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Abstract: Deregulation of adiponectin is found in systemic autoimmune rheumatic diseases (SARDs).
Its expression is downregulated by various inflammatory mediators, but paradoxically, elevated
serum levels are present in SARDs with high inflammatory components, such as rheumatoid arthritis
and systemic lupus erythematosus. Circulating adiponectin is positively associated with radio-
graphic progression in rheumatoid arthritis as well as with cardiovascular risks and lupus nephritis
in systemic lupus erythematosus. However, in SARDs with less prominent inflammation, such as
systemic sclerosis, adiponectin levels are low and correlate negatively with disease activity. Regula-
tors of adiponectin gene expression (PPAR-γ, Id3, ATF3, and SIRT1) and inflammatory cytokines
(interleukin 6 and tumor necrosis factor α) are differentially expressed in SARDs and could therefore
influence total adiponectin levels. In addition, anti-inflammatory therapy could also have an impact,
as tocilizumab treatment is associated with increased serum adiponectin. However, anti-tumor
necrosis factor α treatment does not seem to affect its levels. Our review provides an overview of
studies on adiponectin levels in the bloodstream and other biological samples from SARD patients
and presents some possible explanations why adiponectin is deregulated in the context of therapy
and gene regulation.

Keywords: adiponectin; systemic autoimmune rheumatic diseases; therapy; gene regulation; inter-
leukin 6; tumor necrosis factor α; PPAR-γ

1. The Adiponectin Paradox

Adiponectin expression is downregulated by inflammatory mediators such as in-
terleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). Accordingly, decreased serum
levels have been described in diseases with low-grade chronic inflammation such as type
2 diabetes, obesity, and atherosclerosis, and adiponectin deficiency has been linked to the
pathogenesis of these diseases [1,2]. Paradoxically, high adiponectin levels are associated
with various inflammatory diseases such as rheumatoid arthritis (RA), despite persistent
inflammation, and have been associated with general and cardiovascular mortality [1].
Thus, it appears that the optimal window of adiponectin concentration is tight and any
deregulation leads to a pathology. However, the explanation why adiponectin expression
and regulation is different in some inflammatory diseases is not known. Resolving this
paradox could provide an important insight into the pathogenesis of these diseases and
clarify how adiponectin may be involved, potentially making it a treatment target.
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A majority of up-to-date reviews addresses the association between circulating adipon-
ectin levels and specific immune-mediated, rheumatic, or connective tissue diseases [3–7],
or focuses on the role of adiponectin in the pathogenesis of these diseases [1,8–10].

In this review, we will examine the deregulation of adiponectin in the setting of
several systemic autoimmune rheumatic diseases (SARDs) to try to provide some possible
explanations for the paradoxically elevated levels in highly inflammatory SARDs. We will
present adiponectin levels in circulation and in other biological samples in addition to
associations with clinical manifestations of the diseases. Our review is the first in the field to
highlight the effects of various drugs used in SARDs on circulating adiponectin levels and
to suggest how inflammatory cytokines, such as interleukin-6 and tumor necrosis factor α,
and gene regulation might contribute to deregulated adiponectin expression in SARDs.

1.1. Adiponectin Expression, Structure, Isoforms and Signaling

Adiponectin is the most abundant circulating adipokine in a human. It is present in
serum at 0.01% to 0.05% of total proteins and plasma concentrations of 4 to 37 µg/mL [11].
They are in a range of about a thousand times higher than that of other hormones (e.g.,
insulin, leptin) and closer to the concentrations of some carrier proteins (e.g., retinol-
binding proteins) [12]. Most adiponectin is produced by healthy adipose tissue, which
is why it is classified as adipokine. Other tissues (Figure 1) and cells, such as skeletal
myocytes, cardiomyocytes, osteoblasts, liver parenchyma cells, pituitary and endothelial
cells may also be a source [13,14].
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synthesis, adiponectin undergoes further post-translational modifications to form low 
molecular weight (LMW) trimers, medium molecular weight (MMW) hexamers or multi-
meric high molecular weight (HMW) isoforms (Figure 2a). They are secreted and bind 
differently to adiponectin receptors [15]. AdipoR1 and AdipoR2 are the best characterized 
receptors, while binding to T-cadherin and calreticulin is less studied. After binding to 
AdipoR1/R2, adiponectin stimulates two main signaling pathways, through PPAR-α and 
AMPK. Their activation and the activation of other downstream molecules leads to meta-
bolic effects (e.g., fatty acid oxidation, glucose uptake), vasodilatation, as well as reduced 
apoptosis, inflammation, and fibrosis (Figure 2b). In AdipoR, pockets with ceramidase 

Figure 1. Gene expression of adiponectin—ADIPOQ (ENSG00000181092.9) in human tissues from the Genotype-Tissue
Expression (GTEx) portal. The expression values are given in transcripts per million (log10 (TPM + 1)), calculated from a
gene model with isoforms collapsed to a single gene. No other normalization steps were applied. Box plots are shown as
median and as 25th and 75th percentile. Only tissues with the median TPM > 0.1 are presented.

The structure of adiponectin consists of four parts, the N-terminal signal sequence,
the variable region, the collagenous domain and the C1q-like globular domain [11]. After
synthesis, adiponectin undergoes further post-translational modifications to form low
molecular weight (LMW) trimers, medium molecular weight (MMW) hexamers or mul-
timeric high molecular weight (HMW) isoforms (Figure 2a). They are secreted and bind
differently to adiponectin receptors [15]. AdipoR1 and AdipoR2 are the best character-
ized receptors, while binding to T-cadherin and calreticulin is less studied. After binding
to AdipoR1/R2, adiponectin stimulates two main signaling pathways, through PPAR-α
and AMPK. Their activation and the activation of other downstream molecules leads to
metabolic effects (e.g., fatty acid oxidation, glucose uptake), vasodilatation, as well as
reduced apoptosis, inflammation, and fibrosis (Figure 2b). In AdipoR, pockets with cerami-
dase activity capable of metabolizing sphingosine to sphingosine-1-phosphate and thereby
reducing cellular ceramide content were discovered [11].
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1.2. What Affects Adiponectin Levels?

Adiponectin levels are influenced by several physiological, pathological and external
factors. They are dependent on ethnicity and correlate negatively with body mass index,
but positively with age. High levels of adiponectin are present in centenarians, where they
may act as a compensatory response in maintaining metabolic and redox homeostasis. In-
terestingly, minimal levels are observed early in the morning, suggesting that the circadian
rhythm may also be involved in regulation. In addition, sexual dimorphism is observed,
with higher total and higher HMW adiponectin concentrations in women. This could be
due to the inhibitory effect of testosterone on HMW adiponectin production [11], and due
to the fact that females (after puberty) generally have a higher percentage of body fat than
males [16]. Adiponectin expression is affected by endoplasmic reticulum stress, oxidative
stress [17] and β-adrenergic activation [15]. It has been shown that some therapeutic agents,
e.g., antidiabetic agents thiazolidinediones (TZD), also affect adiponectin levels [11].

Adiponectin is expressed in healthy adipocytes, whereas adipose tissue in obesity is
hypoxic and inflamed, and as such adipocytes produce less adiponectin [18]. Reduced
adiponectin levels are also observed in obesity-related diseases such as type 2 diabetes,
cardiovascular disease (CVD) [13] and obesity-associated cancers [19]. Another illustration
of this phenomenon are diseases in which adipose tissue is reduced, such as anorexia
nervosa, and these usually have elevated serum adiponectin levels [20]. It should be noted
that the local loss of adipocytes can also have a major impact on disease pathogenesis. In
the case of systemic sclerosis (SSc), dedifferentiation of adipocytes in the intradermal fat
depot leads to a local decrease in adiponectin synthesis. The inhibitory effect of adiponectin
on fibroblasts is lost, allowing the excessive production of the extracellular matrix, which
leads to fibrosis [21,22].

2. Adiponectin in Systemic Autoimmune Rheumatic Diseases

Systemic autoimmune rheumatic diseases (SARDs) are heterogeneous disorders with
prominent autoimmune dysregulation leading to multiorgan involvement and varying
degrees of inflammation. Their etiology is unknown, but a genetic predisposition has
been found [22,23]. SARDs include RA (the most frequent disease), connective tissue
diseases such as systemic lupus erythematosus (SLE), Sjögren’s syndrome (SS), systemic
sclerosis (SSc), and antiphospholipid syndrome (APS). Since there is no cure for these
diseases, long-term pharmacotherapy is required and significant morbidity and mortality
are observed. There are many studies focusing on adiponectin serum levels in various
SARDs. The general circulating values calculated in meta-analyses of some of these are
presented in Figure 3.
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2.1. Rheumatoid Arthritis

RA is characterized by chronic inflammation of the synovium, leading to joint de-
formation. Small and large joints are affected, characterized by synovial hyperplasia,
bone edema progressing into a joint space and bone erosion. Systemic inflammation and
extra-articular manifestations may also occur affecting the skin, eyes, heart, lung, kidneys,
and nervous and gastrointestinal systems. Additionally RA patients have a high risk of
CVD [24]. Obesity increases the probability of developing RA and is associated with poorer
disease outcomes and impaired responses to treatment [25].

2.1.1. Serum

A meta-analysis from 2017 (12 studies, RA n = 784, healthy controls (HCs) n = 655) re-
vealed that circulating adiponectin levels are significantly higher in RA patients than in HCs
(SMD = 1.5) [7]. Several additional studies published later (RA n = 168, HC n = 90) showed
a similar trend [26–28] and some found no difference (RA n = 131, HC n = 131) [29,30], while
one study reported lower levels (RA n = 95, HC n = 95) [31]. However, adiponectin levels
were not changed between RA (n = 820) and osteoarthritis or undifferentiated arthritis
controls (n = 298), [30,32–35]. Also, no changes were seen when comparing only early RA
patients (n = 97) and HC (n = 96) [29,36].

Circulating adiponectin levels in RA are associated with several clinically relevant
characteristics as shown in Table 1. RA disease activity, most commonly measured as
Disease Activity Score of 28 joints (DAS28), showed positive correlations with serum
adiponectin levels in the majority of the studies. Higher adiponectin levels are associ-
ated with radiographic severity and progression and are independently related to poorer
bone outcomes and reduced muscle mass. However, the status of adiponectin in carotid
atherosclerosis is not clear. Lower serum levels of adiponectin were found in RA smokers
compared to never smokers [37]. Two studies reported lower adiponectin in obese RA
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patients [38,39], while one found similar levels compared to non-obese patients [40]. In a
cohort of subjects who had suffered from obesity (followed for up to 29 years), high serum
levels of adiponectin at baseline were associated with an increased risk for RA [41].

Table 1. Clinical observations associated with circulating adiponectin levels in RA patients.

Clinical Feature RA Patients(N) Serum Adiponectin Levels Associations/Correlations Reference

Disease activity 351/90/52 Positive association with DAS28-ESR. [26,38,42]

51 Early RA with high adiponectin levels was less likely to have
MHAQ score > 3 and RAPID3 score > 12. [29]

121 Stratifying according to DAS28 (low, moderate and high activity),
there were no differences seen for adiponectin. [43]

180 Negative correlation of total, HMW, MMW, and LMW
adiponectin with the DAS28. [44]

40 Negative correlation with DAS28. [45]
70 Positive correlation with DAS28-ESR in active disease. [46]
80 Negative correlation with the number of swollen joints. [47]

Radiographic
severity/progression

324 Positive association of total, but not HMW adiponectin with
radiographic progression. [48]

242 Positive correlation with radiographic severity. [49]

632 Independent association with baseline total SHS, ∆SHS ≥ 1 and
predicted ∆SHS ≥ 5. [36]

253 Positive association with radiographic progression over 4 years. [50]
152 Positive association with radiographic progression. [51]

CV-related 54 No correlation with coronary artery calcification. [52]

210 In RA patients with abdominal obesity or no clinically evident
joint damage associated with decreased carotid atherosclerosis. [53]

192 Leptin: adiponectin ratio associated with common carotid artery
resistive index. [54]

210
Positive associations of total and HMW adiponectin with
increased blood pressure parameters, and in white patients
additionally with endothelial activation.

[55]

Bone-related 112 Negative association with trabecular volumetric bone mineral
density and cortical thickness. [56]

38 Positive correlation with osteopontin in serum. [28]

Muscle-related 50 Negative association with appendicular lean mass index and
muscle cross-sectional area. [57]

DAS28: Disease Activity Score of 28 joints, ESR: erythrocyte sedimentation rate, HMW: High-molecular-weight, LMW: Low-molecular-
weight, MHAQ: Multidimensional Health Assessment Questionnaire, MMW: Medium-molecular-weight, RA: Rheumatoid arthritis,
RAPID3: Routine Assessment of Patient Index Data 3, SHS: Sharp-van der Heijde Score.

2.1.2. Synovial Fluid

Adiponectin levels in the synovial fluid of RA patients (n = 39) were lower than in
serum and correlated positively with disease activity [46]. Specifically, compared to serum
levels the HMW adiponectin levels in synovial fluid were lower but the LMW levels were
higher. No significant difference was found for MMW levels (n = 7) [58].

2.1.3. Cells/Tissues

Synovium with articular adipose tissue, in particular synoviocytes and articular
adipocytes from RA and osteoarthritis patients, express adiponectin strongly both at the
transcriptional and the protein level [59]. In RA tissue explants, the synovial membrane
produces twice as much adiponectin as the articular adipose tissue regardless of activation
status [60]. Also, subcutaneous abdominal adipose tissue of RA patients secretes more
adiponectin than the corresponding osteoarthritis tissue [33,34].
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2.2. Systemic Lupus Erythematosus

SLE is characterized by the formation of immune complexes that are deposited in the
body and cause inflammation and complement activation. The heterogeneous presentation
of the disease includes neuropsychiatric, gastrointestinal, hematologic, renal, pulmonary
and cardiovascular manifestations and cardiovascular disease (CVD) occurs in more than
50% of SLE patients. With atherosclerosis being an important long-term complication,
patients tend to develop carotid intima media thickening (IMT) and carotid plaques [61].
Lupus nephritis (LN), a form of glomerulonephritis, is one of the most serious organ
involvements in SLE, and despite the advances in understanding its pathology and in
improving treatment options, it remains a significant cause of death in SLE patients [62].
Disease activity is measured by the Systemic Lupus Erythematosus Disease Activity Index
(SLEDAI) [63].

2.2.1. Serum

Circulating adiponectin levels are significantly higher in SLE than in HC (SMD = 0.547),
as shown by a meta-analysis from 2020 (12 studies, SLE n = 1024, HC n = 720) [4]. Disease
activity did not seem to correlate with serum adiponectin as evidenced by a meta-analysis
in 2017 (SLE n = 782, HC n = 550) [4], but higher concentrations were associated with the
presence of LN and correlated with the severity of proteinuria [64–67].

Studies conducted in SLE generally show a positive association of adiponectin with
atherosclerotic development. Higher concentrations were found in patients with carotid
plaque (plaque n = 118, no plaque n = 186) [68–70]; however, two studies from the same
research group could not demonstrate any association [71,72]. A positive correlation
between adiponectin levels and the presence of carotid plaque was independent of age,
disease duration or SLE treatment [68]. Therefore, adiponectin, in combination with other
markers, may be a potential biomarker for plaque prediction. In SLE patients with carotid
IMT ≤ 0.8, adiponectin levels corresponded with IMT [73], while a negative correlation
between adiponectin and vascular stiffness parameters was found [74].

2.2.2. Urine

Several studies suggest that adiponectin is a potential urine biomarker to discriminate
LN SLE patients. Adiponectin levels and the adiponectin-to-creatinine ratio are significantly
higher in the urine of SLE patients with renal involvement (renal involvement n = 25, no
renal involvement n = 25) [75] and in active LN SLE (n = 33) compared to active non-LN
SLE (n = 16), or patients with only LN history (n = 30) [76]. Similarly, adiponectin urine
concentrations are significantly elevated in active LN (n = 125) compared to inactive LN
(n = 31), SLE without LN (n = 36), or HC (n = 55) [77]. The adiponectin-to-creatinine ratio
in patients with LN (n = 27) was also increased compared to normal controls (n = 8) [66].
There were differences in urine adiponectin levels based on LN activity status, as observed
in a renal biopsy; levels were lower in patients with low-to-moderate LN activity than in
patients with high LN activity [78,79]. Adiponectin is also included as a biomarker for
the calculation of the Pediatric Renal Activity Index for Lupus (p-RAIL), which reflects
histological LN activity [78,80].

2.2.3. Cells

Adiponectin expression in peripheral blood mononuclear cells (PBMCs) was signifi-
cantly higher in SLE patients (n = 46) compared to HC (n = 51). However, there were no
differences in expression between SLE patients with and without LN and no associations
with major clinical and laboratory parameters [81].

2.3. Ankylosing Spondylitis

Ankylosing spondylitis (AS) is a disease of the sacroiliac joint and the spine and the
adjacent soft tissues such as tendons and ligaments. It is associated with the presence of
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the major histocompatibility complex class I allele HLA-B27 and the interleukin 23/17
axis [82].

Serum

Adiponectin levels do not differ significantly in AS patients compared to HC, as
concluded by meta-analysis in 2017 (6 studies, AS n = 273, HC n = 202) [6] and one
additional study (AS n = 20, HC n = 11) [83]. It needs to be mentioned that the lack of
significance might be due to the sample size because the meta-analysis showed SMD = 0.460.
Adiponectin levels did not change in longitudinal monitoring over the two-year period [83],
and no correlation with disease activity or functional indices was found [84]. Clinically,
baseline serum levels were lower in patients who showed radiographic progression of the
spine after two years. There was also a significant inverse correlation between radiographic
progression of the spine and HMW adiponectin isoform levels [85].

2.4. Systemic Sclerosis

SSc is characterized by microvascular damage, changes in the immune system and
extensive fibrosis of the skin and organs such as lungs, kidneys, gastrointestinal tract
and heart. Skin fibrosis, usually quantified by the modified Rodnan skin score (mRSS), is
a distinguishing feature of SSc [86]. Pulmonary complications are another hallmark, as
about 40% of patients develop interstitial lung disease (ILD); about 15% have pulmonary
arterial hypertension; and the majority of patients also have pathological changes to
the gastrointestinal tract [86]. The early stage of the disease is usually characterized
by microvascular pathology that can manifest itself as skin ulcers, and the late stage is
characterized by abnormal fibroblast activation leading to tissue fibrosis [87]. Based on the
extent of skin fibrosis and involvement of internal organs, SSc patients can be divided into
two subgroups: limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc), the latter
being associated with the more severe disease course and poorer outcomes [86].

2.4.1. Serum

Circulating adiponectin levels are lower in SSc patients compared to HC (SMD =
−0.638), as confirmed by a meta-analysis published in 2017 (11 studies, SSc n = 511, HC
n = 341) [88] and a later published study (SSc n = 100, HC n = 20) [89]. The same meta-
analysis showed, although not significantly, associations of low adiponectin levels in
Caucasian and Asian ethnic groups [88]. Additionally, two other studies (SSc n = 246),
found that patients with dcSSc had significantly lower concentrations than patients with
lcSSc or HC [88,90–92]; thus, the downregulation in certain studies depended on the
percentage of dcSSc and lcSSc patients included in each study. In dcSSc serum, adiponectin
was the seventeenth most downregulated protein, out of 228 determined proteins [93].

Negative correlations between adiponectin levels and disease activity and progression,
measured as Valentini disease activity index [94] and mRSS, were reported [87,95,96], with
only one study reporting a positive correlation between adiponectin and mRRS in dcSSc
patients [97]. One study found that patients with reduced concentrations showed a higher
prevalence of pitting scars and pulmonary fibrosis [96].

The results on differences in adiponectin levels between early versus late SSc are not
consistent. The majority (early SSc n = 49, late SSc n = 99) agree that the levels are lower
in early SSc [95,97]. However, two studies reported either an opposite trend (early SSc
n = 20, late SSc n = 16) [98] or no differences at all (early SSc n = 13, late SSc n = 16) [94].
The results are difficult to compare due to varying definitions of early SSc and late SSc
from <18 months to 5 years for early SSc and >2 to 5 years of disease duration for late
SSc. In addition, some studies included all SSc patients, while others focused only on
dcSSc patients.
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2.4.2. Skin

SSc skin biopsies were examined for the expression of adiponectin and adiponectin-
regulated genes. Mean relative transcript for adiponectin in skin tissue differed in the
SSc subsets because the values in dcSSc patients (n = 5) were reduced compared to lcSSc
patients (n = 7) and HC (n = 7) [96]. An inverse correlation of mRNA adiponectin levels
with mRSS was found in lesional skin biopsies of early dcSSc (n = 15) and lcSSc patients
(n = 6) [95]. Dermal levels of cellular phosphorylated AMPK, a molecule downstream
of adiponectin signaling, were significantly reduced in SSc skin (n = 19) compared to
HC (n = 4). In addition, lower or absent phosphorylated AMPK in myofibroblasts, were
observed in the lesional skin of patients. Changes in gene expression were also found in
SSc skin (n = 70) compared to HC (n = 22), with reduced scores of adiponectin signaling
pathways [22].

Skin fibrosis is usually accompanied by a consistent decrease in dermal white adipose
tissue (dWAT), an important source of adiponectin. The SSc patient skin biopsies showed a
reduction in adipocyte number and size, as well as dWAT replacement by a fibrous matrix.
This caused a local decrease in adiponectin synthesis, which resulted in the loss of its
inhibitory signals on fibroblasts, allowing their activation into myofibroblasts. Adipocytes
may be an important source of myofibroblasts as they are capable of undergoing adipocyte
mesenchymal transition (AMT) (Figure 4). In this process, adipocytes lose expression
of their distinct markers and begin to express myofibroblast markers, such as α-SMA,
suggesting that they actively contribute to the extensive accumulation of extracellular
matrix components that lead to fibrosis [21,99].
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2.4.3. Other

Overall, adiponectin expression in histologically stained lung tissue samples from
patients with SSc and patients with idiopathic pulmonary fibrosis was significantly reduced
compared to controls. However, no reduction of adiponectin was found in the study of
early stage fibrotic bronchoalveolar lavage and lung protein lysates. In the same study,
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adiponectin was examined in gastroscopic biopsies, and they showed lower adiponectin
levels in SSc gastritis compared to gastritis not associated with SSc [100].

2.5. Sjögren Syndrome

In Sjögren syndrome (SS), inflammation of exocrine glandular tissue, usually the
lachrymal and salivary glands is present, leading to xerostomia, keratoconjunctivitis sicca
and enlargement of the parotid gland. Salivary glandular epithelial cells (SGEC) are
important in the pathogenesis of SS [101]. SS often overlaps with other SARDs and may
also affect other organ systems and cause polyarthritis, cutaneous vasculitis, peripheral
neuropathy, lung disorders, nephritis, optic neuritis, multiple sclerosis-like diseases. In
addition, SS patients have an increased risk of lymphoma. Histopathologically, focal
lymphocytic infiltrates, which are mainly located around the glandular ducts, are seen [102].

2.5.1. Serum

Studies of serum concentrations of adiponectin in SS patients are scarce and they
report either similar or higher circulating levels. Concentrations of adiponectin in primary
SS (n = 29), SS associated with rheumatoid arthritis (n = 30), patients with non-autoimmune
sicca syndrome (n = 17), and HC (n = 15) were at similar levels [103]. However, in another
study, concentrations were higher in primary SS patients (n = 71) than in HC (n = 71) [102].

2.5.2. Salivary Gland and Saliva

Adiponectin expression in minor salivary glands is among the highest tissue expres-
sion levels in the organism as shown in Figure 1. Adiponectin is additionally upregulated
in the SGEC of SS patients, exerting a protective function against apoptosis [104]. In saliva,
adiponectin levels normalized to total protein are higher in patients with SS (n = 17) than
in HC (n = 13) or non-SS sicca patients (n = 19) and correlate with the xerostomia inventory,
a scale for evaluating dry mouth [105].

2.6. Psoriatic Arthritis

Psoriatic arthritis (PsA) is an inflammatory arthropathy that affects some patients
diagnosed with psoriasis, an immune-mediated disease of the skin and nails. It is the most
common form of peripheral spondyloarthritis and it is associated with increased mortality
from CVD. Obesity is an important comorbidity in PsA patients, and adiponectin may play
a role in PsA, along with other pro- and anti-inflammatory mediators [106].

Serum

Results regarding circulating adiponectin levels in PsA are not consistent. PsA pa-
tients (n = 28) had significantly higher serum levels than HC (n = 39) in the study of
Dikbas et al. [107]. Xue et al. proved the opposite, with PsA patients (n = 41) having
lower adiponectin levels than HC (n = 24) and psoriasis patients (n = 20), and a nega-
tive correlation with osteoclast precursor numbers [108]. In another study PsA patients
(n = 203) had higher adiponectin serum levels than patients with psoriasis without arthritis
(n = 155) [109]. Finally, there were two studies in which no difference was found between
PsA (n = 109 and n = 77, respectively) compared to HC (n = 32) [110] and osteoarthritis
groups (n = 76) [111].

2.7. Antiphospholipid Syndrome

Antiphospholipid syndrome (APS) is a disorder, characterized by thrombosis, miscar-
riages and other pregnancy-related complications, in combination with persistent presence
of antiphospholipid antibodies, among which are anti-β2GPI antibodies. Hematological,
cutaneous, non-thrombotic cardiac and pulmonary, neurological, and renal manifestations
may also be present [112].
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Serum

In a single study, circulating adiponectin levels in primary APS patients (n = 56) were
slightly but not significantly higher than in HC (n = 72). There was a positive correlation
with anti-β2GPI IgG concentration [113].

In summary, circulating adiponectin levels are higher in RA and SLE, lower in SSc,
while in AS patients the increase is not statistically significant. Due to a lack of studies
and inconsistent results, the levels in SS, PsA and APS are still not well defined. Serum
adiponectin in RA is positively associated with clinical manifestations, such as disease
activity, radiographic severity and progression, poorer bone outcomes and reduced muscle
mass. Negative associations are seen in SSc with disease activity and in AS with spinal
radiographic disease progression. The role of adiponectin in CVD is not clear, there are
studies that link adiponectin to increased mortality in CVD [2], and studies that report of its
vasoprotective role [13]. A positive correlation of adiponectin with atherosclerotic plaques
in SLE was found, which places SLE along studies reporting unfavorable adiponectin
CVD effects. Unexpectedly, the association with CVD is not clear in RA. In general,
adiponectin levels in the disease-affected tissues and cells reflect the levels in the blood-
stream. Adiponectin is strongly expressed in RA synoviocytes and articular adipocytes,
also levels in synovial fluid are associated with disease activity. The concentrations in
urine strongly correlate with lupus nephritis in SLE, while in SS it is strongly expressed
in the salivary gland, and normalized salivary levels correlate with dry mouth. In SSc,
adiponectin expression is reduced not only in serum, but also in organs such as the skin,
lung and gastroscopic sample tissue with less adiponectin present in the dcSSc subset with
poorer clinical outcomes.

3. Could SARDs Treatment Change Serum Adiponectin?

Since SARDs are chronic diseases, patients need lifelong treatment which might affect
adiponectin serum levels. We have investigated publications since 2010 collecting the
effects of therapy on circulating adiponectin levels in SARDs patients. Most patients have
received multidrug therapy, making the effects of a particular drug difficult to judge.

3.1. Anti-TNF

Anti-tumor necrosis factor (TNF) drugs were the first targeted biologicals approved
for RA. Today, their use has spread to other chronic inflammatory diseases such as Crohn’s
disease, ulcerative colitis, psoriasis, psoriatic arthritis, ankylosing spondylitis and juvenile
RA [114].

As presented in Table 2, the majority of studies on RA, PsA and AS exhibit no change in
adiponectin levels when anti-TNF therapy was used. However, three RA studies reported
an increase in adiponectin. In the first study, the increase was presented only as the ratio of
serum adiponectin to the body mass index [115]. The second study reported an increase
at 3–12 months, but not during the 24-month period following treatment [116]. In the last
report, an increase was only observed in patients who responded to treatment, but the
measured adiponectin levels were 1000 times lower than in other reports [117].
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Table 2. Anti-TNF effects on circulating adiponectin levels in rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis.

SARD Patients (N) Anti-TNF Treatment Regimen Study Duration Influence on Adiponectin
Levels Ref.

RA

16 adalimumab 40 mg every 2 weeks 1 year No change [118]
etanercept 25 mg twice a week
Infliximab 3 mg/kg every 8 weeks

48 adalimumab 40 mg every 2 weeks 16 weeks No change [119]
171 adalimumab 40 mg every 2 weeks 16 weeks No change [120]
96 adalimumab at approved doses 24 weeks No change [121]

certolizumab at approved doses
etanercept at approved doses
infliximab at approved doses

8 adalimumab 40 mg every 2 weeks 2 years No change [122]
etanercept 50 mg every week
infliximab 3 mg/kg

21 adalimumab at approved doses 12 weeks No change [123]
certolizumab at approved doses

etanercept at approved doses
golimumab at approved doses
infliximab at approved doses

15 anti-TNF at approved doses 6 months No change [124]
33 adalimumab 40 mg every 2 weeks 12 and Increase [115]

etanercept 50 mg every week 24 weeks
infliximab 5 mg/kg every 8 weeks

16 infliximab 3 mg/kg in weeks 0, 2 and 6 and every 8 weeks after 24 months No change [116]
3–12 months Increase

16 adalimumab - 6 months Increase [117]
eternacept -
infliximab -

PsA 126 onercept 50 mg or 100 mg three times a week 12 weeks No change [120]

405 golimumab 50 mg or 100 mg every 4 weeks 14 weeks No change [125]

AS 30 infliximab 5 mg/kg in weeks 0, 2, 6 and every 8 weeks after 6 months No change [126]

29 infliximab Infusion (120 min) before and right after No change [127]

12 adalimumab 40 mg every 2 weeks 2 years No change [122]
etanercept 50 mg every week
infliximab 5 mg/kg

AS: Ankylosing spondylitis, PsA: Psoriatic arthritis, RA Rheumatoid arthritis.
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Interestingly, the 3D-protein structure of the adiponectin C1q domain proved to be
homologous to the TNF-α structure (Figure 5) in their identical folding topologies, key
residue conservations and similarity of trimer interfaces. However, no homology was
found in the primary amino acid sequence [128,129]. While anti-TNF therapy might in-
crease adiponectin levels by inhibiting the inflammatory TNF-α signaling, the similar
structure raises the question whether anti-TNF agents could bind to adiponectin and cause
inactivation or reduction in circulation levels. Because serum levels after anti-TNF ther-
apy remained unchanged, anti-TNF therapy did not seem to interfere with adiponectin
detection. A study on AS patients treated with infliximab showed that adiponectin levels re-
mained unchanged 120 min after therapy [127], suggesting that the clearance of adiponectin
due to anti-TNF did not occur either. Also in vitro experiments confirmed that anti-TNF
(adalimumab, etanercept) do not bind to adiponectin. However, they alter its signaling as
shown in RA synovial fibroblasts (RASF), where adiponectin induction of IL-6 and ma-
trix metalloproteinase-1, was reduced with application of anti-TNF. The preincubation of
anti-TNF with adiponectin did not reduce this effect [59]. As shown later, RASF stimulated
with adiponectin also did not increase TNF-α [130]. This suggests that observed anti-TNF
effects inhibiting adiponectin proinflammatory signaling may be due to the binding of
anti-TNF to transmembrane TNF-α, eliciting reverse transmembrane signaling.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 13 of 29 
 

 

  infliximab  -    
PsA 126 onercept 50 mg or 100 mg three times 

a week 
12 weeks No change [120] 

      
 405 golimumab 50 mg or 100 mg every 4 

weeks 
14 weeks No change [125] 

      
AS 30 infliximab 5 mg/kg in weeks 0, 2, 6 and 

every 8 weeks after 
6 months No change [126] 

      
 29 infliximab Infusion (120 min) before and right 

after  
No change [127] 

      
 12 adalimumab 40 mg every 2 weeks 2 years No change [122] 
  etanercept 50 mg every week     
  infliximab 5 mg/kg    

 AS: Ankylosing spondylitis, PsA: Psoriatic arthritis, RA Rheumatoid arthritis. 

Interestingly, the 3D-protein structure of the adiponectin C1q domain proved to be 
homologous to the TNF-α structure (Figure 5) in their identical folding topologies, key 
residue conservations and similarity of trimer interfaces. However, no homology was 
found in the primary amino acid sequence [128,129]. While anti-TNF therapy might in-
crease adiponectin levels by inhibiting the inflammatory TNF-α signaling, the similar 
structure raises the question whether anti-TNF agents could bind to adiponectin and 
cause inactivation or reduction in circulation levels. Because serum levels after anti-TNF 
therapy remained unchanged, anti-TNF therapy did not seem to interfere with adiponec-
tin detection. A study on AS patients treated with infliximab showed that adiponectin 
levels remained unchanged 120 min after therapy [127], suggesting that the clearance of 
adiponectin due to anti-TNF did not occur either. Also in vitro experiments confirmed 
that anti-TNF (adalimumab, etanercept) do not bind to adiponectin. However, they alter 
its signaling as shown in RA synovial fibroblasts (RASF), where adiponectin induction of 
IL-6 and matrix metalloproteinase-1, was reduced with application of anti-TNF. The pre-
incubation of anti-TNF with adiponectin did not reduce this effect [59]. As shown later, 
RASF stimulated with adiponectin also did not increase TNF-α [130]. This suggests that 
observed anti-TNF effects inhibiting adiponectin proinflammatory signaling may be due 
to the binding of anti-TNF to transmembrane TNF-α, eliciting reverse transmembrane sig-
naling. 

 
Figure 5. Superposition of trimeric globular domain of adiponectin (PDB: 6U66) in blue and TNF-
α (PDB:1TNF) in yellow shows high 3D-structure similarity. 

Figure 5. Superposition of trimeric globular domain of adiponectin (PDB: 6U66) in blue and TNF-α
(PDB:1TNF) in yellow shows high 3D-structure similarity.

3.2. Glucocorticoids

Glucocorticoids (GC) in SARDs are used as very effective tools for reducing disease
activity and achieving clinical remission in the short term and reducing structural pro-
gression, disability and systemic manifestations in the medium term. They are widely
used but have major drawbacks because of side effects [131,132]. Although they have been
extensively studied in vitro, in animal models and in clinical trials, there is no consensus
on the effects of GC on adiponectin expression [133]. In particular, GC is usually not used
as a monotherapy, so its direct effect on adiponectin levels is difficult to discern. However,
according to the studies, adiponectin serum levels generally tended to increase with GC
treatment, but no changes were observed in the use of long-term, high-dose combination
therapy. Elevated adiponectin levels after combined treatment with GC were associated
with improved insulin resistance and endothelial function with a better lipid profile, and
adiponectin may therefore play a role in cardiovascular protection (Table 3) [134,135].

There are two possible explanations for the association we see between GC and
adiponectin levels, the first being the indirect GC affect through the decrease in inflam-
matory mediators. The second could be influenced by a GC-receptor binding site on the
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adiponectin gene promoter found in several cistromic studies in mice and humans [136];
however, this has not yet been well characterized or confirmed by other experiments.

Table 3. Glucocorticoids (prednisolone) effects on circulating adiponectin levels in rheumatoid arthritis.

Patients (N) Treatment Regimen Additional
Therapy

Additional
Therapy Regimen

Study
Duration

Influence on
APN Levels Ref.

65 7.5–15.0 mg/day MTX 10–15 mg/week 3 months Increase [134]

15 10 mg/day MTX 0.2 mg/kg/week 6 months Increase [135]

15 10 mg/day MTX + ATV 0.2 mg/kg/week
40 mg/day 6 months Increase [135]

9 60 mg/day (week 1);
40 mg/day (week 2) - - 2 weeks Increase [119]

19

Tapered high dose:
60 mg/day (week 1);
40 mg/day (week 2);
30 mg/day (week 3);
20 mg/day (week 4);
15 mg/day (week 5);
10 mg/day (week 6);

7.5 mg/day (thereafter)

HCQ,
SSA
MTX

400 mg/day
2 g/day

10 mg/week
22 weeks No change [119]

127 10 mg/day or less DMARD Stable therapy 6 months No change [137]

91 1 year

52 2 years

ATV: Atorvastatin, DMARD: Disease-modifying antirheumatic drugs, HCQ: Hydroxychloroquine, MTX: Methotrexate, SSA: Sulfasalazine.

3.3. Disease-Modifying Antirheumatic Drugs

Non-biological disease-modifying antirheumatic drugs (DMARDs) are a group of
drugs that includes methotrexate (MTX), sulfasalazine (SSA), leflunomide, hydroxychloro-
quine (HCQ), azathioprine and some others. They are widely used in treatment of
rheumatic diseases and are often prescribed in combination [138,139].

The increase in adiponectin after DMARD treatment was seen in most of the stud-
ies with RA patients. One report included patients (n = 27) treated with DMARDs in
combination with prednisolone (the dose was reduced to 5 mg/d within one month) for
3 months [32]. Another study (n = 14) showed an increase in 24-month treatment with
MTX to up to 20 mg/week with the addition of sulfasalazine 2000 mg/day and HCQ
400 mg daily [116]. In the third case, patients (n = 15) received MTX 0.2 mg/kg/week
with prednisone 10 mg/day for 6 months [135]. In the fourth case, monotherapy or
combination therapy with methotrexate, sulfasalazine and HCQ was used for 6 months
(n = 40). Additionally, some patients received an anti-TNF agent (n = 16) [117]. In the latter
case, adiponectin levels were significantly elevated in the third month of therapy with
MTX 10–15 mg/week and prednisolone 7.5–15.0 mg/day (n = 65) [134]. Only one study
(n = 46 early RA) reported a slight decrease in adiponectin levels after 6 months of DMARD
treatment (MTX median dose 17.5 mg/week, sulfasalazine and leflunomide at standard
doses) [36]. Additionally, one report reported no changes in circulating adiponectin levels
after treatment with one or more of the following DMARDs: azathioprine, HCQ, lefluno-
mide, MTX, SSA with prednisone at doses of 10 mg/day or less after 6 months (n = 127),
1 year (n = 91) and 2 years [137]. The great variety of different drugs in this group and
their use in combination therapy make it difficult to investigate associations with clinical
manifestations.
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3.4. Tocilizumab

Tocilizumab (TCZ), a monoclonal antibody against the interleukin-6 receptor, in
monotherapy or combination is recommended for treating moderate to severe RA, which
had insufficient response to other DMARDs or to anti-TNF treatment [138].

In RA patients treated with TCZ, most studies report that adiponectin levels increased
significantly after treatment as shown in Table 4. The only decrease was shown in one
study where adiponectin was measured at 4 months, while in the other studies a time point
of 6 months was used.

Table 4. Tocilizumab effects on circulating adiponectin levels in rheumatoid arthritis.

N of Patients Treatment Regimen Additional Therapy Study Duration Influence on
APN Levels Ref.

41 8 mg/kg ± MTX, GC, NSAID 6 months Increase [141]

40 8 mg/kg every 4 weeks
± MTX, SSA, HCQ,

Leflunomide, GC, statins,
anti-diabetics

4 months Decrease [27]

20 8 mg/kg every 4 weeks ± NSAID, coxibs, GC 6 months Increase [140]
24 8 mg/kg every 4 weeks MTX (± NSAID, coxibs, GC) 6 months Increase [140]
47 - - 6 months Increase [121]

GC: Glucocorticoids, HCQ: Hydroxychloroquine, MTX: Methotrexate, NSAID: Nonsteroidal anti-inflammatory drugs, SSA: Sulphasalazine.

Studies also suggest TCZ may have protective role on CVD in RA patients, as beneficial
changes in lipid profile are observed after treatment in most cases, but no correlation was
found with adiponectin [27,121,140].

3.5. JAK Inhibitors

Janus kinases (JAKs) are enzymes transducing pro-inflammatory cytokine signals in
cells, which contribute to an immune or inflammatory response in the cell. Their inhibition
therefore leads to anti-inflammatory effects [142]. Baricitinib, a JAK 1/2 inhibitor, has been
recommended for RA patients who do not respond to initial treatment with MTX or other
conventional synthetic DMARDs [132]. In a recent study published on RA, adiponectin
levels decreased significantly in patients treated with baricitinib monotherapy at 4 mg/day
(n = 11) or in combination with other DMARDs (n = 4) for 6 months. The decrease in
systemic inflammation was observed but not studied for adiponectin association [143].

3.6. Interleukin (IL)-1-Receptor Antagonists

Another important pro-inflammatory cytokine, IL-1, is targeted with biologic therapy.
Patients treated daily with 100 mg of anakinra (n = 15), an interleukin-1 receptor antagonist,
showed a significant improvement in type 2 diabetes-related metabolic parameters, but no
changes in serum adiponectin concentrations over a treatment period of 6 months [124].

3.7. Anti-Interleukin-17A

IL-17 is an important pro-inflammatory cytokine produced by T helper 17 (Th17) cells
upon stimulation with IL-23. In PsA patients, an increased number of polyfunctional circu-
lating Th17 memory cells was found that produced IL-17 [144]. Adiponectin was shown to
decrease the synthesis of IL-17 by acting on murine γδ-T-cells and human CD4+ and CD8+
T-cells, which lead to decreased inflammation in the skin [145]. Furthermore, lymphocytes
from myelin-immunized adiponectin-deficient mice produced higher amounts of IL-17,
which decreased after treatment with globular adiponectin [146]. The entanglement of
adiponectin and the IL-17 signaling pathway led to the question of how inhibition of IL-17
could result in circulating adiponectin levels. Patients with PsA (n = 28) treated with
secukinumab, a monoclonal antibody that binds to the protein IL-17A, with doses of 75 to
150 mg per month, showed no effect on serum adiponectin levels after the first, third and
sixth month of therapy [147].
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3.8. Cyclophosphamide

Cyclophosphamide (CY) metabolic intermediates are alkylating agents that cross-
link DNA, causing cell death, the modulation of lymphocytes and the impairment of
inflammatory responses [148]. CY’s main active metabolite, phosphoramide mustard, is
produced in cells with low aldehyde dehydrogenases (ALDH) enzyme, thus enabling
relatively cell-specific effects [149]. The expression of ALDH1A1 is abundant in adipose
tissue and lungs, while expression is low in cultured fibroblasts, whole blood, heart, and
skin [150], making them susceptible to CY effects [151], but leaving adipocytes, the main
producers of adiponectin, unaffected.

CY is the most common treatment for SSc-ILD [152], based on a study that showed
a significant improvement in forced vital capacity (FVC) in patients receiving cyclophos-
phamide compared to a placebo as a percentage of predicted FVC after a one-year follow-
up [153]. Serum adiponectin levels in a group of SSc patients with active ILD (n = 8)
increased more than five-fold after completion of three to six courses of intravenous pulse
cyclophosphamide therapy and correlated significantly with a decrease in ILD [154].

3.9. n-3 Fatty Acids

Among other beneficial effects on cardiovascular health, n-3 fatty acids increase
adiponectin levels by activating peroxisome-proliferator-activated receptor gamma (PPAR-
γ) [155]. CVD is one of the major causes of death in SLE [156]. Two studies have been
published on the effects of dietary supplements containing n-3 fatty acids on adiponectin
levels in SLE, both using the same dose, 1800 mg eicosapentaenoic acid and 1200 mg
docosahexaenoic acid daily. The 12-week study (SLE n = 22, HC n = 27) found no changes
in adiponectin levels [157], while the 17-week study (SLE n = 41, HC n = 21) reported a
significant increase and improvement in the disease activity score but did not include an
adiponectin correlation [158].

To summarize, while GC, TCZ, CY and DMARD therapies are generally associated
with the upregulation of adiponectin levels, anti-TNF therapy does not appear to cause
changes in serum adiponectin levels, although these drugs successfully down-regulate
inflammation. This may be partially due to the crosstalk and similarities in the structure
of adiponectin and TNF-α. However, no binding of anti-TNF to adiponectin has been ob-
served, so possible underlying mechanisms that could be related to signalization pathways
will need to be investigated.

4. Divergent Changes in the Activation or Suppression of Adiponectin Gene
Regulation by Transcription Factors Can Affect Its Serum Levels

Adiponectin promoters consist of nuclear receptor sites (PPARG, LRH, RXR), transcrip-
tion factor sites that enhance adiponectin gene expression (C/EBPα, SREBP1c, TFAP2B,
FOXO1, SP1) and co-regulators of transcription factors (SIRT1, NCOR1, NCOR2), among
others (Figure 6) [159].

4.1. PPAR-γ

Adiponectin expression is best characterized by PPAR-γ regulator, a ligand acti-
vated by binding to unsaturated fatty acids and eicosanoids such as 15-deoxy-∆12,14-
prostaglandin J2, TZD, and cannabinoids. PPAR-γ heteromerizes with the retionid X-
receptor and activates adiponectin expression. Contrary to expectations, in SARDs with
high adiponectin serum levels, such as RA, low levels of PPAR-γ expression or activity is
present and also beneficial effects of PPAR-γ activation have been demonstrated [160,161].
This indicates that adiponectin serum levels are elevated in these disorders for reasons
other than PPAR-γ activation. In SLE, elevated PPAR-γ levels have been shown [162], but
the beneficial effects of PPAR-γ activation have also been demonstrated in cell experiments
and animal models [163,164]. The PPAR-γ activators TZDs (pioglitazone and rosiglitazone)
are approved by the FDA for type 2 diabetes [165], but are thought to exert beneficial
effects on SARDs with altered PPAR-γ activity [160]. Clinical trials with TZDs have been
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conducted in RA and in SLE patients, with the focus on inflammation control, cardiovas-
cular protection and skeletal muscle dysfunction [165]. In vitro and in vivo studies have
shown positive effects of PPAR-γ activators also in SSc skin and lung fibrosis, as well as in
many other fibrotic disorders [166]. However, the clinical study with IVA337—Lanifibranor,
a pan-PPAR agonist, has failed to demonstrate a significant improvement in SSc treat-
ment [165]. This means that other factors (PPAR and non-PPAR related) that contribute to
the pathology of these diseases also play an important role in regulating adiponectin levels.
One of these factors could be the PPAR-γ nuclear corepressor NCoR, which is aberrantly
activated in SSc skin [167].
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and activates adiponectin expression. Contrary to expectations, in SARDs with high adi-
ponectin serum levels, such as RA, low levels of PPAR-γ expression or activity is present 
and also beneficial effects of PPAR-γ activation have been demonstrated [160,161]. This 
indicates that adiponectin serum levels are elevated in these disorders for reasons other 
than PPAR-γ activation. In SLE, elevated PPAR-γ levels have been shown [162], but the 
beneficial effects of PPAR-γ activation have also been demonstrated in cell experiments 
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zone) are approved by the FDA for type 2 diabetes [165], but are thought to exert beneficial 
effects on SARDs with altered PPAR-γ activity [160]. Clinical trials with TZDs have been 
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Figure 6. Simplified ADIPOQ gene regulation with TNF-α and IL-6. ATF3: Activating Transcription
Factor 3, C-EBP: CCAAT-enhancer-binding protein, Erk1/2: extracellular signal-regulated kinases
1/2 FoxO1: Forkhead box protein O1, Id3: Inhibitor Of DNA Binding 3, IL: Interleukin, JAK: Janus
kinase, JNK: Jun N-terminal kinase, NFAT: Nuclear factor of activated T-cells, PPAR-γ: Peroxisome-
proliferator-activated receptor gamma, PPRE: Peroxisome proliferator response element, R: receptor,
SIRT: Sirtuin, SREBP: Sterol regulatory element-binding protein, STAT: signal transducer and activator
of transcription, TNF: Tumor necrosis factor.

4.2. Id3

Id3 is a repressor of adiponectin expression that acts on SREBP, an adiponectin tran-
scription promoter in adipocytes [15,168]. It has been found upregulated in lung tissue and
fibroblasts of SSc and idiopathic pulmonary fibrosis, thereby maintaining fibroblasts in a
dedifferentiated, hyperproliferative and apoptosis-resistant state [169]. Id3-deficient mice
develop an autoimmune disease similar to human SS [170], but Id3 has been shown to be
elevated in RA synovium [171] and correlates with the SLEDAI in SLE [172].

4.3. ATF3

Another repressor of adiponectin gene expression, activating transcription factor 3
(ATF3), suppresses the expression of inflammatory cytokines/chemokines in immune cells
after various stimuli [173]. ATF3 was elevated in skin/fibroblasts of SSc, in association
with the profibrotic signal transduction of TGF-β [166].
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4.4. SIRT1, FoXO1 and C/EBPα

Experiments suggest that C/EBPα is required to fully activate adiponectin gene
expression, although the physiological significance is not clear. FoXO1 binds to C/EBPα
and its activity is regulated by insulin, IGF-1 and SIRT1. Adiponectin gene expression
induced by SIRT1 is likely to occur through FoxO1 deacetylation [15]. Overexpression of
SIRT1 is found in synovial RA tissue [174] and in LN [175], but SIRT1 has been shown to be
reduced in peripheral blood mononuclear cells of SSc patients with pulmonary fibrosis and
in lung tissues of bleomycin-induced lung fibrosis mice [176]. This could be an additional
explanation for diverging adiponectin levels in SARDs.

5. How Inflammatory Cytokines IL-6 and TNF-α Regulate Adiponectin Levels in SARDs

Inflammatory cytokines, IL-6 and TNF-α, downregulate adiponectin levels [177–179],
which was demonstrated at the mRNA and protein level in 3T3-L1 adipocytes and in
a mouse model. Adiponectin gene expression was dose- (0.5–100 ng/mL) and time-
dependent (0–24 h) on IL-6 stimulation [177–179]. Paradoxically, in some SARDs, such as
RA and SLE, adiponectin levels remain elevated [4,6,88] despite persistent inflammation
and higher concentrations of IL-6 and TNF-α [4,6,88,138,180,181]. Of note, the IL-6–TNF-α-
adiponectin relation has been also observed in the opposite direction: adiponectin reduces
the release of IL-6 and TNF-α in adipocytes and stromal-vascular cells [11].

Both TNF-α and IL-6 inhibit adiponectin synthesis by downregulating PPAR-γ activity.
TNF-α activates JNK that inhibits PPAR-γ DNA binding trough phosphorylation of PPAR-
γ, and shares a pathway with IL-6 through the STAT-SIRT1-FoxO1 pathway. This inhibits
occupancy of peroxisome proliferator response element (PPRE) trough interaction of FoxO1
and PPAR-γ [182,183]. IL-6, on the other hand, also inhibits adiponectin expression through
the Erk1/2—NFAT pathway, which is PPAR-γ unrelated (Figure 6) [15]. Differences in
PPAR-γ activation and the non-PPAR-γ dependent regulation of adiponectin expression
could explain why we observe a serum adiponectin increase after anti-IL-6 treatment, but
no change after an anti-TNF treatment in SARDs.

Adiponectin in certain SARDs is produced abundantly in cells other than adipocytes,
such as synoviocytes in RA [59]. Some of these cell types have insignificant PPAR-γ
expression, which could be the reason that IL-6 and TNF-α, through suppression of PPAR-
γ activity, cannot sufficiently decrease serum adiponectin levels. PPAR-γ is the product
of one gene, but has been reported to have 2 splice variants. While PPAR-γ1 is present in
macrophages, colonic epithelium, endothelium and vascular smooth muscle cells, PPAR-
γ2 is predominantly present in adipose tissue [160]. PPAR-γ expression is increased
in adipogenesis and in monocytes, when transdifferentiating into macrophages [184].
Interestingly, RNA expression is very low in normal, unstimulated circulating blood
cells [151], although the PPAR-γ gene was originally cloned from bone marrow cDNA
library [185]. Activation of PPAR-γ promotes both M2 polarization in macrophages and
Th2 polarization in T cells [186] and in RA, which lacks PPAR-γ activity. M1 and Th1 are
the predominant cell types.

In summary, first, the lack of PPAR-γ activity in RA and SLE was proven in vitro and
in vivo models, minimizing the ability of TNF-α and IL-6 to downregulate adiponectin
levels via this pathway. Second, TNF-α- and IL-6-related adiponectin downregulation was
mainly characterized in cells expressing high levels of PPAR-γ, and could be efficient in
obesity, for example. However, this mechanism is not as efficient in RA or SLE, where
serum adiponectin levels depend on synthesis in other cells with intrinsically low PPAR-γ
and thus cannot be further downregulated via this pathway. Altogether, this points to the
reason that TNF-α and IL-6 do not inhibit serum adiponectin levels in RA and SLE patients.

6. Conclusions

The deregulation of adiponectin in SARDs was seen in both upregulated and down-
regulated mechanisms. We concluded that diseases with less prominent inflammation
(SSc), where adipocytes have been shown to be reduced at the site of disease pathology,
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have decreased adiponectin levels and a negative correlation with disease activity. On the
other hand, highly inflammatory diseases (RA, SLE) show increased adiponectin levels and
a positive correlation with clinical manifestations. Treatment used in SARDs is associated
with either decreased adiponectin levels, as with JAK inhibitors, or increased levels, as in
cases where GC, CY, TCZ and DMARDs are used (Figure 7). The paradox of why increased
adiponectin levels are present in RA and SLE despite high levels of proinflammatory
cytokines IL-6 and TNF-α could be explained at the level of adiponectin gene regulation.
In general, IL-6 and TNF-α inhibit adiponectin via the suppression of PPAR-γ, which
is highly expressed in adipocytes. However, in some SARDs, adiponectin is also abun-
dantly produced by other cells that lack PPAR-γ activity, leaving adiponectin production
intact. Differences in PPAR-γ activation, as well as other non-PPAR-γ-dependent signaling
pathways regulating adiponectin expression, may provide an answer to why adiponectin
levels are associated with anti-IL-6 treatment, but not with anti-TNF therapy. However, the
molecular mechanisms need further investigation.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 20 of 29 
 

 

 
Figure 7. Summary of adiponectin levels in SARDs associated with clinical manifestations, treat-
ment and adiponectin gene regulation. AS: Ankylosing spondylitis, ATF3: Activating Transcription 
Factor 3, C-EBP: CCAAT-enhancer binding protein, CY: Cyclophosphamide, DMARD: Disease-
modifying antirheumatic drugs, FoxO1: Forkhead box protein O1, GC: Glucocorticoids, Id3: Inhib-
itor Of DNA Binding 3, IL: Interleukin, JAK: Janus kinase, NFAT: Nuclear factor of activated T-cells, 
PBMCs: Peripheral blood mononuclear cells, PPRE: Peroxisome proliferator response element, RA: 
rheumatoid arthritis, SIRT: Sirtuin 1/NAD-dependent deacetylase, SLE: Systemic lupus, erythema-
tosus, SREBP: Sterol regulatory element-binding protein, SSc: Systemic sclerosis, TCZ: Tocilizumab, 
TNF: Tumor necrosis factor. 

Author Contributions: K.L. and N.B. conceptualized the paper and wrote the first edition of the 
manuscript. N.B. reviewed the literature. K.P.-P., S.S.-Š., S.Č., and J.V. contributed their expertise to 
the manuscript and read, edited, and approved the submitted version. All authors have read and 
agreed to the published version of the manuscript. 

Funding: The study was funded by the Slovenian Research Agency ARRS, with the post-doctoral 
project Z3-9261, project J7-8276 and the National Research Program #P3-0314. 

Institutional Review Board Statement: Not applicable. 

Informed Con sent Statement: Not applicable. 

Acknowledgments: The gene expression figure was obtained from the GTEx Portal, Analysis Re-
lease V8 on 05/11/20. Figures were created with BioRender.com. Molecular graphics figure was pro-
duced using the UCSF Chimera package from the Computer Graphics Laboratory, University of 
California, San Francisco (supported by NIH P41 RR-01081). 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 
ALDH Aldehyde dehydrogenases 
AMPK AMP-activated protein kinase 
AMT Adipocyte mesenchymal transition 
APS Antiphospholipid syndrome 

Figure 7. Summary of adiponectin levels in SARDs associated with clinical manifestations, treatment
and adiponectin gene regulation. AS: Ankylosing spondylitis, ATF3: Activating Transcription Factor
3, C-EBP: CCAAT-enhancer binding protein, CY: Cyclophosphamide, DMARD: Disease-modifying
antirheumatic drugs, FoxO1: Forkhead box protein O1, GC: Glucocorticoids, Id3: Inhibitor Of DNA
Binding 3, IL: Interleukin, JAK: Janus kinase, NFAT: Nuclear factor of activated T-cells, PBMCs: Pe-
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In SARDs, where elevated adiponectin levels are associated with deleterious manifes-
tations, blocking adiponectin with antagonists (ADP400) [179] and adiponectin-targeting
agents (monoclonal antibodies KH7-33, KH4-8) is suggested. In contrast, various AdipoR
agonists (AdipoRon, ADP355) and PPAR-γ activators (thiazolinediones) could be useful
in SARDs that lack adiponectin. In general, it seems very important to ensure normal
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or optimal levels of adiponectin and its activity, as any deregulation is associated with
many pathologies.
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AMT Adipocyte mesenchymal transition
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AS Ankylosing spondylitis
ATF3 Activating transcription factor 3
ATV Atorvastatin
CVD Cardiovascular disease
CY Cyclophosphamide
DAS28 Disease Activity Score of 28 joints
dcSSc Diffuse cutaneous SSc
DMARD Disease-modifying antirheumatic drugs
dWAT Dermal white adipose tissue
ESR Erythrocyte sedimentation rate
FVC Forced vital capacity
GC Glucocorticoids
HC Healthy controls
HCQ Hydroxychloroquine
HMW High molecular weight
IL Interleukin
ILD Interstitial lung disease
JAK Janus kinase
lcSSc Limited cutaneous SSc
LMW Low molecular weight
LN Lupus nephritis
MHAQ Multidimensional Health Assessment Questionnaire
MMW Medium molecular weight
mRSS Modified Rodnan skin score
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PBMCs Peripheral blood mononuclear cells
PPAR-γ Peroxisome-proliferator-activated receptor gamma
PPAR-α Peroxisome-proliferator-activated receptor alpha
PPRE Peroxisome proliferator response element
PsA Psoriatic arthritis
RA Rheumatoid arthritis
RAPID3 Routine Assessment of Patient Index Data 3
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RASF RA synovial fibroblasts
SARDs Systemic autoimmune rheumatic diseases
SGEC Salivary glandular epithelial cells
SHS Sharp-van der Heijde Score
SLE Systemic lupus erythematosus
SLEDAI Systemic Lupus Erythematosus Disease Activity Index
SMD Standard mean difference
SS Sjögren’s syndrome
SSA Sulfasalazine
SSc Systemic sclerosis
TCZ Tocilizumab
Th17 T helper 17
TNF-α Tumor necrosis factor α
TZD Thiazolidinediones
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