
BIOINFORMATICS APPLICATIONS NOTE Vol. 24 no. 23 2008, pages 2796–2797
doi:10.1093/bioinformatics/btn513

Data and text mining

mspire: mass spectrometry proteomics in Ruby
John T. Prince1,2 and Edward M. Marcotte1,2,3,∗
1Institute for Cellular and Molecular Biology, 2Center for Systems and Synthetic Biology and 3Department of
Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA

Received on May 15, 2008; revised on September 26, 2008; accepted on October 1, 2008

Advance Access publication October 16, 2008

Associate Editor: John Quackenbush

ABSTRACT

Summary: Mass spectrometry-based proteomics stands to gain
from additional analysis of its data, but its large, complex
datasets make demands on speed and memory usage requiring
special consideration from scripting languages. The software library
‘mspire’—developed in the Ruby programming language—offers
quick and memory-efficient readers for standard xml proteomics
formats, converters for intermediate file types in typical proteomics
spectral-identification work flows (including the Bioworks .srf format),
and modules for the calculation of peptide false identification rates.
Availability: Freely available at http://mspire.rubyforge.org.
Additional data models, usage information, and methods available
at http://bioinformatics.icmb.utexas.edu/mspire
Contact: marcotte@icmb.utexas.edu

1 INTRODUCTION
The analysis of mass spectrometry (MS) proteomics data is
challenging on many fronts. Datasets are complex, with information
spanning multi-level hierarchies, and they are also very large—files
are often of near gigabyte size. Access to MS proteomics data is
increasing with the advent of standardized formats, such as mzXML
and repositories, such as PeptideAtlas (Desiere et al., 2006), but its
analysis remains no less daunting. Strongly typed languages (e.g.
C/C++ and Java) are well suited for intensive computational tasks,
but less so for exploring landscapes of computational possibilities.
Scripting languages (e.g. Python, Perl and Ruby) are ideal for
quick prototyping and the exploration of new ideas, but can be too
slow or memory inefficient for large datasets. Thus, a need exists
for scripting language tools capable of dealing with the size and
complexity of MS proteomics data.

Ruby is a full-featured programming language created with
inspiration from Perl, Python, Smalltalk and Lisp. It is object
oriented and remarkably consistent in its design. Ruby’s syntax
encourages the use of blocks and closures which lend flexibility and
conciseness to programming style. Also, while it is powerful, Ruby
is relatively easy to learn, making it a natural first programming
language for budding bioinformaticians. Ruby does not have the
same degree of support for scientific computation as Python (e.g.
NumPy and PyLab), but it is building significant momentum in
this area (e.g. SciRuby at http://sciruby.codeforpeople.com). These
features encouraged our use of Ruby in the creation of a high-level
library supporting MS proteomics analysis.

∗To whom correspondence should be addressed.

A few libraries/tools exist for working with MS proteomics data
outside of Ruby. InSilicoSpectro, the only other scripting language
library, is an open-source library written in Perl for ‘implementing
recurrent computations that are necessary for proteomics data
analysis’. While there is some overlap with the work described
here (e.g. in silico protein digestion), that library is currently
geared towards the support of the Phenyx and Mascot search
engines and low-level spectral computation (Colinge et al., 2006),
while mspire is geared towards supporting Thermo’s Bioworks
software (SEQUEST) and downstream analysis, such as false
identification rate (FIR) determination. The ProteomeCommons.org
IO framework also has the ability to read/write and convert common
data formats (Falkner et al., 2007), but this library is written in Java
and does not provide any higher level language tools.

2 FEATURES
mspire is a software package for working with MS proteomics data
as outlined in Figure 1A.

2.1 Memory usage and speed
mspire relies on several memory-saving techniques that are critical
for working with large data files. Large quantities of objects are
implemented as Arrayclass (http://arrayclass.rubyforge.org) objects,
providing highly efficient memory usage (Fig. 1B), while preserving
accessor behavior common to typical Ruby objects.

By default, spectra from MS file formats (mzXML and mzData)
are decoded into memory-efficient strings and are only completely
cast when spectral information is accessed. An option is also
available for storing only byte indices of spectral information that
can be used for fast, random access of spectra or for reading files of
essentially unlimited size.

REXML, Ruby’s standard library XML parser, can be far too slow
when reading large XML files generated in MS proteomics. mspire
can use either XMLParser or LibXML (both of which have C/C++
bindings) for rapid parsing of large files.

Performance reading and then accessing two spectra across
thousands of mzXML files from the PeptideAtlas is shown in
Figure 1C. Late evaluation of a spectrum allows files to be read
at ∼20 MB/s with no file-size limit.

2.2 Reading MS proteomics data formats
mspire parses mzXML and mzData formats into a unified object
model to simplify working with liquid chromatography (LC) MS

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://mspire.rubyforge.org
http://bioinformatics.icmb.utexas.edu/mspire
http://sciruby.codeforpeople.com
http://arrayclass.rubyforge.org
http://creativecommons.org/licenses/


mspire

Fig. 1. (A) Overview of mspire functionality. Black arrows and gray boxes
depict mspire functionality. From left to right, mspire creates randomized
databases (DBs) for FIR determination. MS::MSRun is a unified model for
working with LC-MS/MS datasets. The Bioworks search engine produces
peptide spectral matches (PSMs) in a .srf binary file or XML format. mspire
extracts PSMs and presents them via a simple interface, SpecID, while
preserving access to the underlying data structures. FIRs can be determined
with various downstream software tools and reread into SpecID objects.
SBV, sample bias validation. (B) mspire uses Arrayclass objects for efficient
memory usage. GC, garbage collection; AC, Array-class; AF, Arrayfields;
class, a traditional ruby object; SStruct, SuperStruct. (C) Lazy evaluation
of spectra allows very large files to be read quickly. Shown are the times
to read all 7830 well-formed mzXML files from PeptideAtlas and access
two spectra for ‘io’ and ‘string’ lazy evaluation methods. A total of 181 files
>350 MB in size were not read with the ‘string’ option. (D) Object model for
capturing MS runs. (E) 3: an MSRun object can be instantiated with several
lazy evaluation schemes. 4: typical instantiation. 6–8: total number of scans,
the number of MS scans, and the number of MS/MS scans. 9: retrieves the
start and end m/z values for all MS/MS scans. 11: a Ruby block that selects
only MS/MS scans. 13–16: the scans are mapped to intensities; the block
(designated between the ‘do’ and ‘end’ receives the scan object and returns
the value of the last line, which is collected as an array (list_of_intensities).
14–15: chained method calls (equivalent to calling prc.intensity).

and MS/MS runs. Figure 1D shows the basic class hierarchy and
Figure 1E demonstrates a simple ‘use case’.

2.3 Bioworks SEQUEST results files (.srf)
Bioworks previously produced separate text files for each spectrum,
but now outputs a single SEQUEST results file (.srf) for each set of
searches. This increases the speed of a search, decreases disk space
usage and is much easier to work with in file system operations.
Unfortunately, because the output is binary, accessing its contents
can be difficult and downstream analysis tools (outside of Bioworks)
do not currently support this format.

We created a reader for .srf files using the Ruby ‘unpack’ function.
It extracts both spectral information and SEQUEST results. The
reader is fast and also works across platforms because it does not
rely on any vendor software libraries.

2.4 Reading/writing spectral identification formats
Even when derived from the same upstream data source, formats for
working with spectra identifications can vary widely. We designed
readers and writers for common downstream spectral-identification
software formats for SEQUEST-based data: pepXML files which
are used in the trans-proteomic pipeline (Protein Prophet) and also
the .sqt format, which can be used with DTASelect and Percolator
(Kall et al., 2007).

Readers are tailored to their respective format so that users can not
only extract format-specific information easily but also implement a
common interface so that users can easily extract information shared
across these formats.

2.5 Determining FIRs
Bioworks software support for determining FIRs is currently non-
existent, and so downstream tools are necessary. mspire supports
peptide FIR determination from target-decoy database searches
(both the creation of decoy databases and the summary of search
results), PeptideProphet and Percolator. Known biases in sample
content can also be used to establish an FIR.

ACKNOWLEDGEMENTS
Simon Chiang offered helpful discussion on the implementation of
lazy evaluation of spectrum.

Funding: National Science Foundation; the National Institutes
of Health; the Welch Foundation (F1515); Packard Fellowship
(to E.M.M.). NIH grant numbers (GM067779,GM076536).

Conflict of Interest: none declared.

REFERENCES
Colinge,J. et al. (2006) InSilicoSpectro: an open-source proteomics library. J. Proteome

Res., 5, 619–624.

Desiere,F. et al. (2006) The PeptideAtlas project. Nucleic Acids Res., 34,
D655–D658.

Falkner,J.A. et al. (2007) ProteomeCommons.org IO framework: reading and writing
multiple proteomics data formats. Bioinformatics, 23, 262–263.

Kall,L. et al. (2007) Semi-supervised learning for peptide identification from shotgun
proteomics datasets. Nat. Methods, 4, 923–925.

2797


