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Outer membrane vesicles of
Porphyromonas gingivalis
trigger NLRP3 inflammasome
and induce neuroinflammation,
tau phosphorylation, and
memory dysfunction in mice

Ting Gong1,2,3, Qi Chen1,2,3, Hongchen Mao1,2,3, Yao Zhang1,2,3,
Huan Ren1,2,3, Mengmeng Xu1,2,3, Hong Chen1,2,3

and Deqin Yang1,2,3*

1Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing,
China, 2Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical
University, Chongqing, China, 3Chongqing Municipal Key Laboratory of Oral Biomedical
Engineering of Higher Education, Chongqing Medical University, Chongqing, China
Background: Porphyromonas gingivalis (Pg), the keystone pathogen in chronic

periodontitis, is reported to initiate Alzheimer’s disease pathologies in

preclinical studies. However, the specific mechanisms and signaling

pathways acting on the brain still need to be further explored. Outer

membrane vesicles are derived from Gram-negative bacteria and contain

many virulence factors of bacteria. We hypothesized that outer membrane

vesicles are an important weapon of Porphyromonas gingivalis to initiate

Alzheimer’s disease pathologies.

Methods: The outer membrane vesicles of Porphyromonas gingivalis (Pg

OMVs, 4 mg/kg) or saline were delivered to 14-month-old mice by oral

gavage every other day for eight weeks. Behavioral alterations were assessed

by the open field test, Morris water maze, and Y-maze test. Blood–brain barrier

permeability, neuroinflammation, tau phosphorylation, and NLRP3

inflammasome-related protein were analyzed.

Results: Pg OMVs impaired memory and learning ability of mice and decreased

tight junction–related gene expression ZO-1, occludin, claudin-5, and

occludin protein expression in the hippocampus. Pg OMVs could be

detected in the hippocampus and cortex three days after oral gavage.

Furthermore, Pg OMVs activated both astrocytes and microglia and elevated

IL-1b, tau phosphorylation on the Thr231 site, and NLRP3 inflammasome–
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related protein expression in the hippocampus. In in vitro studies, Pg OMV (5

µg/ml) stimulation increased the mRNA and immunofluorescence of NLRP3 in

BV2 microglia, which were significantly inhibited by the NLRP3 inhibitor

MCC950. In contrast, the tau phosphorylation in N2a neurons was enhanced

after treatment with conditioned media from Pg OMV-stimulated microglia,

which was attenuated after pretreatment with MCC950.

Conclusions: These results indicate that Pg OMVs prompt memory

dysfunction, neuroinflammation, and tau phosphorylation and trigger NLRP3

inflammasome in the brain of middle-aged mice. We propose that Pg OMVs

play an important role in activating neuroinflammation in the AD-like pathology

triggered by Porphyromonas gingivalis, and NLRP3 inflammasome activation is

a possible mechanism.
KEYWORDS

porphyromonas gingivalis , outer membrane vesicles , inflammasome,
neuroinflammation, Alzheimer’s disease, tau
1 Introduction

Alzheimer’s disease (AD) is the main cause of dementia and

represents an enormous burden for the health economies. b-
amyloid (Ab) and tau phosphorylation, the main components of

senile plaque and neurofibrillary tangles (NFTs), respectively, in

the brain, are characteristic pathological hallmarks of AD (Braak

and Braak, 1991).

Epidemiological studies propose that periodontal disease is a

risk factor for AD (Sparks et al., 2012; Noble et al., 2014; Ryder,

2020). Porphyromonas gingivalis (Pg) is a Gram-negative

bacterium known as a major pathogen of periodontal disease

(Darveau et al., 2012). Many experimental studies conclude that

Pg or its virulence factors could induce memory impairment and

AD-related pathologies (Wu et al., 2017; Ding et al., 2018;

Ilievski et al., 2018; Zhang et al., 2018; Dominy et al., 2019;

Hayashi et al., 2019; Nie et al., 2019; Gu et al., 2020; Hu et al.,

2020; Chi et al., 2021; Hao et al., 2022 Jiang et al., 2021; Qian

et al., 2021; Su et al., 2021; Tang et al., 2021). Gingipains are toxic

proteases secreted by Pg, it is reported that gingipains are

neurotoxic in vivo and in vitro, causing detrimental effects on

tau, a protein needed for normal neuronal function (Dominy

et al., 2019), and gingipains could degrade tight junction

proteins of human cerebral microvascular endothelial cells in

vitro (Nonaka et al., 2022), suggesting that gingipains may be

responsible for blood–brain barrier (BBB) damage.

Lipopolysaccharide (LPS) is another virulence factor of Pg; Pg

LPS can induce neuronal inflammation through the TLR4/NF-

kB pathway (Zhang et al., 2018) and intracellular Ab
02
accumulation in neurons in a cathepsin B–dependent manner

(Wu et al., 2017). However, the specific virulence factors,

mechanisms, and signaling pathways acting on the brain still

need to be further explored.

Outer membrane vesicles (OMVs) are gaining researchers’

attention. OMVs are secreted by Gram-negative bacteria; range

from 20 to 250 nm in diameter; and carry bacterial LPS,

protease, membrane receptor, DNA, RNA, and so forth

(Toyofuku et al., 2019). It is suggested that OMVs could act as

long-distance weapons and cause systemic disease, including AD

(Amano et al., 2010; Schertzer and Whiteley, 2013; Singhrao and

Olsen, 2018; Seyama et al., 2020; Wei et al., 2020; Nara et al.,

2021). In fact, the majority of Pg gingipains are packaged and

associated with Pg OMVs (Nara et al., 2021), and Pg OMVs

could increase BBB permeability and degrade tight junction

proteins in a human in vitro model (Pritchard et al., 2022).

Thus, we aimed to explore the effect of Pg OMVs on

AD pathologies.

Neuroinflammation is suggested to play a critical role in AD

onset and progression (Heneka et al., 2015). IL-1b are elevated in
brains of AD patients and can be associated with the onset and

progression of AD (Alvarez et al., 1996; Griffin et al., 2000;

Oprica et al., 2007; Deniz-Naranjo et al., 2008). The nucleotide-

binding oligomerization domain-like receptor family, pyrin

domain containing 3 (NLRP3), is an intracellular signaling

molecule that senses many pathogen-, environmental-, and

host-derived factors (Wen et al., 2013). Upon activation,

NLRP3 binds to an apoptosis-associated speck-like protein

containing a CARD (ASC), and ASC, in turn, interacts with
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procaspase-1, forming a complex termed the inflammasome.

This results in the formation of the active caspase-1 p10/p20

tetramer, which then processes cytokine proforms, such as IL-1b
and IL-18, to generate active molecules and mediates a type of

inflammatory cell death known as pyroptosis (Schroder and

Tschopp, 2010). The NLRP3 inflammasome is found to play an

important role in microglial activation (Tan et al., 2013), and

inhibition or knock-out of the NLRP3 inflammasome could

reduce Ab and tau phosphorylation in vitro and in vivo (Heneka

et al., 2013; Ising et al., 2019; Beyer et al., 2020).

Given that the NLRP3 inflammasome is important in AD

progression, it has become the focus of research, which may help

to uncover the mechanism of AD. Recently Pg OMVs were

reported to activate the NLRP3 inflammasome and induce IL-1b
production in macrophages and monocytes (Cecil et al., 2017;

Fleetwood et al., 2017).

The aim of this study was to explore whether Pg OMVs can

trigger the NLRP3 inflammasome and neuroinflammation in

the hippocampus, thus potentially inducing behavioral

cognitive changes.
2 Materials and methods

2.1 Bacterial cultures and preparation
of OMVs

Pg strain ATCC 33277 was cultured on anaerobic agar plates

supplemented with defibrillated sheep blood, brain-heart infusion

(OXOID, Britain), hemin (0.5 mg/mL), and menadione (10 mg/

mL) in an anaerobic system (Gene Science, America) with 10%

CO2, 10% H2, and 80% N2. OMVs were isolated by an established

protocol (Seyama et al., 2020). Briefly, when Pg cells were grown

to the late exponential phase, the bacterial culture medium was

collected and centrifuged at 2800 ×g for 15 minutes at 4°C to

remove bacterial cells. The supernatant was filtered with a 0.22-

mm syringe filter. The supernatant was concentrated to <1 mL by

using an Ultra-15 Centrifugal Filter Device for nominal molecular

weight limit (NMWL) 100,000 (Amicon, Merck, USA). The

concentrate was mixed with Total Exosome Isolation Reagent

(Invitrogen) and incubated overnight at 4°C. Afterward, the

sample was centrifuged at 10,000 ×g for 60 minutes at 4°C. The

OMV fractions were eluted with phosphate buffered saline (PBS)

and quantified by protein concentrations using a BCA protein

assay kit (Pierce, Rockford, IL, USA). Characterization of Pg

OMVs utilized nanoparticle-tracking analysis (NTA) and

transmission electron microscopy (TEM). To characterize the

proteins of Pg OMVs, the same amount of Pg and OMVs (10

mg of total protein) were separated by sodium dodecyl sulfate

(SDS)-poly-acrylamide gel electrophoresis (PAGE) and stained

with Coomassie blue for one hour, washed in PBS overnight, and

images were taken.
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2.2 Animals

Fourteen-month-old male C57BL/6 mice were obtained

from the Dashuo company. All animal studies were conducted

following the guidelines approved by the Institutional Animal

Care and Use Committee of the Stomatological Hospital of

Chongqing Medical University. All mice were housed in

groups of two to four mice per cage in biosafety barriers with

a controlled light cycle and given sterile food and water ad

libitum. The light–dark cycle was 1:1 with lights on at 7:00 a.m.

Room temperature was 18°C ± 2°C, and humidity was 55% ±

10%. After one week of habituation, mice were treated with Pg

OMVs or PBS by oral gavage using feeding needles (n = 12 in

each group). The experimental group received Pg OMVs (4 mg/

kg) diluted in PBS every other day for a consecutive eight weeks.

The control group received an equivalent volume of PBS. The

dosage of Pg OMVs were deduced from a previous study (Ho

et al., 2016).
2.3 Mouse behavioral tests

A battery of behavioral tests comprising the Morris water

maze (MWM), Y-maze, and open field tests were conducted to

assess behavioral performance of mice.

2.3.1 Morris water maze test
The MWMwas conducted in a circular pool that was 120 cm

in diameter, and it was filled with opaque water stained with

milk and surrounded by a set of spatial cues. The tank was

imaginarily divided into four quadrants. A platform that was

9 cm in diameter was submerged 1 cm under the water surface in

a quadrant. The MWM test consisted of three platform trials per

day for five consecutive days, followed by a probe trial. In the

platform trial, the mouse navigated in the pool to locate the

platform and was then able to escape. If the mouse failed to

locate the platform within 60 seconds, it was directed to the

platform. The mouse was allowed to remain on the platform for

60 seconds once it escaped onto the platform. The escape latency

was measured to test spatial learning ability. In the probe trial,

the platform was withdrawn. The mouse navigated freely in the

pool for one minute. The time spent in each quadrant and the

number of annulus crossings were recorded to assess

memory consolidation.
2.3.2 Y-maze test
A novel arm exploration test was performed in the Y-maze.

One arm was blocked (defined as the novel arm), and the mice

were allowed to explore the other two arms (home arm and

familiar arm) for five minutes. After a one-hour interval, the

mice were allowed to freely explore all three arms for five
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minutes. The number of novel arm entries and time spent in the

novel arm were recorded.

2.3.3 Open-field test
The mice were placed in the center of the open field

apparatus for five minutes. The paths were tracked, and the

distance travelled was recorded.
2.4 RNA isolation, reverse transcription,
and quantitative real-time PCR

Total RNA was isolated by using the Trizol reagent (Takara,

Japan), and it was subjected to reverse transcription by using

the cDNA Reverse Transcription Kit (Takara, Japan). The

quantitative real-time PCR analyses were carried out in the ABI

Prism 7500 Real-Time PCR System (Applied Biosystems, Foster

City, CA) with the SYBR Green PCR master mix reagent (Takara,

Japan). PCR primer sequences are detailed in the supplementary

data. The 2-DDCt value was used to calculate the relative gene

expression normalized by the expression level of GAPDH.
2.5 Western blot assay

The hippocampus was homogenized and sonicated. The

protein concentration was determined with a BCA protein assay

reagent (Pierce, Rockford, IL, USA) according to the

manufacturer’s instructions. The same amount of protein

samples (30 mg) from each tube was boiled in 5 × loading buffer

for 10 minutes at 95°C. The sample was then separated on 10%

tris-glycine SDS-PAGE gels and transferred onto immobilon PTM

polyvinylidene fluoride (PVDF)membranes. To block nonspecific

background, the membranes were incubated in 5% nonfat milk in

Tris-buffered saline containing 0.1% Tween-20 (TBST) at 37°C for

one hour. The target proteins were immunoblotted with primary

antibody overnight at 4°C (see the supplemental information for

details) followed by incubation with a secondary antibody (1:1000;

Cell signaling technology) at room temperature for one hour. The

blots were imaged by the Bio-Rad Imager using ECL Western

blotting substrate (Beyotime Technology). The relative level of

target protein is expressed as the percentage between the intensity

of the target protein and that of the marker protein, GAPDH. The

band intensity of each protein was quantified by ImageJ software.
2.6 Brain sampling

The mice were killed by transcardial perfusion with saline

after anesthetization. The left hemispheres were fixed in 4%

paraformaldehyde (pH 7.4) for 24 hours, followed by incubation
Frontiers in Cellular and Infection Microbiology 04
with 30% sucrose for 24 hours, and coronal sections were cut at

30 mm thickness for histological analysis. The right hemispheres

were snap frozen in liquid nitrogen and stored at −80°C for

Western blots and real-time PCR.
2.7 Immunofluorescence

Tissue sections were washed with PBS, penetrated with

0.5% Triton-100 for 20 minutes, blocked with normal serum,

and incubated with primary antibodies (detailed in the

supplemental information) at 4°C overnight. After PBS

washing, anti-rabbit 488 (1:1000; Beyotime Technology) and

anti-mouse 555(1:1000; Beyotime Technology) were added at

37°C for two hours. Then, the sections were incubated with

DAPI (1:200; Beyotime Technology) and mounted in

antifading medium (Beyotime technology), and images were

acquired by confocal microscopy.
2.8 Tracking Pg OMVs in the brain

The OMVs (100 mg/mice) and the same volume of PBS were

labeled with DiO (Beyotime Company, China) for 20 minutes at

37°C, fetal bovine serum was used to neutralize excessive dye,

ultracentrifugation at 150,000 × g for one hour at 4°C was used

to recollect labeled Pg OMVs, and then mice were treated with

Pg OMVs or PBS by oral gavage. After three days, the mice were

killed by transcardial perfusion with saline, and the brains were

fixed in 4% paraformaldehyde for 24 hours, followed by

incubation with 30% sucrose for 24 hours, and coronal

sections were cut at 50-mm thickness, stained with DAPI, and

viewed by confocal microscopy.
2.9 Cellular experiment

BV2 microglia cells and mouse neuroblastoma cell line N2a

(kindly gifted by Dr. Zhifang Dong from Children’s Hospital of

Chongqing Medical University) were maintained in high glucose

Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% fetal bovine serum, 100 units/ml penicillin, and 100

mg/ml streptomycin. For the vesicle uptake experiment, BV2

cells (1.5*104/well) were seeded on glass cover slides and cultured

in 12-well plates overnight. Pg OMVs (10 mg/ml) and saline were

stained with PKH26 (Merck, USA) and then were added to the

cultures and incubated for 30 minutes. After fixing with 4%

paraformaldehyde at room temperature for 10 minutes and

penetration with 0.1% Triton-100 for 10 minutes, the nuclear
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was stained with DAPI, and images were acquired by confocal

microscopy. For BV2 and N2a stimulation experiments, the BV2

were stimulated with different concentrations of Pg OMVs, and

5 mg/ml was chosen for the rest of the in vitro experiments. BV2

were stimulated with Pg OMVs or pretreated with MCC950

(NLRP3 inhibitor; 20 mM; AbMole) for one hour. After six hours

of Pg OMV stimulation, the medium was changed to fresh

medium, and the BV2 conditioned medium was harvested 24

hours later. The N2a was treated with the BV2 conditioned

medium and harvested 24 hours later.
2.10 Statistical analyses

Two-way repeated measures ANOVA was used for escape

latency in MWM measurements. The statistical analyses
Frontiers in Cellular and Infection Microbiology 05
were performed by Student’s t-test and one-way ANOVA

using the GraphPad Prism software package (GraphPad

Software, California, USA). Data were expressed as means ±

SEM, and a value of p <.05 was considered to indicate

statistical significance.
3 Results

3.1 Characterization of Pg OMVs

Pg OMVs were characterized by TEM, which revealed that

Pg OMVs are spherical bilayered cell portions (Figure 1A), and

NTA showed the average diameter of Pg OMVs was 115.7 ± 4.1

nm (Figure 1B), which is the typical OMV diameter of Gram-

negative bacteria. To analyze the protein contents of Pg OMVs,
B C

D

A

FIGURE 1

Characterization of Pg OMVs. (A) Pg OMVs observed by TEM. Scale bar = 100 nm. (B) NTA measured the diameter of Pg OMVs. (C) SDS-PAGE
gel showed cargo proteins of Pg OMVs. White arrows indicate the bands in Pg OMVs samples (Pg OMVs) that correspond to Pg bacterial cell
proteins (Pg). (D) Confocal images of Pg OMVs uptake by BV2 cells within 30 minutes, Nuclei (blue) were labeled with DAPI, Pg OMVs or PBS
were labeled with PKH26 (red). Scale bar = 50 mm. TEM, transmission electron microscopy; NTA, nanoparticle-tracking analysis.
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Pg OMVs and Pg fractions were separated by SDS-PAGE and

visualized by Coomassie blue. We found that some Pg OMV

protein bands corresponded to those of the Pg bacterial cell,

suggesting that Pg proteins were present in the OMVs

(Figure 1C). The Pg OMVs could be internalized by BV2

microglia cells within 30 minutes (Figure 1D).
3.2 Effect of Pg OMVs on body weight
and survival

Twenty-four normal C57BL/6 mice, 14 months of age, were

randomly divided into two groups: Pg OMVs and control. The

mice were weighed before and after the eight‐week treatment, and

the results were analyzed. There was no significant difference in

the weight change (Figures 2A–C) or survival rates (Figure 2D)

among the two groups before and after treatment.
Frontiers in Cellular and Infection Microbiology 06
3.3 Pg OMVs cross blood–brain barrier
of mice and decrease tight junction–
related gene and protein expression in
the hippocampus of mice

To determine whether Pg OMVs could cross the blood–

brain barrier, Pg OMVs labeled with DiO were applied to mice

by oral gavage, and labeled Pg OMVs were clearly detected in the

hippocampus and cortex after three days (Figure 3). To test

whether Pg OMVs changed BBB permeability, we performed

Western blot analysis and RT-qPCR to detect tight junction–

related protein and gene expression after eight weeks oral

gavage. Claudin-5, ZO-1, and occludin are important proteins

for the tight junctions between capillary endothelial cells. RT-

qPCR showed that claudin-5, ZO-1, and occludin gene

expression were decreased in the hippocampus of Pg OMV–

treated mice (Figures 4A-C). The Western blot indicated that
B

C D

A

FIGURE 2

Pg OMVs did not affect body weight or survival rate. The mice were weighed before (A) and after (B) treatment, and the weight change (C) is
shown. (D) Kaplan–Meier survival plots of mice. Data are presented as mean ± SEM. (ns: P >.05).
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occludin was significantly decreased in the hippocampus of Pg

OMV–treated mice (Figures 4D, E).
3.4 Oral gavage of Pg OMVs impairs
learning and memory ability in mice

Sickness may reduce local motor activity, which may affect

mouse behavior in the MWM and Y-maze tests. To exclude the

effects of sickness symptoms on mouse behavior, the open field

test was performed. In open field test, there was no significant

difference in traveling distance or velocity between the two

groups (Figures 5A, B), suggesting that Pg OMVs did not

impair the locomotor activity of mice. To test whether Pg

OMVs had an effect on memory and learning ability, we

performed the MWM and Y-maze tests. In the MWM test, Pg

OMVs impaired learning and spatial reference memory in mice

as reflected by an increase in the escape latency in the five-day
Frontiers in Cellular and Infection Microbiology 07
platform trial (Figure 5C). In the probe trial on the sixth day, the

Pg OMV–treated mice showed worse memory consolidation as

reflected by a lower number of platform area crossings and less

time spent in the target quadrant compared with controls

(Figures 5D, E) representative tracing graphs of Morris water

maze on the sixth day were shown in Figures 5F, G. In the Y-

maze test, the Pg OMV–treated mice showed a significantly

decreased number of entries and time spent in the novel arm

(Figures 5H–K).
3.5 Oral gavage of Pg OMVs increases
tau phosphorylation in the brain of mice

Tau phosphorylation is one of the hallmark pathologies in

AD and is closely related to memory consolidation.

Immunofluorescent images showed that the Thr231-site
FIGURE 3

Pg OMVs enter the brain. Pg OMVs labeled with DiO (green) were applied by oral gavage for three days and were detected by confocal
microscopy in the hippocampus and cortex of mice. Scale bar = 50 mm.
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phosphorylation in the hippocampus was significantly increased

in the experimental group (Figures 6A, B), and the mean degree

of tau phosphorylation on the Thr231 site was increased

significantly in the hippocampus of mice in the experimental

group (Figures 6C, D).
3.6 Oral gavage of Pg OMVs induces
neuroinflammation

To clarify whether Pg OMVs could induce neuroinflammation,

we detectedmicroglia, astrocytes, and IL-1b by immunofluorescence.

Microglia are resident macrophage-like cells in the brain, which
Frontiers in Cellular and Infection Microbiology 08
would be overactivated and release proinflammatory cytokines in

response to microbial infection. The immunofluorescent images

showed that a number of Iba1-positive microglia were significantly

increased in the experimental group (Figures 7A, B). Astrocytes are

known to function in biochemical support of endothelial cells that

form the BBB. An increased number of astrocytes can be induced by

infection. We then examined whether astrocytes in the hippocampus

were activated by using a GFAP antibody. There was a

significantly higher number of astrocytes in the experimental group

compared with controls (Figures 7A, C). IL-1b played a central

role in neuroinflammation, and the number of IL-1b positive cells

were significantly increased in the experimental group

(Figures 7A, D).
A B

D

E

C

FIGURE 4

Oral gavage of Pg OMVs decreases tight junction–related gene and protein expression in the brain. (A–C) Gene expression of claudin-5,
occluding, and zo-1 in the brain. (D) Occludin protein expression was measured by Western blot analysis. (E) The quantitative analysis of
occludin immunoblots in (D). Values are expressed as the mean ± SEM. OMVs, outer membrane vesicle; SEM, standard error of the mean.
(n = 3, ns: P >.05, *p <.05, **p <.01).
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3.7 Oral gavage of Pg OMVs activates the
NLRP3 inflammasome in the
hippocampus of mice

Since the NLRP3 inflammasome is reported to drive

microglia activation and tau pathology (Ising et al., 2019;
Frontiers in Cellular and Infection Microbiology 09
Lempriere, 2020), we next explored whether the NLRP3

inflammasome was activated. Proteins of NLRP3, ASC, and

caspase-1 were elevated significantly in the hippocampus of

the experimental group (Figures 8A–D). Immunofluorescence

double staining showed that ASC co-localized mainly with

microglia (Figure 8E; Figures S1, 2). Immunofluorescent
B C

D E

F G

H I
J K

A

FIGURE 5

Oral gavage of Pg OMVs impairs memory and spatial learning of mice. (A, B) Distance and velocity traveled in the open-field test. (C) Latency to
find the platform during the acquisition phase of the MWM test. (D, E) Crossing platform times and time in the target quadrant on the sixth day
when the platform was removed. (F, G) Representative tracing graphs of Morris water maze on the sixth day. (H, I) Novel arm entry and time
spent in the novel arm in the Y-maze test. (J, K) Representative hot spot graphs. (n = 8, ns: P >.05, *p <.05, ****p <.0001).
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images showed that the fluorescent intensity of ASC and NLRP3

were significantly increased in the experimental group in the

hippocampus (Figures 8F–H), and intracellular and extracellular

ASC specks were significantly increased in the experimental

group (Figures 8I–K).
3.8 Pg OMVs activate the NLRP3
inflammasome in cultured microglia and
contributes to tau hyperphosphorylation
in cultured neurons

To test whether Pg OMVs activate the NLRP3 inflammasome

and promote tau phosphorylation in vitro, we first measured

extracellular ASC specks of BV2 cells with Pg OMV stimulation.

The result showed that the extracellular ASC specks increased in a

Pg OMV–dosage manner (Figures 9A, B), the 5 mg/ml dosage of

Pg OMVs was chosen in the rest of the in vitro experiments. The

expression of NLRP3 was increased with Pg OMV stimulation
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and decreased when pretreated with the NLRP3 inhibitor

MCC950 (Figures 9C, D). To clarify whether the effects of Pg

OMVs on tau phosphorylation in neurons are exerted indirectly

via microglial activation, we treated N2a neurons with microglia-

conditioned medium (MCM). Compared with MCM from

control, a significantly increased mean degree of phosphorylated

tau at Thr231 (Figures 10A–C) was observed in the N2a neurons

following incubation with MCM stimulated by Pg OMVs. In

contrast, the expression of phosphorylated tau at Thr231 was

significantly decreased in the N2a neurons following incubation

with NLRP3 inhibitor–pretreated and Pg OMV–treated MCM.
4 Discussion

The present study indicates that chronic infection by oral

gavage of Pg OMVs induced AD-like phenotypes, including

learning and memory deficiency, microglia-mediated

neuroinflammation, and intracellular tau phosphorylation.
B

C

D

A

FIGURE 6

Oral gavage of Pg OMVs increases tau phosphorylation in the hippocampus of mice. (A) Immunofluorescent images of p-Tau231 (red) in the
hippocampus of mice. Scale bar = 50 mm. (B) Mean relative fluorescence intensity (relative integrated density) of p-Tau231 in image (A) (n = 3,
**p <.01, Student’s t-test). (C) The Western blots showing p-Tau231 in the hippocampus of mice. (D) The quantitative analyses of the ratio of p-
Tau231 immunoblots in the image (C) (n = 4, *p <.05).
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NLRP3 inflammasome activation is involved in this process. To

the best of our knowledge, this study, for the first time,

demonstrates the relationship between Pg OMVs and AD-

like phenotypes.

There are studies showing Pg LPS (Poole et al., 2013) and Pg

DNA (Emery et al., 2017; Dominy et al., 2019) in autopsy

specimens from brains of AD patients. Gingipains, the toxic

protease of Pg, was also detected in the brain of AD patients, and

levels correlated with tau pathology (Dominy et al., 2019). In

vivo studies identified gingipains in the neuron, microglia, and

astrocytes after oral application of Pg for 22 weeks in mice

(Ilievski et al., 2018). However, none of these studies recovered

Pg in the brains of AD patients or in the brains of mice, leaving

the question of whether live Pg or just its virulence factors

entered the brain. We focused on Pg OMVs because Pg OMVs

contain LPS, DNA, and gingipains that were detected in the

brain of AD patients. Compared with Pg, Pg OMVs have

advantages to enter the brain. First, they are greater in

quantity. The number of Pg OMVs is about 2000 times of the
Frontiers in Cellular and Infection Microbiology 11
number of Pg (Fleetwood et al., 2017). Second, they are smaller

in size; the diameter of Pg OMVs is about 80 nm on average,

whereas the diameter of Pg is about 600 nm (Gui et al., 2016),

which is seven times larger than that of Pg OMVs. Third, Pg

OMVs contain gingipains and LPS, which are reported to cause

pathological changes related to AD. Compared with the same

protein amount of Pg, Pg OMVs are reported to contain three to

five times the gingipains compared with that of Pg (Mantri et al.,

2015). Last but not least, Pg OMVs invade epithelial cells more

efficiently than Pg (Ho et al., 2015). Thus, we speculate that Pg

OMVs are important virulence factors of Pg in the relationship

between Pg and AD.

The first question is whether Pg OMVs can cross the BBB

and enter the brain. We detected Pg OMVs in the cortex and

hippocampus of mice three days after oral gavage. This is in

agreement with Lee et al. In their study, five days after oral

gavage of extracellular vesicles of Paenalcaligenes hominis, a

member of the Proteobacteria in the gut, the extracellular

vesicles could be detected in the hippocampus of mice, and
B

C

D

A

FIGURE 7

Oral gavage of Pg OMVs induces neuroinflammation. (A) Activation of microglia (Iba1 marker, red) and astrocytes (GFAP marker, red) and
expression of IL-1b (red) in the hippocampus of mice. Scale bar left = 50 mm, scale bar right = 5 mm. (B) Number of microglia (Iba1 positive)
counted in the hippocampus from five slides for each mouse and are means ± SEM; n = 3 mice/group. (C) Number of astrocytes (GFAP
positive) in the hippocampus counted from five slides for each mouse and are means ± SEM; n = 3 mice/group. (D) Number of IL-1bpositive
cells in the hippocampus counted from five slides for each mouse and are means ± SEM; n = 3 mice/group. *p <.05.
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vagotomy inhibited the accumulation of Paenalcaligenes

hominis extracellular vesicles in the hippocampus (Lee et al.,

2020). OMVs of Aggregatibacter actinomycetemcomitans, a well-

known periodontal pathogen, can cross BBB and be detected in

the brain 24 hours after cardiac injection (Han et al., 2019) or

intravenous injection (Ha et al., 2020). OMVs of gut microbiota

could be detected in the hippocampus 12 hours after intravenous

injection (Wei et al., 2020). Bittel et al. found that OMVs of
Frontiers in Cellular and Infection Microbiology 12
Escherichia coli could be detected in the brain after oral gavage of

Escherichia coli, but Escherichia coli could not be detected in the

brain. This is the first proof-of-principle study visualizing that

OMVs, but not the parental bacteria could transport to the brain

from the gut (Bittel et al., 2021).

The BBB forms an effective barrier between the central

nervous system and the blood to maintain homeostasis of the

brain microenvironment (Keaney and Campbell, 2015). A
B C D

E F G H

I J K

A

FIGURE 8

Oral gavage of Pg OMVs triggers NLRP3 inflammasome in the hippocampus of mice. (A) The Western blots showed NLRP3, caspase-1, and ASC
in the hippocampus of mice. (B–D) The quantitative analyses of immunoblots in image (A) (n = 3, *p <.05). (E) Co-localization of ASC with
neuronal cell marker (NeuN) and microglia marker (Iba1) revealed expression of ASC in microglia but not in neurons, scale bar left = 50 mm,
scale bar right = 20 mm. (F) Immunofluorescent images showed ASC (red) and NLRP3 (red) expression in hippocampus of mice, scale bar = 50
mm. (G, H) The quantitative analyses of immunoblots in image (F) (n = 3, *p <.05) (I) Immunofluorescent images showed intracellular ASC (white
arrow) and extracellular ASC (yellow arrows) in hippocampus of mice. Scale bar = 5 mm. (J) The percentage of intracellular ASC positive
microglia in hippocampus of mice, counted from five slides per mouse and expressed as means ± SEM; n = 4 mice/group. (n = 4, ***p <.001)
(K) Number of extracellular ASC per field in hippocampus of mice. (n = 4, **p <.01).
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correlation between BBB dysfunction and tau pathology is

reported (Cai et al., 2018). Tight junctions, consisting of

cytoplasmic proteins (ZOs), transmembrane proteins (occludin

and claudins), and cytoskeleton proteins, play a critical role in
Frontiers in Cellular and Infection Microbiology 13
maintaining the integrity and permeability of the BBB (Zihni

et al., 2016). We found that Pg OMVs decreased ZO-1 and

occludin gene expression and also decreased occludin protein

expression, suggesting that Pg OMVs caused disruption of the
B

C

D

A

FIGURE 9

Pg OMVs triggers NLRP3 inflammasome in microglia in vitro. (A) Immunofluorescent images showed intracellular ASC (white arrow) and
extracellular ASC (yellow arrows) of BV2 cells stimulated with different concentrations of Pg OMVs. Scale bar = 10 mm. (B) Number of
extracellular ASC per field. (n =4, ns, not significant, **p <.01). (C) Immunofluorescent images showed NLRP3 staining of BV2 cells stimulated by
Pg OMVs. MCC950 (20 mM) were used for pretreatment for one hour. (D) The mRNA expression of NLRP3 in BV2 cells stimulated by Pg OMVs.
MCC950 (20 mM) were used for pretreatment for one hour. (n=3, *p <0.05).
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BBB, which would facilitate Pg OMVs and other harmful

compounds in the blood to enter the brain. OMVs of gut

microbiota were also reported to decrease tight junctions of

the BBB (Wei et al., 2020). In vitro, Pg OMVs could induce

degradation of ZO-1 and occludin in human cerebral

microvascular endothelial cell lines, and gingipains in Pg

OMVs played a critical role in tight junction degradation

(Nonaka et al., 2022).

In our study, chronic oral gavage of Pg OMVs did not

influence body weight or locomotion, suggesting that Pg OMV–

induced learning and memory impairment was not associated

with sickness behaviors. Tau pathology is closely linked to

learning and memory functions in AD pathology (van der

Kant et al., 2020). Tau phosphorylation on the Thr231 site is

shown to be significantly increased in the early stage of AD

(Neddens et al., 2018). We show that Pg OMVs could increase

tau phosphorylation on the Thr231 site in the hippocampus of

mice, which may be caused by gingipains of Pg OMVs. The

abundance of gingipains correlates with the tau protein load in

AD brain autopsies (Dominy et al., 2019), and gingipains can
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cleave tau in vitro (Dominy et al., 2019), an activity that might

contribute to aberrant tau phosphorylation and accumulation of

insoluble tau forms in AD (Kovacech and Novak, 2010). Other

studies also demonstrate that Pg or Pg LPS can elevate tau

phosphorylation. Tang et al. intravenously injected Pg for 12

weeks and found that tau phosphorylation on the Thr231 and

Thr181 sites were increased in the hippocampus of rats (Tang

et al., 2021), and Jiang et al. peritoneally injected Pg LPS for three

weeks in APPNL-F/NL-F mice and found that tau phosphorylation

on the Ser202, Thr231, and Ser396 sites were elevated in the

cortex of mice (Jiang et al., 2021). Ilievski et al. orally applied Pg

for 22 weeks in mice and detected that tau phosphorylation on

the Ser396 site was increased in the hippocampus of mice

(Ilievski et al., 2018).

Microglia-mediated neuroinflammation is a key factor

involved in regulating AD pathogenesis, and IL-1b is

associated with the progression and onset of AD (Alvarez

et al., 1996; Oprica et al., 2007; Deniz-Naranjo et al., 2008).

Since Pg OMVs could activate the NLRP3 inflammasome and

induce IL-1b in macrophages (Cecil et al., 2017), we speculate
B

C

A

FIGURE 10

Microglia-conditioned medium (MCM) stimulated by Pg OMVs contributes to tau hyperphosphorylation in cultured neurons.
(A) Immunofluorescent images of P-Tau231 in N2a cells treated with MCM from control, Pg OMV–primed MCM, or Pg OMV–primed MCM
pretreated with NLRP3 inhibitor for 24 hours. (B) The Western blot images of P-Tau231 in N2a cells treated with MCM from control, Pg OMV–
primed MCM, or Pg OMV–primed MCM pretreated with NLRP3 inhibitor for 24 hours, samples from three independent experiments are shown.
(C) The quantitative analyses of immunoblots in image (B) (n = 3, *p <.05, **p <.01). (ns: p >.05).
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that NLRP3 inflammasome activation is involved in the process.

We found that NLRP3 and ASC were significantly elevated in

the hippocampus of mice. ASC mainly co-localized with

microglia, and few co-localized with neurons (Figure S1),

which is in accordance with other studies (Lei et al., 2017;

Reimers et al., 2021). ASC specks were reported to be

principally in the nuclei of microglia with a small amount in

microglia processes (Reimers et al., 2021). Since inflammasome

activation results in the activation of highly pro-inflammatory

cytokines and the death of the activated cell, ASCs specks could

be found in the extracellular space after cell death. In fact,

extracellular ASC specks were reported to have prionoid

activities and further promote IL-1b maturation (Franklin

et al., 2014). We found that both intracellular and extracellular

ASC specks were increased in the experimental group, which

suggested an inflammatory state. Overexpression of IL-1b
exacerbates tau phosphorylation and tangle formation (Sheng

et al., 2000; Kitazawa et al., 2011), which affects synaptic

plasticity, inhibiting long-term potentiation and, subsequently,

learning and memory (Pickering and O'Connor, 2007).

Oral gavage of Pg OMVs was applied in this study. Ding

et al. applied Pg by oral gavage to middle-aged mice and induced

AD-like pathologies (Ding et al., 2018). We speculate that oral

gavage of Pg OMVs would change gastrointestinal microbiota

and, thus, indirectly influence AD-like pathologies since

gastrointestinal microbiota were reported to be related to AD

(Pistollato et al., 2016, Doulberis et al., 2019, Papaefthymiou
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et al., 2019, Giovannini et al., 2021). In fact, according to a

quantitative analysis, it was estimated that patients with severe

periodontitis swallowed approximately 1012~1013 Pg per day

(Boutaga et al., 2007; Saygun et al., 2011; He et al., 2012), oral

gavage of Pg once or for five weeks in mice have been reported to

change gut microbiota with Bacteroidetes increased and

Firmicutes decreased, indicating an inflammatory state

(Nakajima et al., 2015; Kato et al., 2018). Ligature-induced

periodontitis is reported to change gut microbiota and

associated with memory decline in mice, and tight junctions of

the gut and brain were decreased (Xue et al., 2020).

The current study is beset with certain limitations. First, the

dosage and duration of Pg OMVs treatment should be

investigated in further study. Second, oral gavage of Pg OMVs

may not fully simulate the pathology of periodontitis. Last, the

effect of Pg OMVs compared with Pg in inducing AD-like

pathology is not explored in this study. Our group is

conducting relevant studies now to further deduce the effect of

Pg OMVs in Pg related to AD. However, this study is a novel

attempt, and we believe that OMVs are important weapon of

bacteria and expect the current study to draw readers’ attention

to OMVs.

In conclusion, we reveal for the first time that Pg

OMVs promote the activation of astrocytes and microglia,

activate NLRP3 inflammasome, elevate IL-1b and tau

phosphorylation, which further impairs the cognitive

function (Figure 11).
FIGURE 11

Schematic to show the roles of Pg OMVs on microglia and neurons. In microglia, Pg OMV induce IL-1b production though the activation of the
NLRP3 inflammasome. In neurons, the microglia-released IL-1b is involved in tau phosphorylation, neuronal degeneration, and memory
impairment. Created with BioRender.com.
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