, developing a reference database encompassing taxonomically well-distinguished

sequences of all reported fungi is yet to achieve.

In recent years, a substantial number of studies have demonstrated the ITS2 molecular

morphometrics approach to produce significant vital phylogenetic information for delimiting

the eukaryotes at different taxonomic levels, especially at genus and species ranks [31–35].

ITS2, a sub-region of ITS genetic marker, lies between the 5.8S and 28S genes of tandemly

repeated rRNA genes. The ITS2 region is more conserved than the ITS1 region and hence, the

ITS2 secondary structure information has been widely employed in species diagnosis [20,36–

38]. The amalgamation of the ITS2 sequence and secondary structure information has been

shown to enhance the robustness of the phylogenetic inference [39]. The use of ITS2 sequence

—secondary structural features (structural pattern, CBCs, insertion and deletion events

(INDELs) and transition (Ts) / transversion (Tv)) for species delimitation is known as molecu-

lar morphometrics [31]. These features provide further dimension in the delimitation of

organisms at the species level. For instance, compensatory base changes (CBCs, nucleotide

substitutional events occurring at either side of a base pair) in ITS2 secondary structure has

been presented as a possible diagnostic marker to predict the minimal number of different spe-

cies present in datasets [37,40].
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In this present study, we intended to investigate the FEF assemblages from three Magno-

liopsida plants (Aglaia elaeagnoidea (A. Juss.) Benth., Flacourtia inermis Roxb., and Premna
serratifolia L.) based on ITS2 molecular morphometrics analysis. FEF assemblages in these

plants were not reported erstwhile and hence these medicinal plants were chosen. The foliar

endophytic fungal isolates were delimited based on morphological characteristics along with

their ITS sequence based phylogenetic analysis. Further, species identity was evaluated using

ITS2 molecular morphometric analysis.

Materials and methods

Sample collection

Leaf samples were collected twice during the period of November 2014 to February 2015 from

the plants growing in the ABS Botanical Garden, located in Kaaripatti, Salem, Tamil Nadu, India

(Altitude: 366 meters above MSL, Longitude: 77.5E and Latitude: 12N) with appropriate permis-

sion (Auth. No.: AUT/MKU/067). Sixty healthy, mature leaves were collected from five plants of

each hosts namely, Aglaia elaeagnoidea (A.Juss.) Benth., Flacourtia inermis Roxb. and Premna
serratifolia L. (Fig 1). Then, the leaves were kept in sterile polythene bags and brought to the lab-

oratory in an icebox. The leaves were stored at 4˚C and processed within 24 hours of collection.

The collected leaves were washed thoroughly in running tap water and air dried. Subsequently,

they were washed twice with sterile distilled water and were surface sterilized by sequential washes

(5 seconds in 70% ethanol, 90 seconds in 4% sodium hypochlorite and then washed thrice in ster-

ile distilled water (1 minute for each)) to remove the epiphytic microbes. After surface steriliza-

tion, the leaves were blotted on sterile tissue paper under laminar airflow and cut into smaller

segments (0.5 X 0.5 cm2) with a sterile surgical blade and plated on culture medium to isolate the

foliar endophytic fungi. The efficacy of the surface sterilization was tested by imprinting the steril-

ized leaf segments on the surface of potato dextrose agar (PDA) medium [41].

Isolation and morphotyping

Fungal endophytes were isolated from 300 sterile leaf segments (consists of upper, middle and

lower portion of the midrib and lamina region) of each host plant species. The leaf segments

Fig 1. Taxonomical hierarchy of host plants: (a) A. elaeagnoidea, (b) F. inermis and (c) P. serratifolia.

https://doi.org/10.1371/journal.pone.0215024.g001
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were placed on Petri plates (5 segments plate-1) containing PDA medium supplemented with

streptomycin (250 mg L-1). The plates were incubated at 25 ± 2˚C for 21 days under the light

regimen of 12-hours white fluorescent light: 12-hours of dark cycle. The plant segments were

monitored daily and emerging fungal hyphae were transferred to fresh PDA plates and incu-

bated for a week. The rapidly grown isolates were removed with sterile scalpel following isola-

tion, to avoid the inhibition of slow growing isolates. The pure cultures were transferred to

PDA slants and maintained at 4˚C [42,43]. The leaf imprint tests showed no growth, thereby

validates the efficacy of the surface sterilization process employed.

The cultural characteristics such as colony growth rate, surface texture, color (adaxial and

abaxial) and margin of the isolates were examined on the PDA plate. The isolates from each

host were grouped into distinct morphotypes according to their morphological characters.

The morphotypes obtained from the leaves of A. elaeagnoidea, F. inermis and P. serratifolia
were labeled as Ae-01 to Ae-29, Fi-01 to Fi-32 and Ps-01 to Ps-37 respectively. One representa-

tive isolate of each morphotype was chosen for molecular characterization.

Molecular characterization

Genomic DNA was extracted from 1 g of fungal mycelium scrapped out of 7 days old culture

grown on PDA. The scrapped mycelium was pulverized with 4 ml of extraction buffer

(400mM Tris-HCl (pH 8.0), 60mM EDTA, 150mM NaCl and 1% sodium dodecyl sulfate)

using mortar and pestle [44]. 300 μl of 3M sodium acetate (pH 5.2) was added to the 600 μl of

the pulverized sample and incubated at -20˚C for 10 minutes. Subsequently centrifuged at

12,000 rpm for 5 minutes and to the supernatant, an equal volume of isopropanol was added

and incubated at room temperature for 15 minutes to precipitate DNA and pelleted by centri-

fugation at 12,000 rpm for 3 minutes. The pelleted DNA was washed with 70% ice-cold ethanol

by centrifuging at 12,000 rpm for 2 minutes [45]. Further, the pellet was air dried and re-sus-

pended in sterile milli-Q water. The extracted DNA was checked by gel electrophoresis and

stored at -20˚C until further use.

The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene was ampli-

fied with primers ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'–TCCTCCGCT
TATTGATATGC-3’) [46]. The amplification was performed in a 25 μl reaction volume which

consists, 2.5 μl of template DNA (10 ng/μl), 1.25 μl of each primer (10 pmol/μl), 12.5 μl of Taq

DNA Polymerase Master Mix RED-Ampliqon (2X) and 7.5 μl of sterile milli-Q water. The

amplification cycling program was as follows: 94˚C for 4 minutes of initial denaturation, fol-

lowed by 30 cycles of denaturation at 94˚C for 30 seconds, primer annealing at 58˚C for 1 min-

ute and extension at 72˚C for 2 minutes, and a final 7 minute extension at 72˚C. A negative

control was included in each amplification run (using sterile milli-Q water instead of template

DNA). The amplified products were purified and sequenced (Sanger’s method) bi-direction-

ally, at Eurofins genomics India Pvt Ltd., Bangalore. The ITS1 forward and ITS4 reverse com-

plement sequences were merged using EMBOSS merger (http://emboss.bioinformatics.nl/cgi-

bin/emboss/merger) to get full length of ITS region.

A total of 98 ITS sequences generated in this study, were blast searched against the

sequences deposited in NCBI database. BLAST hits of closely related sequences were examined

for greater query coverage, sequence similarity and lower e-value and were picked for further

phylogenetic analysis. The identities of our isolates were analyzed through phylogenetic analy-

sis, using sequences of authenticated cultures available in culture collection (CBS, NRRL,

ATCC, and CPC) and/or curated sequences published in UNITE database, corresponding to

the BLAST hit. The phylogenetic analysis was performed using Maximum Likelihood and

Bayesian approaches. Multiple sequence alignment of the sequences was performed using the
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Clustal W program included in Mega 7 (https://www.megasoftware.net/) and the alignment

was manually adjusted where necessary. The aligned sequences were exported and used for

phylogenetic reconstruction.

RAxML v7.4.2 was employed for Maximum likelihood (ML) analysis with rapid bootstrap

(BP) for 1,000 replicates using the GTR model [47]. The bootstrap support values from the ML

analysis were presented in the tree. For the Bayesian analysis (BI), MrBayes 3.2.2 was run with

1,000,000 generations starting with a random tree. Every 100th tree was saved into a file. The first

100,000 generations were deleted as the “burn-in” of the chain. The program Tracer v1.6 was

applied to compare splits frequencies in the different runs and to plot cumulative split frequencies

to ensure that stationarity was reached. Of the remaining trees, a majority rule consensus tree

with average branch lengths was calculated using the sumt option of MrBayes [48]. Posterior

Probabilities (PP) obtained for each clade was represented in the tree. The reconstructed trees

were visualized using the TreeGraph ver.2 (http://treegraph.bioinfweb.info/Download).

Molecular morphometric analysis

The ITS2 regions were extracted from ITS sequence by using Fungal ITS extractor. It is avail-

able at http://www.emerencia.org/FungalITSextractor.html [49]. Then, 20 bases of 5.8S and

28S rDNA nucleotide bases were added respectively to the 5’ and 3’ end of the extracted ITS2

region [50]. The folding of ITS2 region was performed using the Mfold ver. 3.1 web server

(http://unafold.rna.albany.edu/?q=mfold/rna-folding-form) with default condition (Folding

temperature: 37˚C, ionic conditions: 1M NaCl (no divalent ions), percent sub-optimality num-

ber: 5, upper bound on the number of computed folding: 50, maximum interior/bulge loop

size: 30, maximum asymmetry of an interior/bulge loop: 30 and maximum distance between

paired bases: no limit) [51]. Among all the possible predicted structures, the one with minimal

free energy and conserved helix pattern of eukaryotic ITS2 was chosen. The selected secondary

structures were downloaded in Vienna format (containing sequence and secondary structure

information) for constructing sequence and secondary structure based alignment.

The nuclear ribosomal ITS2 sequences were aligned along with their secondary structures

using 4SALE 1.7. The alignment (sequence with secondary structure information and single

letter amino acid codes of sequence secondary structure information were exported for NJ and

ML analyses respectively) was exported for sequence–secondary structure based phylogenetic

analysis. The CBCs were analyzed using CBCAnalyzer implemented in 4SALE. 4SALE was

also used to visualize the consensus structure with sequence and secondary structure align-

ment information [37,52].

The alignment file obtained from 4SALE was imported to construct sequence-secondary

structure based phylogenetic tree. The Neighbour-joining (NJ) tree was constructed using gen-

eral time reversible (GTR) substitution model and an ITS2-specific scoring matrix as imple-

mented in ProfDists with 1,000 pseudo-replicates [53]. The maximum likelihood tree was

calculated using phangorn with 1,000 pseudo-replicates as implemented in the statistical

framework R 3.4.1. The R script was available from the 4SALE homepage at http://4sale.

bioapps.biozentrum.uni-wuerzburg.de [54].

Analysis of diversity indices

The foliar endophytic fungal isolates from each host plant were analyzed on the basis of coloni-

zation frequency (CF): the number of species isolated were divided by number of segments

screened x 100; relative percentage of occurrence (RPO) of different groups of fungi: density of

colonization of one group divided by total density of colonization x 100 and endophytic infec-

tion rate (EIR): the number of infected segments divided by the total number of segments
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screened x 100 [55,56]. FUNGuild analysis was performed using online guilds application

(http://www.stbates.org/guilds/app.php) to assess the functional roles of the species obtained

in this study [57]. The species accumulation curves and diversity indices (Species richness

(ACE and Chao 1), Species evenness (Simpson Inverse and Alpha), Shared species indices

(Chao shared, Jaccard, Chao-Jaccard, and Bry-Curtis) and Shannon’s diversity index) were

inferred with EstimateS 9.1.0 [58]. The data were represented using GraphPad PRISM 6.

Results

A total of 392 foliar endophytic fungi were isolated and characterized from 900 segments of

healthy leaf tissues of Aglaia elaeagnoidea, Flacourtia inermis and Premna serratifolia found in

the ABS Botanical garden. These hosts and this geographical location (Fig 2) had not been

explored erstwhile for FEF diversity.

FEF distribution in three Magnoliopsida plant leaves

Out of 392 isolates recovered, 66 isolates were obtained from A. elaeagnoidea, while 105 and

221 isolates were recovered from F. inermis and P. serratifolia respectively. The sampling

efforts and isolates recovered from the three Magnoliopsida plants are presented in Table 1. In

the three plants investigated, midrib regions of the leaves harbored 0.64, 1.00 and 0.43 fold

more isolates than the isolates recovered from the lamina of A. elaeagnoidea, F. inermis and

P. serratifolia respectively. Out of the 300 leaf segments screened from each plant species, inter-

estingly no endophyte was isolated from 236, 208 and 101 leaf segments of A. elaeagnoidea, F.

inermis and P. serratifolia respectively. The EIR of A. elaeagnoidea, F. inermis and P. serratifolia
leaves were 21.3%, 30.7%, and 63.3% respectively. This implies that the leaves of P. serratifolia
were highly colonized (CF 73.7%) while the A. elaeagnoidea were the least colonized (CF

22.0%) among the three plants investigated and F. inermis having a CF of 35.0%. The EIR and

CF of these host plants are shown in Fig 3.

Fig 2. Map showing the geographical location of the sampling site.

https://doi.org/10.1371/journal.pone.0215024.g002
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Morphotyping of FEF

Based on the cultural characteristics such as growth rate, colony morphology, hyphal charac-

ters, spores morphology and pigmentation, the fungal isolates were grouped into distinct mor-

photypes. In the present study, large numbers of sterile forms (66%) were obtained and they

were categorized predominantly based on cultural characteristics (i.e. colony color, surface

texture, growth pattern, margin and growth rate). Consequently, 29, 32 and 37 distinct mor-

photypes were recognized from A. elaeagnoidea, F. inermis and P. serratifolia respectively (Fig

A in S1 File). Totally, 98 morphotypes were recognized in these plants, of which 66.3% were

plurals (represented by more than one isolate), and the remaining morphotypes were single-

tons (represented by a single isolate). In A. elaeagnoidea and P. serratifolia, 72.41% and 78.38%

of the morphotypes were plurals respectively, while in F. inermis only 46.88% of morphotypes

belongs to plurals. Further, these morphotypes were delineated based on ITS2 molecular

morphometrics.

Table 1. Sampling effort and number of foliar endophytic fungi isolated from A. elaeagnoidea, F. inermis, and P. serratifolia.

Plant Sampling

events

No. of leaves Leaf region No. of segments No. of segments infected No. of isolates Total No. of isolates

Aglaia elaeagnoidea (A.Juss.) Benth. I 30 Mid rib 75 15 17 66

Lamina 75 08 08

II 30 Mid rib 75 24 24

Lamina 75 17 17

Flacourtia inermis Roxb. I 30 Mid rib 75 24 31 105

Lamina 75 12 13

II 30 Mid rib 75 34 39

Lamina 75 22 22

Premna serratifolia L. I 30 Mid rib 75 61 69 221

Lamina 75 42 44

II 30 Mid rib 75 51 61

Lamina 75 45 47

https://doi.org/10.1371/journal.pone.0215024.t001

Fig 3. Colonization frequency (CF) and endophytic infection rate (EIR) of foliar endophytic fungi from three

Magnoliopsida plants.

https://doi.org/10.1371/journal.pone.0215024.g003
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Taxonomic placement of FEF

The identity of the representative isolates of each morphotype was ascertained based on the

phylogenetic analysis of their ITS sequence with their closest and related reference sequences

from global repositories. Phylogenetic analyses were performed using both Maximum Likeli-

hood and Bayesian approaches for the entire dataset. Similar topologies were observed in both

approaches, hence to avoid redundancy, ML tree is shown with BP and PP support values

(Figs B–J in S1 File). Inferring from the phylogenetic results, all the isolates were found to stem

from two classes (Soradariomycetes and Dothideomycetes) of the Ascomycota. Soradariomy-

cetes accounted for 68.37% of isolates and were represented by 3 orders (Diaporthales, Xylar-

iales and Glomerellales), 4 families and 6 genera. Dothideomycetes accounted for 31.63% of

isolates and were represented by three orders, namely Botryosphaeriales, Dothideales and

Pleosporales comprising 13 genera, belonging to 5 families (Fig 4). Interestingly greater diver-

sity was recorded in Dothidiomycetes despite accounting for a lesser percentage of isolates.

A total of 19 genera namely, Colletotrichum (26 morphotypes), Xylaria (2 morphotypes),

Arthroxylaria (1 morphotype), Diaporthe (28 morphotypes), Phomopsis (9 morphotypes),

Harknessia (1 morphotype), Setosphaeria (4 morphotypes), Alternaria (10 morphotypes),

Guignardia (2 morphotypes), Aureobasidium (1 morphotype), Phyllosticta (4 morphotypes),

Pseudofusicoccum (1 morphotype), Stagonosporopsis (1 morphotype), Preussia (1 morpho-

type), Neoscytalidium (1 morphotype), Peyronellaea (1 morphotype), Cochliobolus (1 morpho-

type), Curvularia (1 morphotype), and Neofusicoccum (3 morphotypes) accounted for the 98

morphotypes recognized in this study. Interestingly in A. elaeagnoidea, 12 genera were recog-

nized out of 29 morphotypes. However, in F. inermis and P. serratifolia with higher morpho-

types (32 and 37), only 10 and 8 genera were recognized respectively.

FUNGuild analysis revealed that the isolates, belongs to five main trophic guilds (symbio-

trophs–pathotrophs—saprotrophs, symbiotrophs—pathotrophs, symbiotrophs—saprotrophs,

Fig 4. Taxonomical hierarchy of foliar endophytic fungi isolated from A. elaeagnoidea, F. inermis and P.

serratifolia.

https://doi.org/10.1371/journal.pone.0215024.g004
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pathotrophs and sparotrophs). Colletotrichum, Setosphaeria and Diaporthe isolates were cate-

gorized as symbiotrophs—pathotrophs (74.0%). Alternaria, Harknessia, Aureobasidium and

Phyllosticta isolates were belong to symbiotrophs–pathotrophs–saprotrophs (9.7%). Guignar-
dia, Neofusicoccum, Stagonosporopsis, Pseudofusicoccum, Neoscytalidium, Curvularia and

Cochliobolus were cetegorised as Pathotrophs (14.4%). Arthroxylaria, Peyronellaea and Preus-
sia were categorised as saprotrophs (1.6%). Xylaria was assigned to saprotrophs–symbiotrophs

(0.3%). The relative abundance of distribution of the isolates belonging to trophic guilds varied

among the three hosts investigated in this study and are represented in Fig K in S1 File.

Secondary structure prediction and analysis

The ITS2 region was extracted from ITS sequences and they were used for phylogenetic recon-

struction to evaluate the utility of this region in delimiting the fungal specis. The clade forma-

tions were similar in both ITS2 and full length of ITS region sequence tree. Hence, the closest

reference sequences to our isolates were chosen for ITS2 molecular morphometric analysis.

The length of the chosen ITS2 sequences of 98 query and 193 reference strains ranged from

145 bp (Preussia minima CBS 52450) to 181 bp (Setosphaeria rostrata Ae-06). The highest GC

content was detected in Phyllosticta maculate CPC 18347 (67.46%) and the lowest in Cochlio-
bolus homomorphus ATCC26651 (46.47%). The length and GC content of the ITS2 sequences

analyzed in the data set are summarized in the nucleotide information table (Fig 5 and Table A

in S2 File).

ITS2 secondary structures were predicted for a dataset comprising our query sequences and

their phylogenetically closely related sequences. In total, secondary structures were predicted

for 293 sequences and their structural minimum free energy is represented in Fig 5 and

Table A in S2 File. The core structure of the ITS2 region has a central bulge with 3–4 helices

radiating from it. These were designated as helices I-III or I-IV from 5’ to 3’ direction.

In this study, five distinct types of secondary structures were observed. In type 1, three heli-

ces protruded from the central bulge and the fourth helix does not occur. This type was pre-

dominantly observed in members of Colletotrichum, Arthroxylaria, Peyronellaea, Harknessia,

Preussia, Stagonosporopsis, Aureobasidium and few species of Diaporthe, Phomopsis and

Xylaria. In type 2, three helices were radiating from the central bulge and its extended subdo-

main. Helix I radiates from the central bulge, while helix II and III were radiating from the

extended subdomain of the central bulge. Most species of Diaporthe, Phomopsis, and all the

species of Cochliobolus, Curvularia and Setosphaeria investigated in this study possessed this

type of secondary structure.

Fig 5. Box and whiskers plots depicting the secondary structral free energy, GC content and length of the ITS2

sequences employed in this study.

https://doi.org/10.1371/journal.pone.0215024.g005
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Type 3 structure shared similarities with the type 2 in possessing 3 helices radiating from

the central bulge and its extended subdomain. Helix I radiates from the central bulge, while

helix II and III were radiating from the extended sub domain of the central bulge. However, a

small helix (2–3 canonical base pair with an apical bulge) was protruding between helix II and

helix III. It was designated as helix IIa. Most species of Alternaria as well as Phomopsis azadir-
achtae possessed this type of secondary structure.

In type 4, four helices were observed to be radiating from the central bulge. This type of

structure was observed in few species of Neoscytalidium, Xylaria, Pseudofusicoccum and Colle-
totrichum. In type 5, four helices were radiating from the central bulge and its subdomains.

Helix III and IV were radiating from the central bulge and the helix I and II were radiating

from the extended subdomain. Members of Guignardia, Phyllosticta and Neofusicoccum pos-

sessed this type of secondary structures.

The general consensus structure for all the 293 sequences modeled in this study possessed a

three-helical pattern (Fig 6). Helix IV was highly variable and did not appear in several genera

Fig 6. Consensus secondary structure of all internal transcribed spacer 2 (ITS2) sequences employed in molecular

morphometric analysis. Helices were numbered I–III from 5’ to 3’ direction. Sequence conservation was indicated

with colours from red (not conserved) to green (>51%; conserved).

https://doi.org/10.1371/journal.pone.0215024.g006
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and henceforth it did not appear in the consensus structure. Helix III was the longest and con-

tains a UGGC motif at its base. Exceptionally, in the members of Botryosphaeriales, Dothi-

deales and Diaporthe mayteni a variant motif, CGGC was observed. Genus-wise consensus

structures were also modeled and depicted in Fig L in S1 File. The regions of conservations

and the intraspecies variations observed were depicted in color scale (red to green for variation

to conservation). The sequence variations had implications in the structural variations, how-

ever, the common core of the predicted structures was concordant with the eukaryotic general

rule of ITS2 secondary structure.

Molecular morphometrics based species delimitation

Structural features, CBCs, substitutions and INDELs were investigated to delineate the species

boundaries. CBCs were observed between the taxonomically characterized reference and

query sequences, however, CBCs analyzed between the query sequences alone were presented

for clarity (Tables A–C in S3 File). The presence of CBCs always indicated the distinctiveness

of the species, thereby serving as a species delimiter as proclaimed in earlier reports. In this

study, out of the 98 morphotypes, a minimum of 25 species were recognized based on CBC.

More than one species were recognized in Colletotrichum (3 spp.), Diaporthe (3 spp.) and Pho-
mopsis (3 spp.) and one species was recognized from each of the other genera reported in this

study. Also, lack of CBCs was common among most of the species. Interestingly, CBCs were

not found among both closely related and distinctly related species. But nucleotide variations

were observed in the form of substitutions and INDELs. Henceforth, in addition to CBC, abso-

lute structural identities were considered to delineate the morphotypes.

Sequence secondary structure based phylogenetic analysis was performed using Maximum

likelihood and Neighbour-joining methods. Both methods generated similar tree topologies,

therefore only the Maximum likelihood tree was presented with bootstrap values from both

methods Figs 7–10. Single letter amino acid codes of nuclear ribosomal ITS2 sequence—sec-

ondary structure alignment information were submitted in TreeBASE under the accession

number of 23593 (http://purl.org/phylo/treebase/phylows/study/TB2:S23593). Based on the

molecular morphometric analysis, the 57 morphotypes were delimited to species level. The

remaining 41 morphotypes were not delineated due to the lack CBCs and/or absolute struc-

tural identity with reference strains; hence they were designated in distinct groups (type-01,

type-02, etc.) and considered as distinct taxonomical entities for diversity studies. Conse-

quently, 21, 20 and 23 species were recognized from A. elaeagnoidea, F. inermis, and P. serrati-
folia respectively. For instance, Phomopsis sp. Ps-43 and Harknessia sp. Ae-04 rendered CBC

against all the reference and query sequences of the respective genus and also lacked absolute

structural identity. Therefore, they were not distinguished at the species level. These observa-

tions indicate that they may represent new species and warrants further investigation. After

naming, the sequences were submitted in GenBank under the accession numbers KU663477

to KU663505 (29 morphotypes of A. elaeagnoidea), KU671296 to KU671327 (32 morphotypes

of F. inermis) and KU671328 to KU671364 (37 morphotypes of P. serratifolia).

Diversity of FEF in three Magnoliopsida plants

At the genus level, diversity was higher in A. elaeagnoidea (12 genera), although the number of

isolates recorded in it accounts for only 16.8% (29 morphotypes) of the total isolates. In case of

F. inermis and P. serratifolia, 10 and 8 genera respectively were observed although the number

of isolates recorded in them accounted for 26.8% (32 morphotypes) and 56.4% (37 morpho-

types) respectively. Of the 19 genera recovered, Setosphaeria, Alternaria, Colletotrichum and

Diaporthe were found in all plants. Members of Guignardia and Phyllosticta were found in
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both A. elaeagnoidea and F. inermis, while Phomopsis were distributed in both F. inermis and

P. serratifolia. Interestingly, Aureobasidium, Harknessia, Pseudofusicoccum, Stagonosporopsis,
Preussia and Neoscytalidium were found only in A. elaeagnoidea. Similarly, Arthroxylaria,

Peyronellae, and Cochliobolus were found only in F. inermis. Likewise, Xylaria, Neofusicoccum
and Curvularia were found only in P. serratifolia. The relative frequencies of these endophytes

are shown in Fig 11 to express the diversity of FEF in the respective host plants.

Species accumulation curves and diversity indices of the FEF assemblages from the three

plants were also assessed. The species accumulation curve did not reach an asymptote in F.

inermis but it was approaching the asymptote in both A. elaeagnoidea and P. serratifolia (Fig

12). Estimated Shannon, Chao1, ACE, Simpson Inverse and Alpha indices are summarized in

Table 2. Chao 1 and ACE predictions, revealed that the sampling effort was slightly less mas-

sive than would have been needed to account for the species richness of A. elaeagnoidea and P.

serratifolia, while greater inadequacy was observed in sampling F. inermis. Shannon, alpha and

Simpson inverse index were higher in A. elaeagnoidea than the other two plants investigated.

The similarities of species assemblages across the three plants were described using Chao

Fig 7. Internal transcribed spacer 2 sequence–secondary structure based phylogenetic tree of Botryosphaeriales

and Dothideales query and reference sequences. The query sequences are represented by the symbol “♦”. Bootstrap

(BP) values�50 were represented in the tree. Maximum Likelihood tree was presented with branch support values as

BP of ML tree / BP of NJ tree.

https://doi.org/10.1371/journal.pone.0215024.g007
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shared, Jaccard, Chao-Jaccard and Bray-Curtis indices (Table 3). The highest species similarity

was observed between A. elaeagnoidea and P. serratifolia.

Fig 8. Internal transcribed spacer 2 sequence–secondary structure based phylogenetic tree of Diaporthales query

and reference sequences. The query sequences are represented by the symbol “♦”. Bootstrap (BP) values�50 were

represented in the tree. Maximum Likelihood tree was presented with branch support values as BP of ML tree / BP of

NJ tree.

https://doi.org/10.1371/journal.pone.0215024.g008
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Fig 9. Internal transcribed spacer 2 sequence–secondary structure based phylogenetic tree of Glomerellales and

Xylariales query and reference sequences. The query sequences are represented by the symbol “♦”. Bootstrap (BP)

values�50 were represented in the tree. Maximum Likelihood tree was presented with branch support values as BP of

ML tree / BP of NJ tree.

https://doi.org/10.1371/journal.pone.0215024.g009
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Fig 10. Internal transcribed spacer 2 sequence–secondary structure based phylogenetic tree of Pleosporales query

and reference sequences. The query sequences are represented by the symbol “♦”. Bootstrap (BP) values�50 were

represented in the tree. Maximum Likelihood tree was presented with branch support values as BP of ML tree / BP of

NJ tree.

https://doi.org/10.1371/journal.pone.0215024.g010
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In A. elaeagnoidea, Colletotrichum sp. type-01, S. rostrata, G. mangiferae, C. gloeosporioides
and D. pseudomangiferae were the dominant species. Similarly, in F. inermis, Diaporthe sp.

type-11, G. mangiferae, Diaporthe sp. type-01, D. pseudomangiferae, A. alternata, C. gloeospor-
ioides were the dominantly observed species. In P. serratifolia, C. gloeosporioides, C. cliviae, S.

rostrata, A. alternata, N. parvum, Colletotrichum sp. type-01. C. gloeosporioides was predomi-

nantly recovered from all the three plants. Species distribution patterns varied greatly among

the three plants investigated (Fig 13). Based on this study, it is evident that A. elaeagnoidea, F.

inermis, and P. serratifolia host diverse foliar endophytic fungal species.

Fig 11. Relative percentage occurrence of different foliar endophytic fungal taxa isolated from (A) A. elaeagniodea,

(B) F. inermis and (C) P. serratifolia and (D) Illustration of the host specificity.

https://doi.org/10.1371/journal.pone.0215024.g011

Fig 12. Species accumulation curves of foliar endophytic fungi recovered from Magnoliopsida plants.

https://doi.org/10.1371/journal.pone.0215024.g012
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Discussion

In the past four decades, numerous investigations have reported the FEF population to be

abundant and multifarious in most plants [1,3,59–61]. The stomatal openings in the foliages

offer passage to the entry of fungal propagules and diverse fungal lineages have been observed

to colonise the extensive surface area of the foliar cover [62]. FEF have been touted as the reser-

voir of valuable metabolites and their bioprospecting could meet the pharmaceutical demands

in a cost-effective, easily accessible and reproducible way [12,15,63]. Also, in several cases the

medicinal property of compounds derived from these FEF resembles that of their host plants;

hence they could potentially serve as an alternative source of the host metabolites [64,65].

The biotechnological exploitation of FEF necessitates the exploration and documentation

of these organisms in the spatiotemporal regime [66]. Based upon this rationale, in the present

investigation, leaves from three different Magnoliopsida plant (A. elaeagnoidea, F. inermis, and

P. serratifolia) leaves were collected from the ABS botanical garden, one of the biodiversity

rich site in Salem, TN and were investigated, to document the associated endophytic myco-

flora. Diverse plant communities in the area influence the FEF diversity and several novel host

specific species could be recovered from such hyper diverse regions [67]. Host specificity, tis-

sue specificity, and various environmental factors (nutrient availability, rainfall, and interac-

tion with external microbiomes) have been shown to impact the FEF diversity [59,68–72].

Hence this geographical location featuring greater biodiversity was chosen for the present

investigation. Although all three plants have been traditionally used for medicinal purposes

and the potential of their bioactive compounds has been reported in many studies [73–77],

their FEF assemblages were unexplored and hence they were chosen for the present

investigation.

A total of 66, 105 and 221 isolates were obtained from the A. elaeagnoidea, F. inermis, and

P. serratifolia respectively. Also, higher numbers of isolates were recorded from the midrib

region than from the lamina region, which is congruent with the previous reports [78,79]. The

isolates from respective hosts were grouped into distinct morphotypes (29, 32 and 37 from Ae,

Fi, and Ps respectively). Arnold et al. [80] reported 418 morphospecies representing 347 genet-

ically distinct taxa from healthy leaves of Heisteria concinna and Ouratea lucens. The present

study concurs with the earlier reports that all higher plants hosts endophytic microbes and the

FEF composition varies among plants [1,67,81].

Representative isolates of each morphotype from respective hosts were identified based on

the morphological and molecular morphometric analysis. As documented in erstwhile reports

[82–86], most of our isolates were non-sporulating and exhibited pleomorphic morphological

Table 2. Species richness (ACE and Chao 1), evenness (Simpson Inverse and Alpha) and Shannon’s diversity (H’) indices of A. elaeagniodea, F. inermis, and P.

serratifolia.

Hosts No. of isolates No. of Morphotypes No. of species ACE Chao 1 Shannon’s diversity index (H’) Simpson Inverse Alpha

A. elaeagniodea 66 29 21 22.64 22.64 2.79 12.81 10.63

F. inermis 105 32 20 47.24 47.24 2.41 8.68 7.33

P. serratifolia 221 37 23 26.32 26.32 2.62 10.56 6.46

https://doi.org/10.1371/journal.pone.0215024.t002

Table 3. Shared species indices of A. elaeagniodea, F. inermis and P. serratifolia.

1st sample 2nd sample Shared species Chao shared Jaccard Chao-Jaccard Bray-Curtis

A. elaeagniodea F. inermis 6 12.04 0.171 0.328 0.199

A. elaeagniodea P. serratifolia 8 8.14 0.222 0.420 0.237

F. inermis P. serratifolia 6 7.00 0.162 0.282 0.184

https://doi.org/10.1371/journal.pone.0215024.t003
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Fig 13. Ranked species graphs of foliar endophytic fungal assemblages in (A) A. elaeagniodea, (B) F. inermis and (C)

P. serratifolia.

https://doi.org/10.1371/journal.pone.0215024.g013
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characters. The morphological descriptions have been marred with errors owing to the subjec-

tivity and the documentation of new cryptic fungi with overlapping and pleomorphic features

has blurred the species delineation [18]. We thus chose to use molecular and molecular mor-

phometric analysis to delimit the representative FEF morphotype strains. Nonetheless, mor-

photyping has been useful to bin redundant cultures; removing them eases the study without

adversely affecting the species richness estimates. Hence morphotyping have been employed

with utmost caution in this study.

ITS has been accepted as the primary and standard barcoding marker of fungi, and it has

been widely used to document the fungal diversity [22,87,88]. An explosive growth of the fun-

gal sequences in public databases [80,89,90] is presently being observed owing to the technical

advancement in sequencing and the relative ease of identification employing them. Despite the

non-subjective nature (contrary to the morphological identification), phylogenetic utility and

relative ease, molecular identification based on ITS markers is greatly impaired due to accu-

mulation of erroneously named and unidentified ITS sequences in the public databases

[15,25,26,86]. Based on these rationales, sequences of taxonomically well-resolved type strains

or sequences of strains cataloged in culture collection center were employed as reference

sequence set to avoid misnaming of the isolates.

The phylogenetic relationships of our isolates with the reference sequence set were assessed

through ML and BI analysis. The tree topologies were almost congruent between these meth-

ods. Based on these analyses we could confirm that all the morphotypes belong to the phylum

Ascomycota. Arnold et al. [1] and many other researchers have noted that all their isolates

belonged to the phylum Ascomycota and that they were primarily distributed within the three

classes, they were Dothideomycetes, Sordariomycetes, and Eurotiomycetes [70,91]. Likewise,

in this study all the isolates were found to belong to the classes of Dothideomycetes and Sor-

dariomycetes. A total of 19 genera were observed among the isolates recovered from the three

plants explored in this study. The fungal genera identified in this present study have been erst-

while recorded as FEF [3,6,55,70,92–97] and as pathogens [3,98] in various host plants. A few

genera were also reported as epiphytes [62]. Likewise, Neofusicoccum was earlier reported in

angiosperms predominantly and occasionally in gymnosperms [95]. Based on the reports doc-

umented in guild database, assignments of functional attributes to the documented taxa were

made possible through FUNGuild analysis. Guild assignments to fungal isolates, highlights

their potential lifestyle transitions and their ecological relevance to the hosts and ecosystem at

large [57]. The FUNGuild revealed that the endophytic fungal isolates recovered in this study

were predominantly belonging to the symbiotrophs—pathotrophs and least in symbiotrophs

—saprotrophs trophic guilds. Such plant-microbial interactions are context dependent,

depending on the host plant, diversity, population dynamics of microbes, biotic and abiotic

environment [99]. Based on the present study and earlier reports we concur that FEF is most

abundant and multifarious among hosts.

In addition to the morphologically informative characters and molecular identification,

nowadays researchers employ the ITS2 molecular morphometrics to minimize the error in

species delimitation [36,37,40]. Molecular morphometrics is the third dimension of fungal spe-

cies delimitation, which is also extensively used in the delimitation of other eukaryotic species.

Several recent studies have proved that ITS2 molecular morphometric analysis could be effec-

tively used to resolve eukaryotic organisms at the genus and species level. Ma et al. [33]

reported that the application of secondary structure information provides a realistic picture of

relationships within Heterodera. Chen et al. [100] and Han et al. [34] demonstrated the poten-

tial use of the ITS2 region as a standard DNA barcode to identify medicinal plants and their

closely related species. In fungi, such studies are relatively sparse. Yan et al. [34] reported the

ITS2 sequence-secondary structure based analysis performed better than the multi-marker
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based phylogeny in identifying endophytic Pseudocercospora fungi on poplars. Ahvenniemi

et al. [101] suggested recognizing anastomosis groups of Rhizoctonia solani as distinct species

based on the presence of CBCs among them. They also presented credible evidences for CBCs

as a reliable species distinguisher (owing to genetic incompatibility) in cryptic species where

sequence heterogeneity is common. Based on these rationales, ITS2 molecular morphometrics

was employed in this study to delimit the FEF. The secondary structure of the ITS2 regions

was predicted using the widely reported Mfold program with default conditions as described

in erstwhile reports [33,102,103].

The ITS2 structure of the individual isolates consists three to four helices arranged along a

central loop with the third as the longest [104–107]. Several studies have also noted that the

number of helices in the ITS2 secondary structure may vary; helix IV, is absent in many groups

of eukaryotes, however, helix II and III are recognizable in all [106,108]. Likewise, in the pres-

ent study also we found the three helical patterns in most of the individuals and in the consen-

sus structure of the whole dataset because helix IV was not recognized in several taxa.

Sequence variations led to the differences in the folding pattern as a result of which five distinct

patterns were recognized in this study. However the helical patterns of the structures observed

were similar to those described for fungi, plant-parasitic nematodes and many other eukary-

otes [33,103,109,110]. The ITS2 sequence-secondary structure based phylogenetic tree was

highly congruent with the ITS2 sequence and the full length of ITS rDNA sequence based phy-

logenetic tree topology at the species level.

Besides the phylogeny, the CBC concept was also used as one of the molecular aspect to

delineate the species in eukaryotes. Taxa differing by one or more CBCs were proved to be sex-

ually incompatible [111–113]. Muller et al. [37] re-examined the hypothesis and statistically

proved the CBCs as a potential predictor of the minimum number of species. A total of 25 spe-

cies were delineated based on the CBCs recorded, all of which resolved well in the phylogeny.

No CBCs could be observed between numerous species combinations. In the absence of CBCs,

several nucleotide variations such as INDELs and substitution were observed. These variations

could have possibly led to the non-canonical base pairing or structural incongruence among

the comparisons, which may account for the lack of CBCs. Also, species-specific variations

were observed in several cases, however, further investigations in this aspect are necessary to

validate their utility in delineation. Therefore in the present study, the isolates were named

based on absolute identity with the ITS2 secondary structure of reference strains. Isolates with

non-absolute identity were delimited only up to genus level to avoid contributing to the erro-

neous entries in the public databases. Consequently, 41 morphotypes were resolved only at the

genus level due to the lack of reference isolates with absolute structural identity. Interestingly,

Harknessia sp. Ae-04 and Phomopsis sp. Ps-34 rendered CBC against all the sequences

included in this study and also lacked absolute structural identity. Therefore, they were not dis-

tinguished at the species level. These observations indicate that they may represent new spe-

cies, such that they warrant further investigation. Embracing molecular morphometrics along

with the morphological and sequence analysis could provide a potential resolution to resolve

the inherent problems in fungal identification.

Despite our study limited to the exploration of FEF diversity, interesting observations were

made, such that they warrant further investigations. For instance, several isolates of Colletotri-
chum gloeosporioides complex did not yield CBCs among them but never failed to yield CBCs

and resolve distinctly in phylogenetic trees when compared to the isolates from the C. boni-
nense complex. These results shows that the ITS2 sequence-secondary structure based phylog-

eny corroborated well with CBC results and were congruent with earlier reports [26,114].

Sequence variations and inconsistencies in describing intraspecies has resulted in numerous

new species with overlapping features and this has confounded the resolution of several
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Colletotrichum spp.; same has been the case in several other genera (Diaporthe, Phomopsis,
etc.) [98,115]. Detailed investigations incorporating large datasets are needed to investigate

and resolve these intricacies.

The colonization frequency and endophytic infection rate of FEF observed in the three

Magnoliopsida plants were congruent with earlier reports [6,93,116]. In this study, relatively

higher CF and EIR were observed in P. serratifolia. The larger surface of its leaves for inoculum

capture could be one of the reasons for higher CF and EIR. RPO of Colletotrichum and Dia-
porthe were higher in all the three plants investigated and several reports have documented the

broad host range of these genera [91,94]. Colletotrichum was observed as the most dominant

genus in A. elaeagnoidea and P. serratifolia. Likewise, Diaporthe was the most dominant genus

in F. inermis. As reported earlier [6,59,117], several host-specific and common genera (occur

in more than one host) were also observed in this study.

The species accumulation curve for F. inermis did not reach an asymptote and such has

been the case in several earlier reports [80,118]. The reason for it may be attributed to the

hyperdiversity of fungal assemblage, their dynamic changes depending upon the environmen-

tal conditions and the insufficient sampling effort [118]. In A. elaeagnoidea and P. serratifolia,

non-parametric estimates of species richness, Chao1, and ACE predicts that the species accu-

mulation curves were approaching the asymptote. These non-parametric estimators of species

richness have been widely accepted for predicting the minimum number of species in the

assemblages [119,120]. The indices such as Shannon, Simpson, and Alpha accounted for the

diversity of assemblages and have been part of most diversity studies [59,81,121]. The diversity

indices were higher in A. elaeagnoidea than the other two plants investigated despite the fact

that it accounted for only 16.8% (29 morphotypes) of the total isolates. Hence, the FEF assem-

blage of A. elaeagnoidea was ascertained to be more diverse than the assemblages of the other

two plants investigated. Similarities between the species assemblages were demonstrated by

the Chao shared, Jaccard, Chao-Jaccard and Bray-Curtis indices. Estimates of these indices

concurred that the species composition of A. elaeagnoidea and P. serratifolia had higher simi-

larity. Several biotic and abiotic factors could have contributed to the above observation. Host

specificity was also observed among our isolates, and they contribute to the dissimilarity in the

FEF assemblages in hosts.

In summary, 392 FEF isolates recovered from A. elaeagnoidea, F. inermis and P. serratifolia
were grouped into 98 morphotypes based on the morphological characteristics. The represen-

tative morphotype strains obtained from these Magnoliopsida plants were delimited based on

the ITS2 molecular morphometric analysis. Among the isolates, five species widely occurred in

all three plants but several depicted host specificity. Based on these results we conclude that the

host plants harbour diverse fungal endophytes. In addition to the exploration of fungal species

diversity in these plants, in this study, the ITS2 molecular morphometric analysis was exten-

sively used to delineate the FEF. Its potential in resolving fungal taxa has been demonstrated.

Based on our observations, we hypothesize that incorporating the nucleotide variations

(INDELs and substitution) along with the CBC concept could potentially increase the robust-

ness of the molecular morphometrics to distinguish closely related species. However, detail

investigation in this aspect is necessary to reveal their utility in molecular morphometrics

study.
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7. Larran S, Rollán C, Ángeles HB, Alippi HE, Urrutia MI. Nota Corta: Endophytic fungi in healthy soy-

bean leaves. Invest Agr Prod Prot. 2002; 17: 173–178.

8. Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol

Biol Rev. 2003; 67: 491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003 PMID: 14665674

9. Shiono Y, Murayama T. New eremophilane-type sesquiterpenoids, eremoxylarins A and B from Xylar-

iaceous endophytic fungus YUA-026. Zeitschrift für Naturforsch. 2005; 60b: 885–890.

10. Ahamed A, Ahring BK. Production of hydrocarbon compounds by endophytic fungi Gliocladium spe-

cies grown on cellulose. Bioresour Technol. 2011; 102: 9718–9722. https://doi.org/10.1016/j.biortech.

2011.07.073 PMID: 21852119

11. Ashour M, Yehia HM, Proksch P. Utilization of Agro-industrial by-products for production of bioactive

natural products from endophytic fungi. J Nat Prod. 2011; 4: 108–114.

12. Shukla ST, Habbu PV, Kulkarni VH, Jagadish KS, Pandey AR, Sutariya VN. Endophytic microbes: A

novel source for biologically / pharmacologically active secondary metabolites. Asian J Pharmacol

Toxicol. 2014; 02: 01–16.

13. Kaul S, Ahmed M, Zargar K, Sharma P, Dhar MK. Prospecting endophytic fungal assemblage of Digi-

talis lanata Ehrh. (foxglove) as a novel source of digoxin: a cardiac glycoside. 3 Biotech. 2013; 3: 335–

340. https://doi.org/10.1007/s13205-012-0106-0 PMID: 28324591

14. Nalini MS, Mahesh B, Tejesvi MV, Harischandra S, Subbaiah V, Kini KR, et al. Fungal endophytes

from the three-leaved caper, Crataeva magna (Lour.) DC. (Capparidaceae). Mycopatholo. 2005; 59:

245–249.

15. Arnold AE, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiver-

sity hotspots? Ecology. 2007; 88: 541–549. PMID: 17503580

16. Cui J, Guo S, Xiao P. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of

Aquilaria sinensis. J Zhejiang Univ Sci B. 2011; 12: 385–392. https://doi.org/10.1631/jzus.B1000330

PMID: 21528493

17. Selim KA, El-Beih AA, Abdel-rahman TM, El-diwany AI. Biodiversity and antimicrobial activity of endo-

phytes associated with Egyptian medicinal plants. Mycosphere. 2011; 2: 669–678. https://doi.org/10.

5943/mycosphere/2/6/7

18. Money NP. Against the naming of fungi. Fungal Biol. 2013; 117: 463–465. https://doi.org/10.1016/j.

funbio.2013.05.007 PMID: 23931113

19. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH. Intraspecific ITS variability in the

kigdom Fungi as expressed in the internacional sequence databases and its implications for molecular

species identification. Evol Bioinforma. 2008; 4: 193–201. https://doi.org/10.4137/EBO.S653

20. Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet.

2003; 19: 370–375. https://doi.org/10.1016/S0168-9525(03)00118-5 PMID: 12850441
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