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Abstract: Cyber security has become increasingly challenging due to the proliferation of the Internet
of things (IoT), where a massive number of tiny, smart devices push trillion bytes of data to the
Internet. However, these devices possess various security flaws resulting from the lack of defense
mechanisms and hardware security support, therefore making them vulnerable to cyber attacks. In
addition, IoT gateways provide very limited security features to detect such threats, especially the
absence of intrusion detection methods powered by deep learning. Indeed, deep learning models
require high computational power that exceeds the capacity of these gateways. In this paper, we
introduce Realguard, an DNN-based network intrusion detection system (NIDS) directly operated on
local gateways to protect IoT devices within the network. The superiority of our proposal is that it
can accurately detect multiple cyber attacks in real time with a small computational footprint. This
is achieved by a lightweight feature extraction mechanism and an efficient attack detection model
powered by deep neural networks. Our evaluations on practical datasets indicate that Realguard
could detect ten types of attacks (e.g., port scan, Botnet, and FTP-Patator) in real time with an
average accuracy of 99.57%, whereas the best of our competitors is 98.85%. Furthermore, our proposal
effectively operates on resource-constraint gateways (Raspberry PI) at a high packet processing rate
reported about 10.600 packets per second.

Keywords: network intrusion detection system; deep neural network; IoT gateways

1. Introduction

Recent years have seen the proliferation of the Internet of Things (IoT) and its impact
on various domains from agriculture, healthcare, transportation to automotive industry.
Aiming to bring every physical object into digital worlds, IoT connected billions of devices,
which are embedded with sensors, actuators, and other technologies, to the Internet and
generated zillions bytes of data. According to [1], 75 billion IoT devices are deployed by 2025
and expected to generate 79.4 zettabytes (ZB) of data. By deeply analyzing these data, IoT
providers offer various intelligent services, such as adaptive watering in smart agriculture,
predictive maintenance in smart factories [2]. These services not only boost business profits
but also enhance user experience. Fortune Business Insights reported that business for IoT
could reach 1463.19 billion dollars by 2027 and a compound annual growth rate of 24.9% [3].
In summary, the Internet of Things is recognized as a key element of the digital revolution
in reshaping our society.

However, cyber-security and data privacy risks are the top concerns for fully unleashing
IoT benefits [4]. An IoT system comprises numerous smart devices (e.g., sensors, actuators)
which have limited computational resources and heterogeneous hardware. Employing
complex and efficient security countermeasures on such devices is highly nontrivial and
may affect device performance or even damage the devices. This causes a substantial gap
between security requirements and the security capability of existing IoT devices. Therefore,
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these devices is vulnerable to a wide range of cyber attacks from the Internet, such as
spoofing, distributed denial-of-service (DDoS) [5]. Several intensive cyber attacks targeting
IoT devices are recorded, leading to undesirable effects, such as damaging device hardware,
disrupting the IoT system. For example, the Mirai malware performed the most famous IoT
attack in 2017, infecting over 380.000 IoT devices and turning these devices into malicious
botnets to perform DDoS attacks. According to US-CERT, this is the most significant DDOS
attack recorded [6]. Another attack targeting steel factories in Germany compromised the
controlling system of blast furnaces, giving rise to potential blocks to supervision functions
(e.g., automated stop in emergent cases) [7]. This makes the entire production line delayed,
resulting in enormous damage to manufacturing productivity. Similarly, cyber attacks in
the Ukraine power grid and smart home system in London are also typical examples of
significant IoT security risks [8].

To mitigate the security risks of IoT systems, a network intrusion detection system
is commonly deployed at an Internet gateway to secure the networks [9]. It continuously
monitors all network traffic and detects potential signs of malicious activities. However,
the NIDS inspects only inbound and outbound traffic, but not internal traffic. To solve this
issue, a distributed deployment strategy, in which the NIDSs are integrated into routers and
gateways within the networks, is demanded [10]. Because of moving near network traffic
sources (IoT devices), it also reduces network traffic volume and complexity, resulting
in increasing the detection accuracy of these NIDS. On the other hand, motivated by the
success of machine learning in several fields (e.g., computer vision, robotics, automation),
several groups in the scientific and commercial communities focus on leveraging machine
learning models to improve the NIDS detection performance [11]. One popular approach
is employing a deep neural network (DNN) to classify network traffic into normal and
abnormal classes [12]. This DNN model is first trained by labelled datasets containing both
normal and attack traffic before deploying NIDS to detect cyber threats. Compared with
traditional machine learning methods, DNN can better learn complex non-linear features
being common in network traffic data [13].

The work presented in this paper is motivated by the fact that: Embedding a DNN-
based NIDS into typical gateways of IoT system is highly nontrivial. Indeed, DNN models
require high computational power that exceeds the capacity of these gateways [14-17].
The main technical goal is thus to provide a lightweight DNN-based NIDS suitable for
resource-constrained lIoT gateways. This means that the proposed NIDS could be deployed
and executed on IoT gateways with minor resource consumption (CPU and RAM). By
achieving this goal, we could offer a more secure and resilient IoT network architecture.
For instance, collected data from IoT devices are transferred to a cloud server through a
gateway with unreliable connection. In this scenario, this gateway appears vulnerable to
network attacks, so embedding an effective NIDS directly into it is essential.

In this paper, we designed, implemented, and evaluated a DNN-based NIDS named
Realguard that can detect both internal and external cyber-threats effectively. In more
detail, we focus on the following objectives:

*  Offer better protection for IoT devices by moving the NIDS to the IoT network gateway.
Indeed, moving near network traffic sources (IoT devices) could not only increase
NIDS’s detection accuracy by lowering the volume and complexity of incoming
network traffic, but also rapidly identify both internal and external cyber threats.
To do this, the proposed NIDS must be lightweight enough to operate on resource-
constrained devices while ensuring sufficient detection performance. In addition, it
demands operating in real time to satisfy latency requirements. This means that the
packet processing rate of the NIDS must be higher than the estimated packet arrival
rate of the IoT network to guarantee there is no waiting packet.

¢ Identify multiple cyber-attack, including ensemble attacks merged from several attack
strategies. In more detail, the proposed NIDS has to identify a large set of attacks from
malicious signs in the network traffic. To achieve this aim, we proposed a DNN model
that effectively detects ten popular attacks in the IoT domain with high accuracy. We
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note that executing the model must consume minor computational resources to make
it suitable for the former objective.

The main contributions of this work can be summarized as:

*  We present Realguard, a DNN-based intrusion detection system operated directly
on an IoT edge gateway. The proposed NIDS not only automatically distinguishes
between normal and abnormal network traffic but also effectively identifies the various
attacks from external attackers or internal compromised devices. It is interesting to
note that Realguard has a small memory footprint and high packet processing rate
because of the superiority of our DNN model acting as an anomaly detection algorithm.
To the best of our knowledge, we are the first to propose the use of a DNN-based
NIDS on resource-constraint IoT gateway in real time.

*  We propose an efficient feature extraction module to extract network features from
network traffic. To increase extraction speed, we also applied a Damped Incremental
Statistic algorithm that boosts the extraction speed on concurrent data streams, and
the time complexity is only O(1).

*  We demonstrate that Realguard can fully operate on resource-constrained lIoT gateways,
while detecting a wide range of cipher threats (10 attack types) in real time with a
very low false-positive rate. To evaluate the packet processing rate of our proposal, we
implemented a labeling method to convert the CICIDS2017 dataset into a packet-based
dataset that could be reused by the research community.

*  We pack all the components of our proposal into a Docker container which is publicly
available for the research and development of open communities. This container
can be seamlessly integrated into any IoT gateway frameworks supporting Docker
containers (e.g., AGILE [18], Balena [19]). In addition, the integration process could be
automated by using Jenkins [20], an open-source automation server. This promotes
the popularity of our proposed system and makes it become platform-independent.

The rest of this paper is presented as follows: Section 2 introduces some approaches re-
lated to deep learning-based NIDSs. Section 3 details our proposed model design. Section 4
presents our experiment implementation, dataset, evaluation metrics, and our experiment
results. Finally, Section 6 show paper summarizing and recommending possible research
topics.

2. Related Works

To find our related works, we included the studies in the last five years that (1) detect
cyber attacks using machine learning-based intrusion detection systems; (2) comprehensively
evaluate the detection performance on well-known IDS datasets. These studies are found on
several academic research databases (e.g., ACM digital library, scopus, ieee xplore) through
various query strings, such as “deep learning-based NIDS”, “machine learning-based NIDS”,
“IDS for IoT”. 281 studies in total are found and skimmed; finally, 24 studies are reported in
this section and the most significant research works are summarized in Table 1.
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Table 1. The summary of related works on NIDS.

Year Authors Research Aspect Model Datasets Num of Label Data Analyzed Performance
Lo Kalis: An IDS capable of detecting assaults in . ACC =100%
2017 Midi et al. [21] real-time across a broad variety of IoT systems Signature based Custom dataset 8 Packet-based TPR = 91%
2017 Liu et al. [22] A CNN-base NIDS CNN KDD-Cup99 5 Flow-based 22; 27061(; //0
. . TPR =99.99%,
2018 Mirsky et al. [23] An Ensemble of Autoencoders for real-time NIDS ANN Custom dataset 10 Packet-based AUC = 99.99
. . DR =94.475%
2019 Ahmim et al. [24] lei st?i?itelrn;(:ﬁ?jodli:me l}nglraelf CICIDS2017 15 Flow-based ACC = 96.66%
& ' FAR = 1.145%
. . DNN; RF;
Intrusion detection on L CICIDS2017 14 o
2019 Faker et al. [25] ML/DL methodologies Gradl'en UNSW UB15 9 Flow-based ACC=91-98%
Boosting
. . . ISCX2012 5 .
2020 Wang et al. [26] 4 deep hierarchical model for detecting PN USTC-TFC2016 10 Packetbased 5 n 0%
anomaly traffic at packet-leve CICIDS2017 6 = o
A hybrid model of CNN and LSTM ACC =98.67%
2020 Sun et al. [27] to extract network features CNN + LSTM CICIDS2017 7 Flow-based TPR =97.21%
and enhance NIDS FPR =0.47%
. ACC =99.46%
2020 MO};T;“‘E‘%’OW e tI;IcE::l Ciﬁiﬁﬁﬁgﬁzl CNN CICIDS2017 11 Flow-based FPR = 0.23%
: 8P ty PPV = 99.76%
. A NIDS incorporated hybrid sampling . NSL-KDD 5 : _ o
2020 Kaiyuan et al. [29] and a deep hierarchical network CNN + BiLSTM UNSW-NB15 10 Flow-based ACC =76-82%
ACC =99.93%
Our Realguard: Realtime IDS for IoT Gateway DNN CICIDS2017 1 Packet-based TPR = 99.57%

FPR = 0.04%
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Motivated by the success of machine learning, several research groups have been work-
ing on integrating machine learning into NIDS to enhance attack detection quality. Ref. [30]
presented the literature on machine learning technologies used in cybersecurity during
the last decade, including intrusion detection, spam detection, and malware detection on
computers and mobile networks. It also provided an overview of the issues encountered
by machine learning technology. The authors in [31,32] assess the efficacy of several ML
models on IDS datasets. From the evaluation results, they discussed the obstacles and
constraints in employing machine learning in cybersecurity. Ahmin et al. presented a
two-stage NIDS that incorporates several classification methods, including REP Tree, JRip
algorithm, and Forest PA algorithm [24]. The attack detection process is separated into two
stages. The first stage employs the two first classifiers to identify whether the network
traffic is benign or malicious, and the second stage employs the third classifier to identify
the attack types. In the experiments on the CICIDS2017 dataset, the proposed IDS could
achieve accuracy rate of 96.66%. Liu et al. introduced a CNN-based NIDS model which
achieves 97.7% accuracy on the KDD’Cup99 data set and outperforms traditional machine
learning algorithms (such as KNN, SVM) [22]. In [33], the authors adopted a LeNet-5 based
Convolutional Neural Network (CNN) model to classify attacks. To increase the detection
quality, they also applied the information gain scheme to reduce the number of features.
The experiments on 10,000 samples of the KDD’Cup99 data set show that their model
could detect 97.5% abnormal traffic. Faker et al. implemented a distributed scheme for
NIDS combining with a DNN and two ensemble techniques: Random Forest and Gradient
Boosting Tree (GBT) [25]. They developed a prototype using Apache Spark and evaluated
it using the 5-fold cross-validation technique on UNSW NB15 and CICIDS2017 datasets.

In [27], the authors presented a hybrid NIDS model combining CNN and LSTM to
enhance the performance of an IDS. In addition, they optimized the model training phase
using category weights, resulting in decreasing the number of unbalanced samples in
the training dataset. The proposed NIDS is validated on the CICIDS2017 dataset, which
contains seven types of network traffic, and achieves 98.67% accuracy with a false alarm rate
recorded about 0.47%. However, this NIDS is ineffective in detecting the Heartbleed and
SSH-Patator attacks. To overcome this issue, Kaiyuan et al. developed a NIDS method that
incorporates hybrid sampling and a deep hierarchical network [29]. They also employed
one-side selection to handle noise on minority labels and the synthetic minority over-
sampling technique to expand the sample size of minority labels. This may enhance the
detection performance on imbalanced datasets and decrease training time. In more detail,
after preprocessing the network features, they extracted spatial characteristics using CNN
and temporal information using bi-directional long short-term memory. Therefore, the
experimental results of the NSL-KDD and UNSW-NB15 datasets show that their proposed
method outperforms existing works.

In [34], the authors demonstrated the potential of deploying NIDS down to the IoT
edge network. They attempted to install two machine learning models, Isolation Forest
(iForest) and Local Outlier Factor (LOF), on resource-constrained devices to identify net-
work attacks. In the experiments, the model is capable of classifying four types of attacks
and consuming small computation resources. Midi et al. developed Kalis, a network moni-
toring and configuration tool for IDS based on network-specific detection techniques [21].
Kalis employs both signature-based and anomaly-based techniques to detect malicious traf-
fic. Additionally, it gathers data from network modules to avoid DoS attacks using traffic
analysis, current information, and network topology. The major limitations of Kalis are the
routing assaults and demanding specialized detection modules. Those cause complexity to
the network and may result in suboptimal detection performance.

Mirsky et al. developed a system called KitNet that applies autoencoders to identify
security threats [23]. They also presented an efficient feature extraction method to speed
up Kitnet’s processing rate. The experiments show that the KitNet could achieve 94.47%
accuracy and process 37,300 packets per second. However, these experiments are only
performed on self-generated data that contains limited network attack types. Similarly, the
authors in [26] developed a deep hierarchical model to detect abnormal network traffic at
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the packet level. The model is based on a mix of CNN and Gated Recurrent Units (GRU); it is
evaluated on three data sets: ISCX2012, USTC-TFC2016, and CICIDS2017, and achieves 99%
accuracy. Additionally, its processing rate is reported at about 20,000 packets per second.

In [35], the authors presented and analyzed existing security issues in the IoT context.
They also reviewed the proposed solutions for these issues and discussed open challenges.
The authors in [36] addressed security challenges for edge computing systems, including
limited computational capability and high data volume collected from end devices. They also
suggested a design of architecture to detect cyber-attack on low-cost devices. The evaluation
results demonstrated that the model works effectively with a small memory footprint. In [37],
the authors modeled the operation behavior of IoT network events using CoAP protocol
and automated controller and applied it to a Hybrid NIDS model to minimize energy usage
while retaining accuracy up to 99.17%. Ref. [38] proposed a hierarchical approach to identify
selective forwarding attacks on wireless sensor networks. The proposed method combines
machine learning techniques to improve detection accuracy to more than 95%. In [34],
the authors developed an intelligent Intrusion Detection System (IDS) named Passban to
safeguard the IoT edge network. The proposed approach is lightweight enough to operate
on IoT gateways. The evaluation results on real-life scenarios demonstrated that Passban
installed in a cheap IoT gateway board could detect several cyberattacks with small resource
consumption. Other research has also expanded their investigation into cyber security’s
sub-domains. For example, the work in [39] investigated the features of several aspects in
time-series anomaly detection. Ref. [40] provided a mutual authentication scheme with
the outstanding feature of minimal complexity and a simple setup to install for resource-
constrained devices.

Although deep learning algorithms have made remarkable accomplishments, prob-
lems are still identified with privacy and security issues when the DL model can be stolen,
reversed, or poisoned by adversarial attacks. In a security-related study for DL models,
the authors analyzed four common types of attacks focusing on DL algorithms, includ-
ing model extraction attacks, model inversion attacks, adversarial attacks, and poisoning
attacks [41]. To counter these kinds of attacks, the authors also review existing privacy-
preserving technologies, including cryptography, the trusted execution environment, and
digital watermark. The study provides the analysis, compares the cons and pros and the
effectiveness of the above techniques, then finishes with the open challenges. In [42], the
author has developed a solution to address the resource needs of efficient service in the
industrial IoT called BrainloT. A resource reservation algorithm is proposed in the Industrial
IoT using federated learning to optimize resources between network connections. Ref. [43]
proposed an efficient data sharing and searching scheme to enable access control and data
sharing securely among edge devices in a cloud-assisted IoT system. The authors analyzed
the performance and proved that their approach is practical and suitable for IoT applications.
In addition, Ref. [44] explored two defense techniques that can help safeguard intelligent
vehicles from cyberattacks: blockchain and machine learning. It has facilitated the develop-
ment of a defense technique, which is resource-saving, lightweight, and efficient, for smart
devices in cybersecurity.

3. The Realguard IDS

In this section, we present the Realguard NIDS, including the architecture overview,
the feature extraction, and the attack detection model.

3.1. Overview

Realguard is a deep learning-based NIDS, designed to accurately detect a wide range
of cyber attacks in network traffic. Its operation includes (1) monitoring and extracting
statistical features from network traffic, and (2) detecting attack signs using a DNN model.
To run on resource-constrained IoT gateways, Realguard has been designed with low
computation footprint (CPU and RAM) while ensuring high attack detection performance.
To illustrate how it works, Figure 1 provides the overview of the proposed IDS, including
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the data flow direction and the interfaces among components of the IDS. In more detail,
Realguard is composed of four main components:

Packet Observation Component (POC): It continuously captures network traffic pass-
ing gateway and extracting their metadata information. There are several open-source
tools that could perform this task, such as NFQueue [45], afpacket [46], and tshark [47].
Feature Extraction Component (FEC): It calculates the network traffic statistic based
on the collection of packet metadata in previous blocks. The statistic is then formed as
feature vectors compatible with the deployed detection model. In more detail, n fea-
tures are extracted from network packets to create a network vector X € R". To increase
the extraction rate, we applied the Damped Incremental Statistics algorithm [23].
Attack Detection Component (ADC): It is responsible to detect abnormality in net-
work traffic in real-time given network features. To fulfill this aim, we proposed a
DNN model that not only detects whether an attack occurred or not, but also identifies
the attack type. This ability is important for system administrators to quickly deploy
appropriate countermeasure methods to prevent or reduce the severity of the attack.
Action Manager Component (AMCQ): It is responsible to provide necessary actions
based on pre-configuration from users when an attack is detected by ADM. In Real-
guard, the supported actions are to log and block abnormal traffic, send the notification
to administrators by email.

The network feature extraction and attack detection are the most essential and complex

components of a NIDS. Thus, to operate on resource-constrained devices, the complexity of
these components is demanded to reduce while maintaining high accuracy. In Realguard,
we present several features to solve this challenge:

In the feature extraction component, an exponential decay function is used to calculate
the weight of network packets that is exponentially decreased over time. The packet
information is removed to save memory if its weight equals zero. In addition, instead
of storing the statistical values of packets in a sliding window, which has O(n) com-
plexity, the cumulative sum is employed to accumulate these values, decreasing the
complexity to O(1).

In the attack detection component, a DDN model consisting of five hidden layers with
only 34,315 parameters is proposed and produces a high detection performance while
ensuring simplicity.

To have a better insight in understanding of how Realguard works, we now illustrate

the block diagram showing the operation process of Realguard in Figure 1.

e Gateway =

Things <—|— «— Network traffic [E—
Device - —_— Internert

Packets
metadats

> Feature Extraction

Features|

Figure 1. The workflow of the Realguard IDS.

1.

The POC monitors and captures inbound and outbound network packets that are
used to extract metadata information relating network traffic statistic (e.g., IP, port,
packet size, timestamp, protocol, and so on). The metadata information is then sent to
FEC for further processing.
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2. The FEC computes numerous statistical features to describe the current network states
from the received information. Due to the variety of IoT devices (considering as data
sources in the network) and network topologies, the value of extracted features is
highly diverse, so these features are normalized and formed into a vector 7 before
being transferred to ADC.

3. The Component receives vector 7 and uses it differently in two modes:

¢ In training mode: We group these vectors according to their respective labels,
and then divide them into two subsets of data used for training and validating.
After training the model is complete, we receive an output model and deploy
this model on network devices under executing mode.

*  In executing mode: The model executes 7 and returns an integer number indi-
cating the type of the network packet. In Realguard, we could classify 10 attack
types. If any attacks are detected, a notification command is sent to AMC.

Since Packet Observation Component and Action Manager Component are not our
principal contribution and well-described in several public documentations, we mainly
discuss how the Feature Extraction Component and Attack Detection Component work in
greater detail.

3.2. Feature Extraction Component

In the network security context, feature extraction refers to a procedure that employs
one or more methods to derive network attributes from network packets. These attributes
reflect the current network activities and may be used to identify abnormal behaviors in the
network. For example, relying on the rate of TCP SYN packet, we could recognize a DoS
attack in our network if such rate is significantly higher than usual. Similarly, the sudden
emergence of SYN packets in jitter may indicate a man-in-the-middle attack. Therefore,
extracting appropriate network features is instrumental in detecting cyber threats. However,
a feature extraction method for IoT network traffic faces several challenges because:

*  AnIoT network contains several devices that may create a large number of parallel
sessions. This makes extracting valuable information about the relationships between
these sessions more challenging.

*  The network packets observed from simultaneous sessions are often intertwined with
each other.

e  Since the network sessions have different duration and traffic volumes, the feature
extraction may consume a large amount of memory to store the session information.

*  The network packet rate is enormous under DoS/DDoS attacks, up to millions of
packets per second.

To address these challenges, we designed a feature extractor based on the Damped
Incremental Statistics algorithm. This algorithm comprises different techniques that can
remedy the above challenges: (1) running total technique, which updates the total values
each time by adding the new value to the previous one, gathers the information from
packets on multiple sessions in order; (2) An exponential decay function is used to calculate
the weight of network packets that is exponentially decreased over time. The packet
information is removed to save memory if its weight equals zero. (3) Instead of storing the
statistical values of packets in a sliding window, which has O(n) complexity, the cumulative
sum is employed to accumulate these values, decreasing the complexity to O(1). Our
proposal could concurrently extract about 100 network features on different data streams
at high speed. Briefly, the proposed method is as follows:

Let V = x1, x2, ... (x; € R) is an unbounded data stream, and the decay function d,(t)
is defined as:

do(t) =27 (1)

where « is decay factor and ¢ is the timestamp difference between two observation.
For each stream V;,, the feature extractor maintains an array IV;, containing the

current weight w, the sum of residual products between two attribute streams SR;;, the last
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updated timestamp of the array ¢;, the linear sum of all instances LSI, and the squared
sum of all instances SSI.
1V, == (w,LSI,SSI, SR;j, t1.) )

To update the array IV; , in realtime with x¢ at time t¢, the feature extractor follows
the update steps illustrated in Algorithm 1.

Algorithm 1: Update IV, ,
Input :1Vi,, xc, tc,1;
Output:1V;,
16 dy(tc—t)
2 IViy ¢ ((5w,5LSI,(SSSI,(5SRij, tc)
3 IViq < (w+1,LSI +x¢, SSI+x2,SR;; + 1i7j, tc)
4 return I'V;

Because of the wide variety of network activities, the values of extracted features are
highly variable. Thus, these values must be normalized before further processing. Let x € R"
denote the set of extracted features with n = 100. The normalization value of x is defined as:

zi:#(w:lgigrz) ©)
1

where p and s are the mean and the standard deviation of feature ith (1 <i < n).

3.3. Attack Detection Component

Over the past decade, there has been a sustained research activity in applying ma-
chine learning techniques (e.g., CNN [48], LSTM [49], and traditional machine learning
algorithms [50]) to detect cyber attacks. However, these techniques still have their own
limitations. For example, CNN is good at extracting the information in the adjacent values
that are rarely available in network traffic data. Traditional machine learning algorithms are
low-complexity, but they are inefficient in handling the complex relationships of network
traffic. Therefore, the DNN model is a potential candidate anticipated to detect cyber attacks
accurately with a low resource footprint. In Realguard, we designed the attack detection
component based on a lightweight DNN model that is capable of inferring the non-linear
and complex relationship between network features and the attack signs.

One of the most significant challenges we faced is how to optimize the number of
hidden nodes in the network to achieve Realgual’s objectives, which is to accurately detect
attacks with low resource consumption. A large number of hidden nodes could increase
model accuracy but lower detection speed and lead to over-fitting. This challenge is more
complex when working with discrete datasets (e.g., traffic network datasets) because the
model architecture must be sufficient depth and wide to create the connections between
model inputs. To solve it, we employed the growing approach that starts with a minimal
network, which only has input nodes and the output nodes, and then inserts hidden layers
and hidden neurons into the network until satisfying our criterion [51]. The optimized model
we proposed includes five hidden layers and about 34,315 parameters in total, producing a
high detection performance while ensuring simplicity. As shown in Figure 2, each of the
hidden layer is constituted by neurons, each of which is fully connected to all neurons in the
next layer. The information is transformed from one layer to another in a forward direction
with neurons in each layer. In more detail, the input layer, consisting of # neurons, receives
normalized vector z € R” (n = 100) from the feature extractor as a parameter. Let d; is the
output size of layer L;, the computation of each hidden layer L;, input as a vector x € R%-1
which is the output of layer L;_; or the input vector z, is defined as:

Li(x) = f(w]x+b;) )
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where f : RYi-1 — R9 is the activation function, w; € Réi-1%di jg 3 weight coefficient matrix,
and b; € R¥ is the bias vector. In other words, the operation w!x + b; maps values from
layer L;_1 tolayer L;. For the activation function f, we use an advanced non-linear function,
namely ReLU, to reduce the likelihood of vanishing gradient and gain better convergence
performance than other linear functions [52]. Let x” = w! x + b;, the element jth of vector
L;(x) is computed by the following formula:

f(xf) = max(0, %) (5)

Input layer E Hidden layer E Output layer

L0, |
®f 1 0 P i
&t Ao O R i
ol - PRS0
N o W WOk 1
o 19 O o © a
@ + 0O O :

| O |

Vo L1(128) 12 (96) 13(64)  L4(32)  L5(16) :

Figure 2. The architecture of the attack detection model.

Additionally, our architecture requires categorization into one or more than two attack
types, so we need a tool to determine the type of attack to which a received input belongs.
Softmax function is widely used for this sort of task. By reducing the size of the final layer to
the same as the number of attack types. The so ftmax function could compute the probability
of a sample belonging to classes, which can be simply expressed by

et

Lol 6
Yk e (6)

where 1y is the probability varying from 0 to 1 of a received input represented by vector x
belongs to kth attack and m is the number of attack types.

To optimize the weights and biases of the model, we employ stochastic gradient
descent (SGD) algorithm, a variation of backpropagation. The SGD algorithm computes
the mathematical distance, namely categorical cross-entropy loss, is defined by the follow-
ing formula:

IR R NN )
L=—3 L Y v log(y) @
i=1k=1
where y is a one-hot vector of the labels, and N stands for the number of training dataset
samples. Using the chain rules, it adjusts the parameter values based on the gradient of
L value.

4. Evaluation

Realguard is a DNN-based intrusion detection system operating directly on IoT edge
gateways with a small memory footprint and high packet processing rate. It not only
automatically distinguishes between normal and abnormal network traffic, but also ef-
fectively identifies the various attacks from external attackers or internal compromised
devices. In this section, we provide an evaluation of Realguard about its detection and
runtime performance that is separated into two parts. The first part describes the evaluated
datasets and evaluations metrics. The second part presents evaluation results in detail,
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including binary and multi-class attack detection performance, baseline comparison, and
runtime performance. Note that we analyzed several state-of-the-art machine learning
based intrusion detection system as our competitor, including XGB [53], AE+ANN, RF,
LSTM [54], PSO-LSTM-RNN and PSO-DNN [55], DBN [56], NB-SVM, DT-EnSVM [57],
E-ML and REP-Tree [24], and CNN-MCL [28],

4.1. Evaluation Environments

Realguard aims at providing a lightweight IDS that could adopt at edge gateways
to detect multiple attacks in real-time. Given this aim, we evaluated our proposal on two
different environments:

e  Edge gateway is represented by a single board computer (Raspberry PI 4B), which has

Quad core Cortex-A72 processor and 8GB RAM.

e  Edge server is represented by a PC, which is equipped with 8 Intel-i7 processors and

16 GB available memory.

All environments run on a 64-bit Ubuntu operating system. They are also installed
Keras version 2.4.3 and Tensorflow version 2.4.0 to handle the attack detection model. The
details of evaluation environments are described in Table 2.

Table 2. The environments used to evaluate Realguard.

Edge Gateway Raspberry PI 4B Edge Server PC
Type Broadcom BCM2711 Intel i7-9750H
CPU Clock 1.5 GHz 2.60 GHz
Cores Quad core Cortex-A72 x 4 4 (8 logical)
RAM 8 GB 16 GB

4.2. Datasets

In our experiment, the CIC-IDS2017 dataset is employed to evaluate the detection
and runtime performance of Realguard. This dataset published by the University of New
Brunswick contains a sufficient amount of abnormal network traffic from common cyber
attacks to train deep learning models [58]. The network traffic was collected from 9 a.m. on
3 July 2017 to 5 p.m. on 7 July 2017, producing 51.1 Gigabytes data and 13 types of network
traffic (benign and 12 attack types). Furthermore, this dataset provided raw network traffic
data in pcap format, which allows us to assign labels to each packet rather than using Flow
ID to evaluate the processing rate of our proposal. As shown in Table 3, the packet-labeled
dataset has approximately 15,950 million labeled packets in the dataset, with approximately
12 million normal packets. In order to address the imbalance in this dataset while meeting
multi-classification criteria, 200,000 packets for each attack type and 400,000 normal packets
are chosen for experiments by using the K-fold cross-valuation method with k = 5.

4.3. Evaluation Metrics

To measure the detection performance of the attack detection model, we employ four
common machine learning evaluation metrics including:

¢  Confusion matrix: It is a specific table with two rows and two columns that present
the values of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN).

e True Positive Rate (TPR or Recall or Detection Rate): It is the ratio of abnormal activities
correctly detected over the total of abnormal activities.

TP

PR = 757N

*  False positive rate (FPR or Fallout or Fall Alert): It is the rate of abnormal activities
imprecisely detected over the total of normal activities, also known as the false alert rate.
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FP

FPR = 55 7N

*  Accuracy (ACC): It is the ratio of accurately detected activities over all activities.

TP + TN

ACC = I T PP IN T EN

*  Confusion matrix: Itis a table widely used to visualize the performance of classification
method. Its rows represent the actual classes, while its columns represent the predicted
classes. In our evaluation results, each cell of the confusion matrix presents the number
of correct predictions and the TPR values.

Table 3. Details of the evaluated datasets.

Attack Type Description Total Packet Used Packet
Normal Normal connection 11,926,723 400,000
FTP-Patator File transfer protocol—brute force attack 110,736 110,736
SSH-Patator Secure shell protocol—brute force attack 136,073 136,073
DoS Slowloris Afc’@ckers flood the victim ma.ch.me with 47 596 47 596
malicious requests to overload victim systems
DoS Slowhttptest At’FaCkers flood the victim ma.ch.me with 39,254 39,254
malicious requests to overload victim systems
DoS Hulk At’Fackers flood the victim mth}ne with 2 245,526 200,000
malicious requests to overload victim systems
DoS GoldenEye At’Fackers flood the victim mth}ne with 106,177 106,177
malicious requests to overload victim systems
Exploited by sending a malformed heartbeat
Heartbleed P y &
Isgit 422 request with a small payload and large length 47,551 47,551
field to the vulnerable party
Botnet ARES Zombie machine controlled kfy bot onwer, 9871 9871
can be used to perform various attacks
Distributed Denial of Service is an attempt to
DDoS LOIT make victim services down by using multiple 1,280,602 200,000
sources. This can be done by using botnet
Port Scan Specify which port is opening for a particular 327.253 200,000

service. Attacker use this to get information.

4.4. Results and Discussion

Binary-class attack detection: We first assess the detection quality of our proposal
about differentiating between normal and abnormal network traffic. As shown in Figure 3,
our TPR and TNR values are reported about 99.6% and 99.66%, respectively. This means
that Realguard could accurately identify malicious network traffic due to the superiority
of the proposed attack detection model. Moreover, a comparative analysis of detection
quality in Table 4 shows that Realguard outperforms its competitors in correctly detecting
abnormal activities in network traffic although its fall alert rate is slightly higher than the
best of competitors. For example, the accuracy and FPR of Realguard are 99.64% and 0.4%,
whereas the best ones of the competitors are reported about 98.92% and 0.16%.
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Predicted label
Figure 3. The experiment results of the binary-class attack detection.
Table 4. Comparing binary detection performance between Realguard and its competitors.
(%) Realguard NB-SVM DT-EnSVM DBN PSO+LSTM-RNN  PSO+DNN XGB  AE+ANN
TPR 99.66 99.46 99.15 99.00 98.68 97.58 97.40 95.81
FPR 0.40 3.00 4.00 2.10 0.16 0.28 12.00 1.23
ACC 99.64 98.92 98.46 98.24 98.83 97.85 91.36 98.18

Multi-class attack detection: Figure 4 presents the detection performance of Real-
guard for each type of attack. We can easily see that Realguard correctly identify 10 attack
types with an average TPR measured about 99.57%. The lowest TPRs are recorded at the
Dos Hulk and Botnet attacks (about 98.45%). Deeper investigating attacks, we found that
1.52% of Dos Hulk and 1.34% of Botnet samples are miss-classified into normal since these
samples were evenly distributed throughout the attack duration. Indeed, in the Dos Hulk
attack, the attackers consistently send valid packets to the target, and our attack detection
model considers these packets belonging to normal activities.
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Figure 4. The experiment results of the multi-class classification.

For a baseline comparison, we first compare the TPR and FPR values of Realguard
with competitors and subsequently illustrate the results in Figures 5 and 6. As shown in
these figures, it is clear that our proposal outperforms competitors in terms of TPR and FPR.
Indeed, Realguard achieves the highest TPR while maintaining the lowest FPR compared
with competitors. Its TPR and FPR values are 99.57% and 0.04%, whereas the best of others
is 98.85% and 0.04%, respectively. A more detailed comparison in Table 5. We note that
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the colored box shows the best values in rows. Interestingly, although Realguard only has
the highest TPR values at the three attacks (“BotNnet”, “DoSGoldenEye” and “DDoS”),
all its evaluation metrics (TPR, FPR, and accuracy) are higher than ones of its competitors.
This results from the low-quality variation in detecting different cyber attacks. In summary,
the evaluation results illustrate the superiority of Realguard over existing IDS solutions in
detecting multiple security threats.
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Figure 5. Comparing the TPR value of the multi-class attack detection between Realguard and its
competitors.
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Figure 6. Comparing the FPR value of the multi-class attack detection between Realguard and its
competitors.

Table 5. Details of comparing multi-class attack detection quality between Realguard and its competitors.

(%) Realguard MLP CNN-MCL XGB RF SVC ANN LSTM E-ML REP Tree
TPR Normal 99.60 99.66 X 99.85 99.93 98.89 99.73 99.69 X X
TPR Botnet 98.46 91.39 95.19 X 64.45 79.18 38.36 35.81 46.47 47.76
TPR
DoSSlowhttptest 99.48 99.75 91.50 94 .45 99.36 83.65 98.82 98.64 93.84 75.36
TPR DoSGoldenEye 99.98 99.98 98.71 99.27 99.76 99.91 99.08 97.62 67.57 66.43
TPR DoSslowloris 99.52 99.85 97.96 91.62 99.14 98.04 98.27 97.07 97.76 92.73
TPR DoSHulk 98.45 97.54 99.10 99.92 99.85 93.36 99.73 99.02 96.78 92.22
TPR FTP-Patator 99.92 99.99 99.77 X 99.94 99.95 99.62 99.68 99.64 99.18
TPR SSH-Patator 99.92 99.95 98.16 X 99.75 99.42 98.30 96.61 99.91 100.00
TPR Heartbleed 99.98 99.99 X 100.00 X 99.97 X X 100.00 100.00
TPR DDoS 100.00 100.00 99.19 X 99.94 99.98 99.91 99.88 99.88 99.79
TPR PortScan 99.94 99.28 99.86 X 99.95 99.39 99.81 99.92 99.88 99.88
TPR (Avg) 99.57 98.85 97.72 97.52 96.21 95.61 93.16 92.39 90.17 87.33
FPR (Overall) 0.04 0.06 0.23 0.24 0.24 0.20 0.63 0.79 1.15 4.84
ACC (Overall) 99.93 99.89 99.46 99.54 99.86 99.64 99.58 99.57 96.67 93.40

Runtime performance: The superiority of Realguard is to detect cyber attacks in real
time with low resource consumption, which is suitable for IoT gateways. To prove this
advantage, we evaluate the training and processing rates of our proposal in the evaluation
environments (PC and Raspberry Pi) and compare it with recent real-time IDS named
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Kitsune [23]. As shown in Table 6, Realguard outperforms its competitor in both envi-
ronments. On PC, our training and processing rates are recorded about 6000 packets per
second (packet/s) and 88.200 packet/s, whereas the ones of Kitsune are 1100 packet/s and
37.300 packet/s, respectively. Similar results are also found on Rasberry Pi, where our pro-
cessing rate is doubly faster than the rate of Kitsune. In addition, our attack detection model
can be trained on edge gateways with the training rate measured at 1150 packet/s. We also
record the memory footprint and CPU usage of running Realguard and its competitors on
Rasberry and present in Table 7. As can be seen from the table, our proposed IDS consumes
low computational resources, only 114.5 MB RAM and 36% CPU, and is more competitive
with other solutions. These results again demonstrate the lightweight and efficiency of our
proposed IDS when it is deployed at network gateways.

Table 6. Comparing runtime performance between Realguard and its competitors.

Train Rate (pkg/s) Exec Rate (pkg/s)
PC 6000 88,200
Our
Ras 1150 10,600
PC 1100 37,300
Kitsune [23]
Ras X 5400
PC 200 17,600
Ahmim et al. [24]
Ras X X

Table 7. Compare resource consumption on Rasp Pi between Realguard and others.

Realguard Kitsune RF LSTM
CPU (%) 36.0 33.8 76.8 47.6
RAM (MB) 114.5 156.3 180.3 143.1

5. Limitations and Future Works

Although Realguard is a potential NIDS solution for IoT gateways, it still lacks full
maturity to widely apply in commercial security systems. Its main disadvantages are
listed below:

¢ RealGuard requires well-labeled traffic data to train the attack detection model. How-
ever, these data are uncommon, and building them requires a massive effort.

¢ RealGuard is potentially vulnerable to adversarial attacks due to missing barrier layers
that mitigate the effect of adversarial samples.

*  The attack detection model has to be frequently re-trained to maintain high accuracy.
This consumes significant computation and network resources to deploy and update
the model.

In future work, we will implement Realguard as a dedicated module of OpenWrt,
a popular open operating system for IoT gateways. In addition, an unsupervised attack
detection model for Realguard will be developed to deal with the lack of labeled datasets.
We will also enhance the privacy of Realguard by employing federated learning that
trains the attack detection model across multiple decentralized edge devices containing
the training data. In short, our proposal opens up a great opportunity to deploy DNN-
based NIDSs at the resource-constraint local network gateway. We hope Realguard and
its resources (docker container, datasets) are beneficial to further research into intrusion
detection systems.

6. Conclusions

In this paper, we introduce Realguard, an DNN-based intrusion detection system
operated at an IoT network gateway to detect multiple cyber attacks. It achieves this goal
by employing a lightweight feature extraction algorithm and an efficient attack detection
model, which are based on a damped incremental statistic algorithm and a deep neural



Sensors 2022, 22,432 16 of 18

network model respectively. Through practical experiments, we show that Realguard could
accurately detect different attacks (10 attack types) with a small computational footprint.
In addition, it is efficient enough to run on a Raspberry PI in real time.
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