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KEY POINTS

� The optimal fluid management for acute respiratory distress syndrome (ARDS) is un-
known. There are risks and benefits to liberal and conservative fluid management
strategies.

� Studies have shown that liberal fluid management may be more harmful in ARDS patients
by increasing pulmonary edema and prolonging mechanical ventilation days and intensive
care unit and hospital stay. Conservative fluid management has a risk of increasing non-
pulmonary end organ damage. Studies suggest preventing fluid overload may lead to
improved outcomes, although no prospective randomized controlled trial has shownmor-
tality benefit to date.

� Different phenotypes of ARDS may respond differently to fluid management. Recent
research suggests that hypoinflammatory and hyperinflammatory phenotypes may differ
in their fluid responsiveness and may be helpful in determining optimum volume status.

� The heterogeneity of treatment effect raises concerns for bedside application of appro-
priate management. Future studies further refining ARDS phenotypes and their associated
differential responses to fluid administration may help guide optimal fluid management
strategies in ARDS.
INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a common critical illness encountered
in intensive care units (ICUs).1 ARDS is a heterogenous syndrome characterized by an
inflammatory response of the lungs in response to an acute pathophysiologic insult.2
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The acute inflammatory response damages the microvascular endothelium and alve-
olar epithelium of the alveolar-capillary barrier, leading to increased vascular perme-
ability and subsequent edema. ARDS was first described in 1967 as hypoxemia in
the setting of bilateral pulmonary opacities on chest radiograph not attributable to car-
diac failure.3 In 1994, the American-European Consensus Conference (AECC) formally
defined ARDS and acute lung injury (ALI).4 In 2012, the Berlin Definition redefined
ARDS using 3 categories (mild, moderate, and severe) to classify patients based on
the degree of their hypoxemia.5 The prevalence of ARDS is 5 to 35 cases per
100,000 individuals annually in the United States, and the incidence continues to
rise.1 The mortality rate ranges from 30% to 50%, although there is a wide variability
depending on multiple factors, including patient risk factors, ARDS severity, and the
etiology of ARDS.6,7

Following an acute insult such as sepsis, pneumonia, aspiration of gastric contents,
or severe trauma, a dysregulated inflammatory response leads to increased lung
endothelial and epithelial permeability.8 The pathogenesis occurs in 3 sequential
phases with overlapping features: acute exudative/inflammatory phase, proliferative
phase, and fibrotic phase.9 In the acute phase, there is endothelial and epithelial injury
to the alveoli and capillaries, alveolar macrophages secrete cytokines such as
interleukin-1, 6, 8 and 10 (IL-1, 6, 8, and 10), and tumor necrosis factor a (TNF-a).
These immunomodulatory proteins activate neutrophils to release proinflammatory
molecules and stimulate the production of the extracellular matrix by fibroblasts.10

Alveolar-capillary permeability increases, which leads to the accumulation of
protein-rich edematous fluid in the alveoli and interstitium.10 These acute-phase in-
juries decrease pulmonary compliance and increase ventilation/perfusion (V/Q)
mismatch.9 The protein-rich alveolar fluid also disrupts pulmonary oncotic forces,
making the alveoli more vulnerable to increased hydrostatic pressure and the develop-
ment of noncardiogenic pulmonary edema. During the proliferative phase, type II
pneumocytes repopulate alveoli; alveolar edema is resolved by the active sodium
and chloride transport and water channels, and protein is cleared from the small air-
ways to restore alveolar architecture and function.10 A small subset of ARDS patients
will progress to the fibrotic phase, which is characterized by the gradual remodeling
and resolution of intra-alveolar and interstitial granulation tissue. This phase occurs
inconsistently and delays functional recovery, and the presence of fibrosis is associ-
ated with increased mortality.10–12

This article explores the history of fluid therapy in ARDS, with a focus on liberal
versus conservative fluid management strategies. It outlines the challenges and clin-
ical application of the pertinent ARDS literature. Finally, it explores novel study designs
such as latent class analysis (LCA) andmachine learning to identify ARDS phenotypes.

The History of Fluid Management for Acute Respiratory Distress Syndrome

The optimal fluid management strategy for ARDS is unknown. The American Thoracic
Society/European Society of Intensive Care Medicine/Society of Critical Care Medi-
cine (ATS/ESICM/SCCM) Clinical Practice Guidelines make no specific recommenda-
tion for fluid management in ARDS patients, and clinical practice varies widely.
Experts have debated whether a liberal or conservative fluid management strategy im-
proves clinical outcomes for ARDS patients for over 4 decades.13–16 Liberal fluid man-
agement, historically the conventional practice, does not restrict fluid administration
during the resuscitative phase or actively seek to remove fluid during the deresuscita-
tive phase. The theoretic argument for a liberal fluid management strategy is that it can
increase stroke volume and thereby improve end organ perfusion and oxygen deliv-
ery.16 This practice pattern prevailed prior to recognition in the 1990s that fluids
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may worsen refractory hypoxemia in ARDS.16 Physician-guided early liberal resusci-
tative practices during that era make it difficult to quantify how much intravenous fluid
was routinely given. Data from prior ARDS research provide a window into historic
practice patterns. A 1987 randomized controlled trial (RCT) of ARDS patients that
allowed for provider practice variation in resuscitative/deresuscitative practices
observed 14-day fluid balances ranging from 5 L to 20 L.17 The 2000 Ventilation
with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute
Lung Injury and the Acute Respiratory Distress Syndrome (ARMA) and the Higher
versus Lower Positive End-Expiratory Pressures in Patients with the 2004 Acute Res-
piratory Distress Syndrome (ALVEOLI) trials observed more moderate fluid balances
of 4 L and 6 L at day 4, respectively.18,19

As early as the late 1980s, observational data demonstrated an association between
a liberal fluid strategy and worse clinical outcomes for ARDS. In 1 study, a lower cu-
mulative fluid balance and a negative trend in body weight during hospitalization were
associated with improved survival.17 A subsequent observational study found that a
25% reduction in pulmonary capillary wedge pressure (PCWP) among ARDS patients
during their ICU course was associated with reduced mortality.20 However, the obser-
vational nature of these studies limits the ability to make any statements of causation.
A higher PCWP or more positive fluid balance might be a marker of illness severity and
confound the early data. A 1992 RCT of 101 critically ill patients with pulmonary artery
catheterization to extravascular lung water (EVLW) group and pulmonary capillary
wedge pressure (WP) group and looked at the impact of fluid restriction and diuresis
on resolution of EVLW and ventilator and ICU days.21 Although significantly
confounded by including patients with congestive heart failure, fluid restriction and
diuresis were associated with lower positive fluid balance and fewer ventilator and
ICU days. These studies, although weakened by their observational design and likely
confounded by severity, suggest that higher positive fluid balance is associated with
worse clinical outcomes in ARDS.

Conservative Fluid Management: a Paradigm Shift

Compared with a liberal fluid management strategy, a conservative strategy restricts
fluid administration during the resuscitative phase and employs treatments to reduce
the total body fluid balance during the deresuscitative phase. This strategy seeks to
reduce the pulmonary ventilation/perfusion mismatch by limiting pulmonary edema
but may risk and end-organ damage from decreased cardiac perfusion.16

There are few data examining the association of a liberal or conservative intrave-
nous fluid resuscitation strategy and the development of ARDS. A small cohort study
of 296 septic patients, in which 25% developed ARDS within 72 hours, showed no as-
sociation between the amount of resuscitative intravenous fluid administered in the
first 24 hours and the development of ARDS.22 These findings are limited by the small
difference in volume of resuscitative fluid between study groups (5.5 vs 4.7 L) and the
study’s limited sample size. An observational study of 879 patients undergoing elec-
tive lung resections found that positive fluid balance was an independent risk factor for
developing ARDS.23 A study of 1366 mechanically ventilated ICU patients, of whom
152 developed ARDS following intubation, found that a positive fluid balance was
an independent risk factor for progression to ARDS.24 Additionally, a case-control
study of 414 patients with hospital-acquired ARDS matched with intubated non-
ARDS controls found that a greater cumulative fluid balance (7.3 vs 3.6 L) was a modi-
fiable hospital exposure that increased the risk of developing ARDS.25

The Crystalloid Liberal or Vasopressors Early Resuscitation in Sepsis (CLOVERS)
trial sponsored by the National Heart, Lung and Blood Institute is currently enrolling
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septic shock patients and randomizing them to a conservative intravenous fluid resus-
citation strategy that uses vasopressors to achieve target blood pressure goals versus
a liberal intravenous fluid resuscitation strategy for the first 24 hours of care.26 The pri-
mary end point is 28-day mortality. The CLOVERS trial seeks to enroll 2320 partici-
pants and will track the development of ARDS over the first 7 days. The primary
and anticipated secondary analysis of the CLOVERS participants who develop
ARDS and their relationship to intravenous fluids will likely provide the strongest
causal data available on the resuscitative phase.
Several RCTs have compared a conservative or deresuscitative fluid to a liberal fluid

strategy for septic and/or ARDS patients. These trials, with 1 exception, the Network
Fluid and Catheters Treatment Trial (FACTT), were generally smaller proof-of-concept
trials. They employed variations of a conservative/deresuscitation strategies that both
used and did not use pulmonary catheters to guide fluid removal and found mixed re-
sults.27–29 In a systematic review andmeta-analysis of these trails, a conservative/der-
esuscitative fluid strategy did not demonstrate a mortality benefit.30 However, a
conservative/deresuscitative fluid strategy was associated with increased ventilator-
free days and a shorter ICU length of stay. The combined treatment effect of a conser-
vative deresuscitation on these outcomes was heavily influenced by the inclusion of
FACTT trial, which accounted for approximately 50% of the included participants.
Other small proof-of-concept RCTs comparing the use of albumin and furosemide
versus to placebo or furosemide only suggest that the use of albumin and furosemide
may also increase ventilator-free days.31,32

The defining trial that tested the effect of conservative fluid strategy in ARDSwas the
2006 ARDS Network Fluid and Catheters Treatment Trial.33 FACTT enrolled 1000 par-
ticipants with ARDS over 40 hours after admission to the ICU and excluded patients
with ongoing shock. The trial randomized participants to a conservative versus liberal
fluid strategy that used a strict protocol of active diuresis, fluid bolus, vasopressor,
and/or inotrope based on varying ranges of central venous pressure (CVP) and pulmo-
nary artery occlusion pressures (PAOP). Diuresis was held for 12 hours when patients
demonstrated evidence of shock and received vasopressors and/or fluid bolus. At
7 days, the trial produced a large difference in the cumulative fluid balance between
the conservative and liberal deresuscitation groups (�136 � 491 mL vs
6992 � 502 mL; P<.001). The daily cumulative fluid balance in the liberal group was
similar with prior contemporary ARDS trials (4 L and 6 L by day 4 in ARMA and
ALVEOLI, respectively) and consistent with usual care at the time. There was no dif-
ference in the primary outcome of 60-day mortality in these groups (25% in conserva-
tive strategy vs 28% in liberal strategy, P5.30).The conservative strategy group,
however, had significantly more ventilator-free days (14.6 � 0.5 vs 12.1 � 0.5,
P<.001) and ICU-free days compared with the liberal strategy group. Despite the
aggressive conservative/deresuscitation strategy, which targeted CVP less than
4 mm Hg and a PAOP less than 8 mm Hg, there was no increase in organ failure be-
tween the conservative and liberal arms of the study. Moreover, there were no signif-
icant differences in the percentage of patients receiving renal replacement therapy
(10% in conservative vs 14% in liberal, P5.06) or the average number of days of renal
support. These findings suggest that active deresuscitation may mitigate the lung
injury associated with excess intravenous fluids without compromising organ
perfusion.
In the FACTT protocol, deresuscitation was held when enrolled patients developed

shock for any reason. When the results were further analyzed to compare the impact
of conservative and liberal fluid strategies in baseline shock versus nonshock patients,
60-day hospital mortality was lower in the conservative arm than liberal arm in
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nonshock patients (19% vs 24%), but higher in the conservative arm than liberal arm in
shock patients (39% vs 37%). However, a test for interaction of baseline shock and the
treatment effect of fluid therapy was not significant for these outcomes.
Since this landmark study, fluid management in ARDS has undergone a clear

paradigm shift from liberal to conservative/deresuscitative strategy among clini-
cians managing critically ill patients with ARDS. However, many concerns about
the use of a conservative/deresuscitative strategy remain. It is important to note
that this paradigm shift has occurred largely because of this single trial. Although
FACTT suggests a conservative strategy may liberate patients from the ventilator
earlier without evidence of harm, the clinical implications of conservative/deresus-
citative strategy for ARDS patients with shock are not known. In addition, the sec-
ondary outcome findings of FACTT have not been prospectively validated in an
RCT that evaluates a conservative/resuscitation strategy with ventilator-free days
as the primary outcome. Subsequent prospective trials have failed to show mortal-
ity benefit of conservative/deresuscitative strategy, although most of these trials
are limited by their small sample size.27–29 Importantly, and perhaps because of
the lack of a strong evidence base, most of the guidelines for ARDS management
(ATS/ESICM/SCCM) do not recommend specific fluid management strategies, and
the British Thoracic Society (BTS) and Japanese Society of Respiratory Care Med-
icine and the Japanese Society of Intensive Care Medicine (JSRCM/JSICM) make
weak recommendations for conservative fluid management.34–36 The discordance
in these guidelines underscores the need for further investigation, including the ne-
cessity of identifying subpopulations of ARDS patients with differing responses to
fluid administration.

Heterogeneity of Treatment Effect and Acute Respiratory Distress Syndrome
Phenotypes

One of the largest challenges facing ARDS research, as well as many other topics in
critical care, is the complex heterogeneity of the diseases of interest. Even a rigor-
ously conducted RCT can produce outcomes that do not accurately answer more
nuanced clinical questions because of the heterogeneity of participant enrollment.
It is crucial to understand that the primary outcome of any study is an average ef-
fect estimate across the enrolled study population. Beneficial or harmful effects to
specific subgroups from the intervention may be masked within the same RCT.37

Identification of patient phenotypes may improve understanding of disease syn-
dromes and enable the development of a precision-based approach to clinical trial
design. The heterogenous mixture of patients that comprises ARDS may be group-
ed in many ways. Examples of ARDS phenotypes include severity of hypoxia,
precipitating risk factors (eg, sepsis, trauma, pancreatitis, or transfusion), direct
versus indirect lung injury, timing of onset (less than or more than 48 hours from
admission), radiographic appearance, genotypes, biomarkers, and hyperinflamma-
tory versus non- or hypoinflammatory.38 Identifying such phenotypes and assess-
ing the treatment effects in specific phenotypes have the potential to lead to
meaningful and clinically applicable results. This is evidenced by the Prone Positing
in Severe Acute Respiratory Distress Syndrome (PROSEVA) trial, where the inves-
tigators demonstrated that prone positioning reduced mortality in severely hypoxic
patients with PaO2/FiO2 ratio less than 150 mm Hg.39

Latent class analysis is a form of mixture modeling that uses available data to iden-
tify unmeasured or latent subgroups in a heterogeneous population.40 LCA attempts
to identify the optimal number of subgroups that best fit a population. Two distinct
phenotypes of ARDS have been identified using the latent class analysis, which are
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hypoinflammatory and hyperinflammatory.41–45 The hypoinflammatory and hyperin-
flammatory phenotypes were derived in a secondary analysis from 2 large ARDS
RCTs (ARMA and ALVEOLI) and demonstrated different treatment effects in mortality,
ventilator-free days, and organ failure-free days when exposed to different ventilation
strategies.41 Famous and colleagues used FACTT and LCA to assess the mortality
outcomes of a conservative versus liberal fluid strategy among the subphenotypes.42

Their revised secondary analysis of the FACTT cohort found that the hyperinflamma-
tory group had higher 60- and 90-day mortality and fewer ventilator-free days when
compared with the hypoinflammatory group. There was no significant difference in
60-day mortality rates between conservative and liberal fluid strategies in each group.
Their data show that most ARDS patients are classified as the hypoinflammatory sub-
phenotype (73%) compared with the hyperinflammatory subphenotype (23%); howev-
er, their 301 factor model that includes novel biomarkers makes clinical identification
of these phenotypes currently not feasible. Subsequent work is exploring a more
parsimonious 3-variable model consisting of IL-8, bicarbonate and protein C to facil-
itate the clinical integration of subphenotype identification.46 With the predominance
of ARDS patients belonging to the hypoinflammatory subphenotype, and until classi-
fication becomes clinically feasible, many clinicians will continue to manage ARDS pa-
tients with diuresis and try to achieve even or negative fluid balance.

Precision Based Medicine as Future Treatment of Acute Respiratory Distress
Syndrome

Clinical trials often require significant investments of time and money to complete. It is
important to invest the limited time and resources available in trials that maximize the
probability of detecting clinically meaningful treatment effects. One may accomplish
this by identifying relevant subphenotypes and then targeting treatment toward specific
patient populations most likely to benefit.47,48 Robust research design in the fields of ge-
nomics, proteomics, and metabolomics is dedicated to identifying biomarkers and
deriving biological phenotypes.49,50 Additionally, machine learning has the potential to
identify and study the various phenotypes of ARDS through unsupervised learning
methods that may uncover associations in data that are not intuitive to researchers.51

The ongoing evolution of ARDS phenotypes and the utilization of machine learning and
adaptive trial platforms hold great promise for the future of enhanced clinical trial design.
This in turn will allow for the evaluation of targeted therapies in ARDS and further under-
standing of how one should best use intravenous fluids to treat patients with ARDS.

CLINICS CARE POINTS
� Fluid management is an important component in management of critically ill patients;
however the optimal fluid management for ARDS remains unknown.

� Although no prospective, RCTs have shown mortality benefit, it is suggested that
conservative fluid management improves outcomes related to ICU stay and mechanical
ventilation days.

� Further studies addressing differential responses to fluid management in ARDS phenotypes
will help guide fluid management for optimal outcomes.
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