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Abstract

Background: Sundarban is the world’s largest coastal sediment comprising of mangrove forest which covers about
one million hectares in the south-eastern parts of India and southern parts of Bangladesh. The microbial diversity
in this sediment is largely unknown till date. In the present study an attempt has been made to understand the
microbial diversity in this sediment using a cultivation-independent molecular approach.

Results: Two 16 S rRNA gene libraries were constructed and partial sequencing of the selected clones was carried
out to identify bacterial strains present in the sediment. Phylogenetic analysis of partially sequenced 16 S rRNA
gene sequences revealed the diversity of bacterial strains in the Sundarban sediment. At least 8 different bacterial
phyla were detected. The major divisions of detected bacterial phyla were Protecbacteria (alpha, beta, gamma, and

Gammatimonadates.

delta), Flexibacteria (CFB group), Actinobacteria, Acidobacteria, Chloroflexi, Firmicutes, Planctomycetes and

Conclusion: The gammaproteobacteria were found to be the most abundant bacterial group in Sundarban
sediment. Many clones showed similarity with previously reported bacterial lineages recovered from various marine
sediments. The present study indicates a probable hydrocarbon and oil contamination in this sediment. In the
present study, a number of clones were identified that have shown similarity with bacterial clones or isolates
responsible for the maintenance of the S-cycle in the saline environment.

Background

The majority (60-70%) of the world tropical and subtro-
pical coastlines are covered with mangrove ecosystems.
Mangroves are known to be highly productive ecosys-
tems and have immense ecological values. They protect
and stabilize the costal zones, nourish and nurture the
coastal water with nutrients. They play important role
as the feeding and breeding areas of many organisms
including plants, animals and micro-organisms. The
microbial community in the mangrove sediment is
strongly influenced by bio-geographical, anthropological
and ecological properties. These properties include food
web in the ecosystem, nutrient cycling and the presence
of organic and inorganic matters.
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During the past decade, the development of molecular
techniques using nucleic acids has led to many new
findings in the studies of microbial ecology [1]. As a
basic approach to clarify the microbial communities,
16S rRNA genes are amplified by PCR from nucleic
acids extracted from environmental samples, and then
the PCR products are cloned and sequenced. This
approach can avoid the limitation of the traditional cul-
turing techniques for assessing the microbial diversity in
the natural environments.

Both the sediment and soil probably represent some of
the most complex microbial habitats on the Earth.
There may be several thousand species of bacteria in 1
g of soil [2]. To study the genetic diversity and to ana-
lyse the members of mixed microbial populations are
the two most important steps in microbial community
studies. However, little research has been done on

© 2010 Ghosh et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:dhrubajyotic@gmail.com
http://creativecommons.org/licenses/by/2.0

Ghosh et al. Saline Systems 2010, 6:1
http://www.salinesystems.org/content/6/1/1

microbial diversity in marine sediments, and little infor-
mation is currently available [3].

Mangrove ecosystems are in general nutrient-deficient,
especially of nitrogen and phosphorus [4-8]. In spite of
this, mangroves are highly productive. Microbial activity
is responsible for major nutrient transformations within
a mangrove ecosystem [4,9]. In tropical mangroves, bac-
teria and fungi constitute 91% of the total microbial bio-
mass, whereas algae and protozoa represent only 7%
and 2%, respectively [10]. Bacteria are responsible for
most of the carbon flux in tropical mangrove sediments.
They process most of the energy flow and nutrients, and
act as a carbon sink. For example, in semiarid mangrove
ecosystems on the Indus river in Pakistan, bacteria were
attached to the sediment particles and processed most
of the ecosystem nutrients [11].

Several studies have shown the uniqueness of man-
grove sediments with respect to their microbial compo-
sition [3,11-15]. Studies on microbial diversity in the
mangrove sediments are important to understand the
process of biogeochemical cycling and pollutants
removal [16].

Sundarban is world’s largest coastal wetland compris-
ing of mangrove forest which covers about one million
hectares in the delta of the rivers Ganga, Bramhaputra,
and Meghna [17]. This mangrove region is shared
between Bangladesh (~ 60%) and India (~ 40%). The
area experiences a subtropical monsoon climate with
the annual rainfall of about 1600-1800 mm and several
cyclonic storms. The dynamics of this region is mainly
maintained by sedimentations from all the three major
rivers. Both the spatial and temporal influences have
been demonstrated on the salinity in this region. The
biodiversity of Sundarban includes numerous species
of phytoplankton, zooplankton, micro-organisms,
benthic invertebrates, molluscs, amphibians and mam-
mals [17]. About 350 species of vascular plants, 250
species of fishes, and 300 species of birds are reported
in Sundarban region [17]. Little work has been carried
out on the microbial diversity in the Sundarban
sediments.

This paper describes the culture independent micro-
bial diversity analysis of the sediment sample from one
of the famous islands of Sundarban, Netidhopani. Our
molecular phylogenetic analysis reveals the occurrence
of the bacterial 16S rRNA gene sequences that are
unique and sequences that are previously reported in
other mangrove sediments. Microbial community struc-
ture analysis can provide a better understanding about
the microbial population and their interactions in a
defined geographical region. Moreover such data are
important with respect to our understanding of man-
grove ecosystem processes and the role of micro-organ-
isms in maintaining these processes [18].
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The present results considerably extend our under-
standing on microbial diversity in Sundarban sediments.
Furthermore, these results will open a new door towards
understanding microbial diversity in the largest man-
grove sediment in the world.

Methods

Site Selection

Sediment samples were collected between 1°* to 10™
November’ 2006 from one of the composite islands of
Sundarban, Netidhopani (21°55'13” N, 88°44’46” E). This
area is inundated with sea water about every twelve hours.
Soil was collected after recessation when the land was
exposed. This soil was highly saline with Ec, 12.6 dSm™.

Soil Sampling, Analyses, and Site Climate

Soil samples were collected from the top 15 cm of the
five different sites on the island and brought to the
laboratory in properly labelled, autoclaved, and sealed
polythene bags on ice. All the soil analyses were carried
out in the Department of Biotechnology, University of
Calcutta. Microbiological and biochemical analyses were
performed with the field moist soils. Physico-chemical
analysis was carried out with air-dried soil samples. The
soil pH was measured in 1:2.5 soil water suspensions.
The Ec. and ionic composition of soil saturation extract
were measured following the method described in Uni-
ted States Department of Agriculture (USDA), 1954
[19]. The organic C (OC) and total N (TN) were mea-
sured by the methods proposed by Nelson & Sommers
1982 and Black, 1965 [4,20] respectively. Textural com-
position (i.e., determination of sand, silt and clay) was
determined by International Pipette Method as
described previously [21]. The soil sample contained
around 53.5% sand, 23.32% silt, 28% clay, 4.3% organic
matter, and 0.395% total N (Average values of the tripli-
cate analysis). The soil pH was found to be alkaline and
it was 8.1. Prior to the total DNA isolation, all the soil
samples (five samples were collected from different sites
of the island) were mixed to homogeneity to make a sin-
gle composite sample for DNA isolation.

Isolation of total soil DNA

Total soil (sediment) DNA was isolated using a modified
CTAB-SDS based DNA extraction technique [22]. Soil
sample of 5 g was mixed with 13.5 ml of the DNA extrac-
tion buffer [100 mM Tris-HCI (pH 8.0), 100 mM
sodium-EDTA (pH 8.0), 100 mM sodium phosphate buf-
fer (pH 8.0), 1.5 M NaCl, 1% CTAB] and 100 ul of protei-
nase K (10 mg/ml) in oakridge tube by horizontal shaking
at 200 rpm for 30 min at 37°C. After the shaking treat-
ment, 1.5 ml of 20% SDS was added, and then the sample
was incubated at 65°C water bath for two hours with gen-
tle end-over-end inversions every 15-20 min. The
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supernatant was collected after centrifugation at 6000 x g
for 10 min at room temperature into 50 ml centrifuge
tube. The soil pellet was extracted two more times by
adding 4.5 ml of the extraction buffer and 0.5 ml of 20%
SDS; vortexing for 10 s, incubating at 65°C for 10 min,
and centrifuging as before. Supernatants from three
cycles of extractions were combined and mixed with an
equal volume of chloroform-isoamyl alcohol (24:1 v/v).
The aqueous phase was recovered by centrifugation and
total nucleic acid was precipitated with 0.6 volume of iso-
propanol at room temperature for 1 h. The pellet of
crude nucleic acid was obtained by centrifugation at
16,000 x g for 20 min at room temperature, washed
twice with cold 70% ethanol, and resuspended in sterile
deionised water to give a final volume of 250 pl. RNase
(10 mg/ml) treatment followed by phenol extraction and
the re-precipitation was carried out prior to PCR amplifi-
cation of 16S rRNA gene sequences.

PCR amplification and partial 16S rRNA gene library
construction
Partial amplification of the 16S rRNA gene was per-
formed with the thermal cycler ABI 2700 (ABI, Foster
City, USA). The PCR of the 16S rRNA gene sequence
from the total soil DNA was conducted in a final
volume of 50 pl. The reaction mixture included 20-50
ng of isolated total soil DNA, 2 U taq polymerase
(Recombinant, Cat. No. SKU# 10342-020, Invitrogen,
Germany), 1x PCR buffer with 1.5 mM MgCl,, 200
mM each ANTP, and 10 pmol of each primer (IDT,
USA). The primers were chosen to amplify a 977-bp
segment of 16S rRNA gene spanning V3-V9 region to
construct the first library. In the first library
(D16S_pMOS library) construction, forward primer
used was 515F (5’-3") GTGCCAGCAGCCGCGGTAA
and the reverse primer was 1492R (5’-3") TACGGY-
TACCTTGTTACGACTT [23]. This pair of primers
was chosen to amplify both the bacterial and archaeal
16S rRNA gene sequences in the total soil DNA.
Before amplification cycle DNA was denatured for 2
min at 94°C and after amplification an extension step
(7 min at 72°C) was performed. The cycling para-
meters consisted of 28 cycles at: denaturation at 94°C
for 30 sec, primer annealing at 45°C for 1 min, exten-
sion at 72°C for 1 min. The samples were held at 4°C
until separated electrophoretically in a 2% agarose gel
in 0.5 x Tris-Borate-EDTA buffers and visualized using
ethidium bromide under ultraviolet illumination. All
the amplified PCR products were agarose-gel-eluted
using Qiagen gel elution kit.

Since the proteobacterial population has previously
been reported to be quite abundant in other saline
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sediments [3,24-26] a second library was also
constructed using the proteobacteria specific uni-
versal SSU primer set [27], uni-forward (5’-3’)
TGCCAGCAGCCGCGGTA and uni-reverse (5-3’)
GACGGGCGGTGTGTACAA, to screen for proteobac-
terial population in Sundarban sediments. The amplifi-
cation cycle was as follows; initial denaturation for 5
min at 94°C, followed by 35 cycles at: 30 sec denatura-
tion at 94°C, 1 min for primer annealing at 50°C, and 1
min of extension at 72°C. After the amplification a final
extension step (7 min at 72°C) was performed. The sam-
ples were held at 4°C until analysis by agarose gel elec-
trophoresis followed by elution using the Qiagen gel
elution kit.

Two partial 16S rRNA gene libraries were constructed
using gel eluted amplified PCR products (515F/1492R
amplicon and uni-for/uni-rev amplicon) and pMOS-
Blue vector (Pharmacia). The gel eluted PCR products
were ligated to pMOS-Blue vector and then transformed
into competent Escherichia coli XL1-Blue. The clones
were screened for a-complementation by using X-Gal
(5-bromo-4-chloro-3-indolyl-B-D-galactopyranoside) and
IPTG (isopropyl-B-D thiogalactoside). All the positive
clones were confirmed by PCR amplification and restric-
tion digestion. All the positive clones were stored as gly-
cerol stock at -70°C freezer.

Sequencing of the 16S rRNA gene Fragment

The sequencing of the partial 16S rRNA gene fragments
in each of the recombinant plasmids was performed in
ABI Prism 3100 automated DNA sequencer (Applied
Biosystem, Foster City, California, USA) with the single
primer 515F for D16S_pMOS library and uni-for for
DUni_pMOS library, respectively. The sequencing reac-
tion was performed using 5 pmoles 515F/uni-for primer
and the Big Dye Terminator V3.1 sequencing kit as per
manufacturer’s protocol. The sequencing reaction condi-
tions were as follows: 96°C for 10 sec, 50°C for 10 sec,
and 60°C for 4 min for 25 cycles. After the sequencing
PCR, the products (10 pl) were treated with 2 pl of 125
mM Na-EDTA, pH 8.0, and then precipitated using 2 pl
of 3 M NaOAc (pH 4.6) and 50 ul absolute ethanol for
20 minutes at room temperature. The DNA was recov-
ered by centrifugation (13,000 rpm for 30 min at 20°C),
washed with 70% EtOH, dried, and resuspended in 15 ul
Hi Di formamide (Applied Biosystems, Foster City, Cali-
fornia, USA). Sequencing was performed in the ABI
Prism 3100 Genetic Analyzer. Raw sequences were edi-
ted and assembled using the Auto Assembler program
(V5.2). All the sequences were used to identify the bac-
teria with the help of the BLASTn program http://www.
ncbi.nlm.nih.gov/BLAST, and all the sequences were
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submitted to GenBank. The multiple sequence align-
ment was performed using CLUSTAL-W software pack-
age http://www.ebi.ac.uk/Tools/clustalw2/index.html.

Blast Search & Phylogenetic Analysis

The partial 16S rRNA gene sequences of the clones
were compared with those available in the public data-
bases. Identification to the species level was determined
as a 16S rRNA gene sequence similarity of > 97% with
that of the prototype strain sequence in the GenBank.
Sequence alignment and comparison was performed
using the multiple sequence alignment program CLUS-
TALX (v 1.83) [28], with default parameters and the
data converted to PHYLIP format. Minor modifications
in the alignment were made using the BIOEDIT
sequence editor. Rooted and unrooted phylogenetic
trees were constructed using neighbor-joining (NJ)
method and the TREEVIEW program for display of phy-
logenetic relationship [29]. Bootstrap analysis was per-
formed as described by Felsenstein in 1985 [30] on 1000
random samples taken from the multiple alignments;
analysis was done using the ClustalX programs.

Nucleotide sequence accession numbers

The 16S rRNA gene sequences reported in this study
was submitted to the GenBank database under accession
numbers EU939923-EU939972 (D16S_pMOS library)
and EU999048-EU999127 (Duni_pMOS library).

Results and discussion

DNA extraction, Library construction and sequencing
analysis

The total DNA was extracted from the sediment of
Netidhopani, Sundarban, using modified CTAB-SDS
based DNA isolation technique. Two partial 16S rRNA
gene clone libraries were established from the PCR
amplified partial 16S rRNA gene sequences using
515F/1492R and uni-for/uni-rev primer sets, respec-
tively. The recombinant clones in the libraries were
selected based on a-complementation (blue-white
screening) technique and also confirmed by the re-
PCR analysis and restriction enzyme digestion. Our
sequencing analysis included 85 clones from
D16S_pMOS library and 110 clones from DUni_pMOS
library. All the sequenced clones were screened for
sequences that repeat more than once in the library.
Our final analysis included 50 clones from
D16S_pMOS library and 80 clones from DUni_pMOS
library, respectively (Tablel) (Figures 1, 2, 3 and 4).
Methylophaga spp. was found to be abundant in both
the libraries. We also found four non bacterial chloro-
plastic DNA in recombinant clones from the two
libraries. Although, the primer pair 515F & 1492R
could amplify both bacterial and archaeal 16S rRNA
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gene sequences, we did not get any archaeal sequence
in our library (D16S_pMOS). This was probably
because of the limitation in our total DNA extraction
protocol and low primer specificities towards the
archaeal 16S rRNA gene sequences. Our phylogenetic
analysis revealed that 130 bacterial clones (50 clones
from D16S_pMOS library and 80 clones from DUni_p-
MOS library) fell into 8 major phyla of the bacterial
domain: Proteobacteria (Alpha-, Beta-, Gamma-, and
Delta-), the Cytophaga-Flexibacter-Bacteroides (CFB)
group, Actinobacteria, Chloroflexi, Firmicutes, Gem-
matimonadetes, Acidobacteria group, and Planctomy-
cetes (Table 1).

Proteobacteria

A total of 86 clones represented by 29 sequence types
from D16S_pMOS library and 57 sequence types from
DUni_pMOS library were identified as proteobacterial
in origin by sequencing analysis (Table 1) (Figure 3).
Most of the proteobacterial sequence types from both
the libraries were similar to previously described isolates
or metagenomic clones from coastal marine sediments
or waters [GenBank description, sequences that were
submitted to GenBank but yet to be published in scien-
tific journals]. In D16S_pMOS library 29 proteobacterial
sequence types accounted for 58% of the gene library
and in DUni_pMOS library 57 proteobacterial sequence
types accounted for 71% of the gene library (Figure 1).
Gammaproteobacteria

The gammaproteobacteria represented the most abun-
dant proteobacterial subdivision (59% and 77% among
the proteobacterial sequence types in D16S_pMOS and
DUni_pMOS libraries, respectively) (Table 1). The most
abundant sequence type in both the libraries showed
similarity to Methylophaga, indicating a strong involve-
ment of these bacterial species in the maintenance of
the biogeochemical cycle in Sundarban sediment. A
number of gammaproteobacterial sequence types
showed similarity to organisms involved in the S-cycle
(DUni_9, DUni_15, DUni_68, DUni_77, and DUni_91).
A number of the gammaproteobacterial clones showed
sequence similarity to the oil (D16S_41, DUni_17,
DUni_102) and hydrocarbon (DUni_3, DUni_9,
DUni_18, DUni_22, DUni_54, DUni_61, DUni_62,
DUni_67, DUni_68, DUni_69, DUni_77, DUni_84,
DUni_90, DUni_103, DUni_109, and DUni_110) degrad-
ing bacterial populations reported in different soil sys-
tem [GenBank description, [31-33]]. Three sequence
types (D16S_89, D16S_145 and DUni_83) have shown
similarity to previously extracted sequences from the
heavy metal contaminated soil or sediments [GenBank
description, [34]]. Previous studies on Sundarban region
revealed the contamination of hydrocarbon, petroleum
and heavy metals in the soil [16,35-38]. The microbial
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Table 1 Summary of the 16S rRNA gene sequences identified in the D16S_pMOS and DUni_pMOS clone libraries

Bacterial division Number of Number of sequence types  Number of sequence types Number of Sequence similarity to
sequence in D16S_pMOS library (%) in DUni_pMOS library (%) total clones  the closest relatives©(%)
types (%)
Proteobacteria 86 29 (58%)° 57 (71%)? 66.1 83-100
Alpha 6 1 (3.5%)° 5 (8.7%)° 46 87-96
Beta 7 4 (14%)° 3 (5.2%)° 54 92-99
Gamma 61 17 (59%)° 44 (77%)° 47 86-100
Delta 10 6 (21%)° 4 (79%)° 7.7 83-99
Unassigned 2 1.%)° 1(1.25%)° 15 91-94
proteobacteria
CFB group 1 1 (2%)? 0 0.8 93
Actinobacteria 2 0 2 (2.5%)° 1.53 87-98
Planctomycetes 4 2 (4%)° 2 (2.5%)° 3 86-92
Firmicutes 1 1 (2%)° 0 0.8 92
Chloroflexi 2 0 2 (2.5%)° 153 89-98
Gemmatimonadates 2 1(2%)? 1 (1.25%)° 0.75 94-96
Acidobacteria 1 0 1 (1.25%)° 08 91
Marie eubacterium 1 1 (2%)? 0 0.8 89
Bacterial candidate 1 0 1 (1.25%)° 08 87
division OP8
Uncultured 24 11 (22%)° 13 (16%)° 185 86-99
Unidentified 5 4 (8%)° 1 (1.25%)° 39 91-98
Total 130 50 80 - 83-100

“a" % of clones among all the 130 clones selected from D16S_pMOS and DUni_pMOS libraries

“b” % of clones among the proteobacterial clones under respective library
“c” Closest relatives as determined by the BLAST analysis

composition further indicates the previous observations
and a probable possibility of bio-conversion of those
contaminating substances in this soil area.
Betaproteobacteria

14% and 5% of the proteobacterial sequence types were
found to be betaproteobacterial from D16S_pMOS and
DUni_pMOS libraries respectively (Table 1). In the
D16S_pMOS library, the predominating clone
(D16S_105) (three clones in the library) displayed a
sequence similarity of 96% to its closest relative
Amb_16S_1138, a betaproteobacterial clone previously
recovered from trembling aspen [GenBank description].
In the DUni_pMOS library, among all the clones,
DUni_99 showed 97% similarity to an uncultured beta-
proteobacterial clone OS-C27, recovered from the aban-
doned semiarid lead-Zn mine tailing site [GenBank
description, [39]]; DUni_62 showed 92% similarity to
D12-21, a betaproteobacterial clone recovered from a
tar oil contaminated plume [GenBank description]; and
finally the third clone DUni_104 showed 97% similarity
to Burkholderia cepacia strain Y1 isolated from oil pol-
luted soil.

Alphaproteobacteria

The six alphaproteobacterial sequence types detected in
the two libraries comprised 3.5% and 8.7% of the total

proteobacterial sequence types in D16S_pMOS and
DUni_pMOS respectively (Table 1). In the D16S_pMOS
library, the clone D16S_119 was the only sequence type
and that showed 95% similarity to MPCa6_A10, an
alphaproteobacterial clone recovered from wild and cap-
tive sponge Microciona prolifera in the Chesapeake Bay
[GenBank description]. Five different alphaproteobacter-
ial clones were obtained in DUni_pMOS library. The
most predominating sequence type was DUni_6, which
showed 87% similarity to MERTZ_OCM_210, an alpha-
proteobacterial clone reported within the Antarctic con-
tinental shelf sediment [GenBank description]. Among
the other clones, sequence similarity revealed that they
have shown identity to clones from the Seafloor Basalts
from East Pacific Rise and the Juan de Fuca Ridge
(DUni_42), industrial waste water treatment plants
(DUni_56, DUni_57) [40] and Pedomicrobium fusiform
DSM 5304 (DUni_105) [GenBank description, [41]].
Deltaproteobacteria

2.1% and 7% of the cloned sequence types have shown
similarity to the deltaproteobacterial sequences in the
database from D16S_pMOS and DUni_pMOS libraries,
respectively (Table 1). In the D16S_pMOS library, all
the deltaproteobacterial clones showed identity to
organisms or clones recently described in Mangrove
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Figure 1 16S rRNA gene tree showing positions of
proteobacterial sequences in D16S_pMOS library including the
reference sequences retrieved from GenBank. 165 rRNA gene
sequence of Bacillus subtilis 168 is used to assign an out-group
species.

sediments. The sequence type D16S_52 was found to
show 99% similarity with sulphate reducing bacterial
strains [GenBank description]. In the DUni_pMOS
library, clones DUni_79 and DUni_91 showed similarity
with Desulfosarcina spp. and Desulfuromonas spp.
respectively. These genera members have well-known
metabolic features and involved in maintenance of
S-cycle in soil. Probably the deltaproteobacterial strains
in Sundarban sediments are largely involved in contri-
buting towards the maintenance of sulphur cycle by sul-
phate reduction.
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In addition to defined identities, two clones each from
the D16S_pMOS and DUni_pMOS libraries showed
only their proteobacterial identity. The clone D16S_122
showed similarity to uncultured proteobacterial clone
01D224B, which was described previously in the Guer-
rero Negro hyper saline microbial mat [GenBank
description]. The clone DUni_55 showed identity to
uncultured proteobacterial clone SIMO-1762, recovered
from the salt marsh [GenBank description].

In both the libraries, many of the proteobacterial
sequence types were found to show phylogenetic simi-
larity with the strains (isolates) or clones recently
described in marine sediments and waters, and were
involved in S- or N-cycles, e.g., Methylophaga spp.
DMS044, Methylophaga spp. DMS048, Uncultured gam-
maproteobacterium Y189 [42], Uncultured deltaproteo-
bacterium wmc3 [GenBank description, EF655671],
Uncultured Nitrosomonadaceae clone Amb_16S 1138
[GenBank description, EF018502], Uncultured Desulfur-
omonas spp. clone Lupin-1130-1-MDA-dsm3 [GenBank
description, EF205265]. A large number of sequence
types were also found to be phylogenetically similar to
oil degradation associated microbes, e.g., Uncultured
Marinobacter spp. Clone Y113 [GenBank description,
EU328067], Uncultured gammaproteobacterium clone
Y168 [GenBank description, EU328083]. There was also
clone (DUni_67) identical to previously identified PAH
degrading bacterial isolates [GenBank description].
Moreover in our libraries, we found many 16S rRNA
gene sequences (D16S_6, D16S_66, D16S_89, D16S_106,
D16S_123, D16S_134, D16S_155, D16S_163, DUni_4,
DUni_19, DUni_45, DUni_65, and DUni_100) were
similar to metagenomic clones or isolates reported in
other studies from India [GenBank description, [7]]. In
Sundarban sediment, compounds like polybrominated
diphenyl ether (PBDE) and other hydrocarbons have
been reported by different groups [35,36,38]. Moreover,
in this sediment high concentration of heavy metal has
been reported previously [37]. Furthermore, there are
reports on the isolation of oil (petroleum) degrading
bacterial strains from Sundarban sediment [16]. All this
analytical and microbiological evidences further support
our findings of different bacterial species related to bac-
terial clones or strains previously reported in hydrocar-
bon, oil, and heavy metal contaminated soils and
sediments.

Cytophaga-Flexibacteria-Bacteriodes

A single sequence type, representing a total of six clones
and accounting for 2% of the D16S_pMOS library, was
found to cluster with the CFB group (Table 1) (Figure
2). The representing clone D16S_176 showed similarity
with the Flexibacteraceae, bacterium recently reported
from Venice Lagoon anoxic sediments [GenBank
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Figure 2 16S rRNA gene tree showing positions of non-
proteobacterial sequences (Flexibacteria, Planctomycetes,
Firmicutes, Gemmatimonadates, unidentified/uncultured) in
D16S_pMOS library including the reference sequences
retrieved from GenBank. 165 rRNA gene sequence of Bacillus
subtilis 168 is used to assign an out-group species.

description]. No clone related to the CFB group was
detected in DUni_pMOS library.

Chloroflexi

Two clones in DUni_pMOS library showed similarity
with the Chloroflexi (Table 1) (Figure 4). The clone
DUni_5 showed sequence similarity with A251, an
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uncultured Chloroflexi [GenBank description]. Another
clone DUni_8 showed similarity with XME3, an uncul-
tured Chloroflexi, recently reported in mangrove sedi-
ment of Xiamen, China [GenBank description].

Planctomycetes

Two sequence types, representing 6 clones in
D16S_pMOS library and two sequence types, represent-
ing 3 clones in DUni_pMOS library, were found to
group within the Planctomycetes (Table 1) (Figures 2
and 4). In D16S_pMOS library, the clone D16S_78
showed similarity to D3D12, an uncultured planctomy-
cete clone recovered from the fresh water stromatolites
from the Ruidera Pools Natural Park, Spain [GenBank
description]. The clone D16S_157 was found to be iden-
tical to Therm30-E09, an uncultured planctomycete
clone reported in the sediment of the Eastern Mediter-
ranean Sea [12]. In DUni_pMOS library, the clone
DUni_112 showed similarity to TAA-10-04, an uncul-
tured Planctomycete clone recovered as the phage asso-
ciated bacterium and the clone DUni_11 was found to
show similarity with HCM3MC91_7C_FL, the plancto-
mycete clone recovered from Eastern Mediterranean Sea
[GenBank description].

Other bacterial lineages

A total of six clones, represented by two sequence types
and accounted for 2.5% of the DUni_pMOS library were
found to group within the Actinobacteria (Table 1).
Two representative sequence types, DUni_64 and
DUni_73 showed similarities with uncultured actinobac-
teria clone MERTZ_21CM_395 [43] and uncultured
actinobacterial clone AT-s3-3 [43], respectively (Figures
2 and 4).

Two clones each from the two libraries were grouped
within the Gemmatimonadetes (Table 1), a recently dis-
covered bacterial phylum [44]. The clone D16S_106
showed 96% similarity to Gemmatimonadetes bacterial
clone 175, recovered from soil sample from radish rich
area of Jaunpur, Uttarpradesh, India [GenBank descrip-
tion]. The other clone DUni_23 was found to be 94%
identical to Gemmatimonadetes bacterial clone BolB1,
reported recently as a member of phylogenetic division
OP11 [45].

A single clone, DUni_38 was found to be identical to
recently reported uncultured candidate division OP8
[GenBank description, [46]]. A single clone, D16S_178
was found to show similarity with the uncultured Firmi-
cutes bacterium clone 1407, which was previously
reported in the Altamira Cave [GenBank description].
Among the clones in the libraries, the clone DUni_13
showed similarity to HCM3MC83_3C-FL, an Acidobac-
terium spp. clone recently recovered from the sediment
of Eastern Mediterranean Sea [GenBank description].
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Figure 3 16S rRNA gene tree showing positions of
proteobacterial sequences in DUni_pMOS library including the
reference sequences retrieved from GenBank. 165 rRNA gene
sequence of Bacillus subtilis 168 is used to assign an out-group
species.
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Other than known bacterial taxa, 22% and 16% of the
clones from D16S_pMOS and DUni_pMOS libraries
[26], were clustered within uncultured bacterial group
(Table 1) (Figures 2 and 4). Most of the related uncul-
tured bacterial clones from the blast search analysis
revealed that they were reported from either marine
sediments or from sea waters. In our library of clones,
we also detected unidentified bacterial strains (four in
D16S_pMOS and one in DUni_pMOS libraries). The
only clone, D16S_99 showed identity to marine eubac-
terium HstpL86, previously described in the leaves of
sea grass Halophila stipulacea.

Conclusions

In the present study, 16S rRNA gene clone library based
analysis was performed on the world’s largest mangrove
ecosystem, Sundarban sediment, for the first time. Even
no culture based analysis of the bacterial community is
yet reported from this mangrove ecosystem. The present
analysis revealed that the Sundarban sediment possesses
diverse bacterial population. At least 8 major phyla of
the bacterial domain were detected in this sediment.
Previous studies on bacterial diversity analysis reported
five to thirteen major lineages in sediments collected
from a variety of coastal marine environments
[3,15,24,25,42].

Sequencing analysis of the clones revealed the domi-
nance of gammaproteobacterial sequences in both the
libraries. Majority of the gammaproteobacterial clones
resembled sequences recovered from oil and hydrocar-
bon rich marine sediments. This probably goes with the
previous reports on Sundarban sediment where people
have shown that in this sediment different hydrocarbons
are present at high concentrations [35,36,38]. Moreover,
a number of cultivable bacterial strains, which were cap-
able of degrading petroleum, have been isolated from
this sediment [16].

In the present report, a number of gammaproteobac-
terial clones were found to show similarity towards bac-
terial clones or isolates involved in sulfur cycling.
Similar results were reported previously [42], while ana-
lysing coastal marine sediment beneath area of intensive
shellfish aquaculture. Sulfur-oxidising bacterial strains
are found to play an important role in detoxification of
sulphide in marine sediments. Sulfur-reducing bacterial
community instead is important in organic carbon oxi-
dation in marine sediments and this observation is sup-
ported by the fact that sulphate is one of the main
electron acceptors present in these environments. A
number of gammaproteobacteria in the present study
were found to show similarity to isolates or clones
related to bioconversion of S-containing organic mole-
cules (S-oxidisers). This interesting observation is sup-
ported by recent investigations, where it has been
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shown that the reduction of sulphate may be an impor-
tant pathway of organic matter mineralization in organic
rich deposits typical of mangrove forests. Furthermore,
most of the identified deltaproteobacterial clones from
the two libraries showed similarity to the sulfur and sul-
phate reducing bacteria recovered from a variety of mar-
ine sediments. Analysis of only 130 clones might not be
enough to cover the whole picture of S-cycle but it
could provide a little insight about what is happening in
Sundarban sediment. In marine ecosystems, S-cycle has
proved to be the important biogeochemical factor that
dictates the flow of electrons along the biological sys-
tems under such an anaerobic condition. Identification
of sulfur- oxidising and sulphur and sulphate reducing
bacterial clones refer to the anaerobic condition in this

sediment and a possible maintenance of the biogeo-
chemical cycle in Sundarban sediment.

The evidence of the presence of hydrocarbons
[35,36,38] in this sediment supports the finding of a
comparatively lower number of alphaproteobacterial
clones in Sundarban sediment. The special difference in
the productivity of the water columns is probably
enhances the reason for this observation in this sedi-
ment. Previous observations of Horner-devine et.al.,
2003 [47] showed the dependence of alphaproteobac-
teria richness on the productivity levels in aquatic eco-
system. Furthermore, identification of the clones
associated with hydrocarbon/oil degradation probably
confirms the reason for the lower abundance of alpha-
proteobacteria in Sundarban sediment.



Ghosh et al. Saline Systems 2010, 6:1
http://www.salinesystems.org/content/6/1/1

In our study, epsilonproteobacteria are absent in both
the libraries. It has been well documented that epsilon-
proteobacteria were absent or scarce in other clone
libraries of coastal marine sediments [3,15,42]. Although,
some reports have described the presence of epsilonbac-
teria in the library of clones made from marine sedi-
ments [24,48].

Identification of Gemmatimonades in our clone
libraries was interesting and probably the first report of
recovery of this phylum from mangrove sediment.

In conclusion, the Sundarban surface sediment har-
boured a phylogenetically diverse population of organ-
isms from bacterial domain. At least 8 major phyla have
been recovered from Sundarban sediment. The proteo-
bacteria, especially the gammaproteobacteria were found
to be abundant in both the libraries. While some of the
16S rRNA gene sequence types detected were related to
genera or taxa that were classically identified in Sundar-
ban sediment and correlated to a defined functional
arena; many were derived from uncultured/unidentified
taxa. Previous studies have shown that the primer pair
uni-for/uni-rev was good for proteobacteria. As in mar-
ine system, proteobacterial communities are major; this
pair of primers was employed in the present study.
Further studies are necessary to understand the bacterial
diversity in more details. This is the first report describ-
ing the bacterial diversity in Sundarban sediment. We
feel that the present study has obtained a fundamental
insight into the major bacterial populations in Sundar-
ban sediment. This study will definitely open a new era
in understanding the microbial diversity in Sundarban.
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