
Highly parameterized polygenic scores tend to overfit to

population stratification via random effects

Alan J. Aw1,2,3, Jeremy McRae3, Elior Rahmani4∗, Yun S. Song1,2,5,∗

1 Department of Statistics, University of California, Berkeley
2 Center for Computational Biology, University of California, Berkeley

3 Artificial Intelligence Laboratory, Illumina Inc.
4 Department of Computational Medicine, University of California, Los Angeles

5 Computer Science Division, University of California, Berkeley

January 28, 2024

Abstract

Polygenic scores (PGSs), increasingly used in clinical settings, frequently include many ge-
netic variants, with performance typically peaking at thousands of variants. Such highly pa-
rameterized PGSs often include variants that do not pass a genome-wide significance thresh-
old. We propose a mathematical perspective that renders the effects of many of these non-
significant variants random rather than causal, with the randomness capturing population
structure. We devise methods to assess variant effect randomness and population stratifica-
tion bias. Applying these methods to 141 traits from the UK Biobank, we find that, for
many PGSs, the effects of non-significant variants are considerably random, with the extent
of randomness associated with the degree of overfitting to population structure of the discov-
ery cohort. Our findings explain why highly parameterized PGSs simultaneously have superior
cohort-specific performance and limited generalizability, suggesting the critical need for vari-
ant randomness tests in PGS evaluation. Supporting code and a dashboard are available at
https://github.com/songlab-cal/StratPGS.
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1 Introduction

In recent years, polygenic scores (PGSs), defined as the sum of effects across a large number of
genetic variants, have garnered wide interest and discussion regarding their application in research
and clinical settings. The focus on PGSs stems from their success and availability. First, by
amalgamating the effects of thousands, and potentially up to millions, of variants, some PGSs
have performed as well as risk predictors arising from rare monogenic mutations, as measured
by odds ratio and correlation between PGS and phenotype (1). Second, the convenience of being
interpreted as a simple high-level disease predictor has led to the wide-spread use of PGSs as genetic
risk instruments in consumer, research and clinical genetics settings (2; 3; 4). Third, in response
to the growing literature on PGS modeling and data-analytic methodology for more generalizable
PGSs (5), efforts have been made to curate PGSs alongside training methodology and metadata (6).

Despite their utility, PGSs have well-recognized issues, however. An overwhelming majority
of PGSs are trained on cohorts of European ancestry; in particular, a recent study reported a
4.6-fold overrepresentation of individuals of European descent in PGSs compared to their global
demographic proportion (7). Not only do PGSs trained on specific ancestries port poorly to other
ancestries (8), but even PGSs trained for a cohort of the same ancestry may vary in performance
across different subgroups stratified by age, sex or socio-economic status (9). There is also a lack of
efficacious PGS methodology for individuals of multiple ancestries (i.e., admixed individuals), and
the accuracy of a PGS may vary across the genetic ancestry continuum (10).

The poor cross-ancestry portability of PGSs tailored for specific ancestries has been attributed
to inter-population differences in allele frequencies and linkage disequilibrium (LD) patterns (11;
12; 13; 14), closely related population-specific factors including genetic drift (15), and differences in
environmental and social factors including social determinants of health (5). In contrast, variable
cross-group portability of PGSs within the same ancestry has been linked to environmental strati-
fication driven by demographic history (16) and confounding by non-genetic factors or assortative
mating (17).

Another viewpoint may be obtained by considering why PGSs typically include large numbers
of variants. Earlier studies have reported that, for typical traits, the most significantly associated
loci explain only a modest fraction of the estimated genetic variation, and that including more vari-
ants with non-significant effects would help explain “missing heritability” (18; 19). Together with
evidence that complex trait variation is only weakly explained by core genes alone — which presum-
ably cluster by disease-relevant pathways — a perspective has emerged that the genetic etiology
of many complex traits is characterized by a large number of variants that individually contribute
small effects (20; 21). This is consistent with the successes of PGSs that include non-significant
variants (highly parameterized PGSs) across biomedical phenotypes such as neurodegenerative dis-
orders (22), cardiovascular traits (23; 24; 25; 26) and respiratory diseases (23).

Here, we present a new mathematically motivated perspective on PGSs, which challenges the
notion that non-significant variants contributing to PGS predictability are causal yet non-significant
at a genome-wide level owing to small effects. We argue that highly parameterized PGSs are often
over-parameterized, with the over-parameterization capturing genetic structure of the discovery
cohort (i.e., population stratification), which in turn, may boost performance within the same
population as the discovery cohort but not generalize well to other populations. Using mathematical
models and empirical validation across 141 quantitative phenotypes from the UK Biobank (UKB),
we demonstrate that, at least for the most part, non-significant variants included in PGSs do not
capture causal signals but rather population structure. Our results carry implications for principles
underlying generalizable PGSs for science and health equity, motivate new tests for stratification-
driven overfitting of PGSs, and provide a justification for ad-hoc overfitting diagnostics that have
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Figure 1: A. Improvement in PGS performance with increasing p-value threshold used for including variants
in the clumping and thresholding PGS algorithm (1). Performance measured by mean Pearson correlation
with phenotype across up to 141 quantitative traits in a test cohort of ntest = 68, 931 individuals from the
UKB (Materials and Methods). B. Histogram of log-counts of the number of variants included in PGS for
all 3, 683 PGSs reported in the PGS Catalogue with available metadata.

appeared in the literature.

2 Results

Over-parameterization in highly parameterized PGSs: mean corpuscular haemoglobin
as a test case. Highly parameterized PGSs tend to improve performance by incorporating vari-
ants that are not genome-wide significant (Figure 1A), allegedly owing to the inclusion of small-
effect causal variants. Consequently, PGSs are typically constructed using lenient variant inclusion
thresholds by design. In fact, across more than 3, 600 PGSs reported in the PGS Catalogue (6),
the median number of variants included in a score is 5, 578 (Figure 1B), with a maximum number
of variants reported exceeding 107. This is more than a 100-fold greater than the average number
of GWAS hits across phenotypes, which is estimated to be between 10 and 50 (27; 28).

However, the design of highly parameterized PGSs seems statistically unsound, as we would
expect the vast majority of non-significant variants under a lenient p-value threshold to be neither
causal nor systematically associated with the phenotype, especially when using large cohorts with
hundreds of thousands of individuals. We consider this arguably more conservative statistical
view, which renders the effects of genome-wide non-significant (hereafter “non-significant”) variants
merely random, as one would get from any statistic under the null distribution.

In order to motivate our perspective with a concrete example, we first consider 15 PGSs for
mean corpuscular haemoglobin (MCH), a biomarker for anaemia, and evaluate them using data
from the UKB (Supplementary Material S5). These PGSs were obtained from the PGS Cata-
logue (6), and they differ in the number of variants included, study cohorts and training method-
ology (29; 30; 24; 25; 26) (Supplementary Table S4). Using a set of 11 performance metrics of
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PGS (Supplementary Table S1), we compare the relative performance of each original MCH PGS
against 100 permuted PGSs (pPGSs), which we obtained by randomly permuting the effects among
non-significant variants included in the original PGS (Materials and Methods). These variants have
distinct effects, so permuting them changes the PGS. Importantly, if the non-significant variants re-
flect real biological effects, then the PGSs are expected to be sensitive to permutations and pPGSs
should therefore demonstrate deterioration in performance. Conversely, if the non-significant effects
are indeed purely random, one would expect the PGSs to be insensitive to permutation and the
performance of a pPGS to be on par with its corresponding original PGS.

Of the 15 MCH PGSs (Supplementary Material S5), only 9 report sensitivity to permutation
(Supplementary Figure S4). That is, for the remaining 6 PGSs, the net effect of non-significant
variants is not generally better than random effects via permutation, which is consistent with
the conservative statistical view and implies over-parameterization of these PGSs. Yet, we ob-
serve stronger performance for MCH PGSs that include larger numbers of variants (Supplementary
Figure S3), which is in line with the same observation across various phenotypes (Figure 1A).
Intuitively, it is contradictory to observe improved performance for highly parameterized PGSs,
and at the same time, insensitivity of these PGSs to permutation, which implies redundancy of
variants. In particular, the best performing PGS is the one including the most variants among all
15 MCH PGSs, yet, it is also among the 3 most insensitive PGSs, indicating over-parameterization
(Supplementary Figure S4A; Supplementary Material S5). A natural question is to consider how
over-parameterization due to the inclusion of random effects coincides with improved PGS perfor-
mance.

Mathematical theory justifies the statistical perspective. For a polygenic effect vector
β = (β1, . . . , βp) for some trait and an individual-by-genotype matrix X with the same p variants
as in β, we consider Xβ as the PGS. It can be shown (Materials and Methods) that, under
simplifying assumptions, the following relationship holds up to a scaling factor for any β:

Xβ ∝ w1u1 +
r∑

k=2

sk
s1

wkuk, (1)

where r = min{n, p}; uk and sk respectively denote the k-th left singular vector and corresponding
singular value of X (with s1 being the largest); and wk is a scalar weight.

The singular vectors and singular values of the genotype matrix in Eq. (1) are fixed and in-
dependent of the polygenic effect vector β, which determines the weights wk. Concretely, wk is
proportional to the cosine similarity between β and the k-th principal direction of X (Materials
and Methods). Therefore, in the extreme case where the effects in β are all random, w1, . . . , wr

are expected to follow the same null distribution, and Xβ is expected to be primarily determined
by the fixed ratios sk/s1. The top singular values from genetic data capture more variation than
subsequent axes (31; 32). In the case of random effects β, the PGS Xβ is thus expected to be
correlated with the top principal components (PCs) of the genotype matrix. Consequently, for
traits correlated with population structure, random PGSs are expected to capture the trait better
than expected by random chance alone.

In practice, some of the non-significant effects in a PGS may not reflect random values but rather
real variant effects. Yet, we can restrict Eq. (1) to the random part of the PGS and the rationale
above would still hold. This mathematically explains why we expect that highly parameterized
PGS models tend to improve performance, as observed in the MCH example. The extent to which
this phenomenon applies to a specific trait is expected to depend on the correlation of the trait
with the population structure of the fitted cohort. Eq. (1) also suggests that a stronger correlation
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of the PGS with the population structure tagged by the k-th principal direction of the data will
lead to a higher weight wk. This observation suggests that the empirical distribution of w1, . . . , wr

can be informative of population stratification biases in a PGS.
Our perspective offers a mathematical explanation for the enhanced performance observed for

highly parameterized PGSs. This aligns with a conservative statistical viewpoint, suggesting that
most non-significant variants in PGSs are unlikely to consistently influence trait variation across
populations or correspond to a stable or generalizable molecular mechanism. Importantly, our
explanation also corroborates the poor portability observed in PGSs. Particularly, the inclusion of
random effects in a PGS may lead to similar performance across populations that present similar
correlation structure between the trait and population stratification. In contrast, when transferring
a PGS between populations that present different correlation structures with the trait, the random
effects are expected to contribute differently to performance. We next evaluate our perspective
empirically, by considering various kinds of PGSs where some or all of the effects are random,
which we collectively refer to as random projections (Figure 2; Materials and Methods). Our
extensive study of these random projections reveals how prevalent our mathematical observations
are when considering a large set of traits.

Random PGSs can explain phenotypic variation across a wide range of traits. We
begin by considering a set of 141 quantitative traits measured for n = 487, 296 individuals in the
UKB (Materials and Methods). To evaluate whether random effects can be used to explain some
of the variation of these traits, we first generated 200 random PGSs (rPGSs) using effect sizes we
sampled from a standard normal distribution for a randomly selected 10% of the variants in the
data (Figure 2A; Materials and Methods). The rPGSs were not directly tied to any of the traits
and we evaluated the extent to which each rPGS captured the variation of each trait. Specifically,
for a given trait, we evaluated the performance of each rPGS by measuring the change in R2 when
adding the rPGS to a baseline linear regression model that factored in age, sex, and the top 20 PCs
of the genotype data. For each of the 141 traits, we computed mean incremental R2 values for the
performance of the rPGSs.

Next, we evaluated whether the performance of the rPGSs is better than what could be expected
by chance. We permuted each trait 100 times across individuals and repeated the above procedure
for calculating mean incremental R2 for each permuted trait based on the same set of 200 rPGSs.
This allowed us to compare the performance of the rPGSs for each original trait against its null
distribution and calculate empirical p-values. We found 126 (89%) traits with empirical p-value <
0.05 (Figure 3A). Repeating our analysis on inverse rank-normalized (IRNT) versions of the 141
traits revealed qualitatively similar results, with 135 (96%) traits with empirical p-value < 0.05.

Our mathematical analysis suggests population stratification as the source of the inflated perfor-
mance of rPGSs. Population structure captured by rPGS can only inflate performance if the trait
itself is also correlated with population structure. Moreover, the level of inflation of performance
is expected to depend on the extent to which the trait is correlated with population structure. In
order to quantify the latter, we considered two measures of population stratification of a phenotype.
First, motivated by our results from Eq. (1), we considered the (unsigned) cosine similarity between
the phenotype and the first PC of the genotypes as a measure of how much a trait is correlated
with population structure. Indeed, we observe a significant positive rank correlation between the
latter and the incremental R2 (Spearman ρ = 0.3, p = 2.7 × 10−4; Figure 3B). As a second eval-
uation metric, we considered the entropy of unsigned cosine similarity across the first 40 PCs of
the genotypes, which quantifies divergence from a uniform concordance between the phenotype and
the PCs (as expected in the absence of correlation of the phenotype with population structure).
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As expected, we observed a significant negative correlation between the latter and incremental R2

(Spearman ρ = −0.26, p = 1.5× 10−3; Figure 3C). Altogether, our results link the performance of
random effects to the correlation between the phenotype and population stratification.

PGSs constructed using liberal variant inclusion thresholds overfit to population struc-
ture. Our initial observation with MCH showed that including non-significant variants in a PGS
is generally not better than assigning random effects to such variants. We next explored how
widespread this phenomenon is across a large number of traits. We have just seen that information
captured by random effects is driven by the phenotype’s stratification by PCs. We assessed how
the out-of-sample performance of a trained PGS with non-significant variants might be influenced
by overfitting to population stratification introduced during training.

We trained and evaluated PGS models for a subset of 103 quantitative traits based on individuals
of (self-identified) European descent from the UKB data, where the subset of traits was chosen based
on sufficiently many variants with non-significant GWAS p-values (Materials and Methods). GWAS
summary statistics were obtained using age, sex and the top ten genetic principal components as
additional covariates to control for possible confounding. For each trait, we applied clumping and
thresholding (C&T) on the GWAS summary statistics (Materials and Methods), and reweighed
effect sizes using multiple regression. We obtained a lenient model using variants with p-value <
pPGS = 10−5 and a training set of n = 288, 728 individuals. We applied this model to predict
PGS for a held-out test set of n = 68, 931 individuals. As in the MCH analysis, we evaluated
the performance of the PGS of each trait by considering 100 pPGSs we computed by permuting
the effects among non-significant variants (those with p-value ∈ [pnon-sig, pPGS), where pnon-sig is a
user-designated perturbation cutoff). In addition, we considered 100 sign-flipped PGSs (sPGSs),
which we obtained by randomly flipping the directionality of non-significant variants (Figure 2B).
A PGS with non-significant variants that are more informative than random effects — such as
the permuted and sign-flipped effects just described — is expected to tend to perform better than
pPGSs and sPGSs and thus report low empirical p-values.

Considering variants whose GWAS p-values lie in the range [10−8, 10−5) as non-significant (i.e.,
pnon-sig = 10−8), we evaluated for each PGS whether it performs better than the same PGS only with
random effects in place of non-significant effects (i.e., pPGSs and sPGSs). Measuring performance
using percentile-prevalence rank correlation, we found that only 29 (resp., 25) of the 103 PGSs
show statistical evidence (empirical p-value < 0.05) of improvement over pPGSs (resp., sPGSs)
(Figure 4A). Constructing pPGS and sPGS with even weaker variants led to even fewer PGSs
showing improvement over PGSs with random effects. In particular, for pnon-sig = 10−6, we found
the number of PGSs with empirical p-value < 0.05 to be no different from that expected by chance
(Figure 4A). Consistent with our mathematical perspective, these results show that the inclusion
of low significance variants in a PGS generally does not improve performance over random effects
induced by permutation or sign flipping of effects.

In order to evaluate the contribution of random effects in PGS models with a more stringent
variant inclusion criterion, we further evaluated a set of 68 traits for which at least five variants
with GWAS p-value ≥ 10−10 exist. This allowed us to ask whether not just the lenient models, but
even more stringent ones can have their least informative variants showing no improvement over
random effects and thus be insensitive to pPGS and sPGS perturbations. Indeed, considering only
variants with p-value < pPGS = 10−8 in the PGS models (instead of pPGS = 10−5 for lenient models)
and setting the non-significance cutoff to pnon-sig = 10−10 for pPGS and sPGS construction, we
found no evidence that the original PGSs generally improves performance over models containing
random effects (Supplementary Figure S6).
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Re-evaluating the sensitivity of the PGSs to pPGSs and sPGSs under different PGS performance
metrics presented great variability in sensitivity for both the lenient and the more stringent PGSs
(Table 1; see Figure 4B for example of PGS for Insulin-like Growth Factor 1). Interestingly, we
found that correlation metrics demonstrate very high sensitivity to pPGS and sPGS perturbations,
indicating that random effects are not as predictive as the non-significant effects in the original
PGS models. This is potentially owing to overfitting introduced during the effect size reweighting
process of fitting the PGS models.

Lastly, to quantify the extent to which a PGS is overfitted to population structure during
training, we computed 12 additional measures of population stratification of a PGS (Materials
and Methods). These include the unsigned cosine similarity between the PGS and the first PC
of the genotypes as well as the entropy of unsigned cosine similarity across the first 40 PCs of
the genotypes, calculated on the training cohort. Across 103 lenient PGSs with pnon-sig = 10−8,
PGSs with empirical p-values < 0.05 (reflecting significantly better performance of the original PGS
relative to pPGSs, where PGS performance is measured using PGS-phenotype cosine similarity)
and those with empirical p-values ≥ 0.05 exhibit a significant difference in how well the PGS is
correlated with the first PC (Figure 4C). For the same performance metric, we also observe a
significant depletion in the entropy of unsigned cosine similarity of non-significant empirical p-
values relative to significant ones (Figure 4D). These statistical relationships hold regardless of the
choice of pnon-sig (Supplementary Figure S7); whether sPGSs or pPGSs is computed (Supplementary
Figure S7); and whether stringent PGSs (with pPGS = 10−8) are considered instead (Supplementary
Figure S9). Taken together, these results demonstrate that overfitting PGSs to population structure
during training explains their low out-of-sample performance relative to PGSs with random effects
assigned to non-significant variants (Figure 4E).

Additional analyses of PGS insensitivity. Delving deeper, we next investigated whether
PGSs were generally more sensitive to pPGSs or to sPGSs (Supplementary Material S6). Broadly,
we observed more significant empirical p-values when evaluating the performance of original PGSs
relative to pPGSs than to sPGSs (Supplementary Figures S11 and S12). However, the strength of
this relationship also depends on the choice of performance metric.

We also investigated if patterns related to either the set of non-significant variant effects or
the complementary set of fixed variants were predictive of PGS insensitivity (Supplementary Ma-
terial S7). Significant positive rank correlations were observed, across PGSs, between the sum
of absolute value of effect sizes of non-significant variants and the empirical p-values of the origi-
nal PGS against random PGSs. For example, measuring performance using Top 10% odds ratios
yielded Spearman ρ ∈ [0.37, 0.72]. This is regardless of how non-significant variants were called,
whether a lenient or stringent PGS was considered, or whether performance was relative to pPGS
or sPGS (see Supplementary Figures S13 and S15). On the other hand, no significant relationships
were detected between the empirical variance of effects of non-significant variants and empirical
p-values. These findings show that the performance of the original PGS relative to pPGSs or
sPGSs is not driven by variation in the non-significant effects, as one might posit as an a priori
statistical explanation. It is instead driven by the magnitude of effects of non-significant variants,
suggesting that the larger the (random) non-significant effects are, the greater they might account
for overfitting to population stratification and reducing out-of-sample performance.
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Figure 2: Summary of random projection experiments performed on UK Biobank (UKB) data. A. Perfor-
mance Inflation by rPGS.B. Performance Relative to pPGS and sPGS. Perturbed variants (†) are determined
by whether the GWAS p-value with the phenotype exceeds a user-specific threshold, pnon-sig. We consider
pnon-sig ∈ {10−6, 10−7, 10−8, 10−10} in our work.

Figure 3: A. Distribution of empirical p-values under the null hypothesis that random PGSs do not explain
phenotypic variation. B. Relationship between mean incremental R2, across rPGSs, for a phenotype against
its unsigned cosine similarity with PC1. C. Relationship between mean incremental R2, across rPGSs, for
a phenotype against the entropy of unsigned cosine similarities with the top 40 PCs, a measure of evenness
of the relationship between the phenotype and the PCs. PGS performances are evaluated with respect to
original phenotypes. Full results for both original and inverse rank-normalized versions are summarized in
Supplementary Figure S5.
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Figure 4: Performance of PGSs relative to random projections. A. Fraction of PGSs with relative perfor-
mance test empirical p-value < 0.05, where performance is measured by percentile-prevalence rank correlation
and various choices of pnon-sig are used to determine non-significant variants (i.e., variants with GWAS p-value
at least pnon-sig). Approximate 95% confidence intervals are computed from the empirical fraction, assuming
uniform Type I Error across phenotypes. B. Empirical histograms of performance computed for Insulin-like
Growth Factor 1 original PGS and pPGSs (non-significant variants determined by pnon-sig = 10−8), across
multiple metrics, on the test cohort. C. Distribution of cosine similarities of each phenotype’s original PGS
with PC1 in the training cohort. Distributions are split by empirical p-value (relative performance to pPGSs
with pnon-sig = 10−8), and performance is measured by cosine similarity with phenotype. D. Distribution of
entropies of cosine similarities of each phenotype’s original PGS with PC1 in the training cohort. Distribu-
tions are split by empirical p-value, and performance is measured by cosine similarity with phenotype. E.
Scatterplot of entropies of cosine similarities and cosine similarities with PC1, computed for all 103 PGSs.
Points coloured by empirical p-value, with performance measured by cosine similarity with phenotype.
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Table 1: Numbers of PGSs with empirical p-value < 0.05 (i.e., significantly more performant) based on
different non-significance p-value thresholds pnon-sig for constructing pPGS, across various PGS performance
metrics. Original PGSs were built from C&T using a lenient GWAS threshold of pPGS = 10−5 for inclusion of
variants. For the rightmost column, PGSs were built from C&T using a stringent threshold of pPGS = 10−8,
and each entry reports the number of PGSs out of 68 considered phenotypes.

Lenient Model Stringent Model
Out of 103 Phenotypes Out of 68 Phenotypes

Metric
pnon-sig = 10−6 pnon-sig = 10−7 pnon-sig = 10−8 pnon-sig = 10−10

Cor(y,PGS) 96 102 103 62

ρ(y,PGS) 103 102 103 63

CosineSim(y,PGS) 8 18 26 8

Top 10% Prevalence 16 50 77 15

Top 1% Prevalence 3 11 24 2

Top 10% Odds Ratio 16 49 78 15

Top 1% Odds Ratio 3 11 24 2

Cor(Percentile,Prevalence) 5 21 38 4

ρ(Percentile,Prevalence) 7 16 29 5

Cor(Percentile,Ave. y) 7 13 29 5

ρ(Percentile,Ave. y) 4 12 35 7

3 Discussion

Our present work investigates the impact of population stratification on PGS performance inflation
under the view that PGSs are summations of variant effects, a considerable number of which may
be random. Combining mathematical reasoning with empirical validation on the UKB, we have
found that highly parameterized PGSs capture population structure, as proxied by PCs. Such a
phenomenon leads to inflated performance by random projections constructed via assigning random
effects to variants (rPGSs), as well as low sensitivity of trained PGSs to perturbations of their
constituent variants’ effects (pPGSs and sPGSs). Notably, our analysis of MCH PGSs suggests
that up to 40% of currently reported trait-specific PGSs may face such an over-parameterization
issue. These results challenge the view that the strong performance of highly parameterized PGSs is
principally explained by numerous non-significant variants contributing small but causal marginal
effects.

The reasoning behind random projections capturing population structure can be traced back to
earlier work in high-dimensional statistics, specifically in the use of random projections to reduce
data dimensions while preserving pairwise distances within the sample (33). While the earlier
results do not directly translate to our setting, the fact that the individuals comprising a cohort
share genetic distances that proxy ancestral or genealogical divergences and that the distances can
be approximated in a lower-dimensional space via the use of statistical noise, is appreciable. Our
present work has demonstrated that such a phenomenon applies to biobank-scale data.

Our framework is similar to, and justifies, previously reported tools for diagnosing population
stratification of PGSs, which are scarcely used beyond a few selected works. These include a
downstream diagnostic computing rank correlations between the polygenic effect vector and the
SNP loadings vector of each PC (34), and an upstream diagnostic computing random PGSs us-
ing approximately independent GWAS-insignificant variants (i.e., p-value > 0.5) (35; 36). Our
framework differs from these tools in several technical ways (for example, how and why we choose
variants to construct random projections), and also augments the toolkit for diagnosing population
stratification-related biases (for example, the use of random permutations and sign flips to assess
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relative performance).
Our work has a few limitations. First, in our analysis of MCH PGSs, the overlap between

our evaluation cohort and each score’s training cohort was not explicitly considered. A more fair
approach would be to analyze the sensitivity of these PGSs with respect to a cohort of individuals
external to the combined set of individuals making up each training cohort. However, the fact
that a considerable fraction of the PGSs appear insensitive despite cohort overlap suggests that
such a comparison may reveal even more insensitive PGSs. Second, our observation that PGS
insensitivity to and predictability inflation by random projections are both driven by population
stratification is contingent on the use of C&T as a PGS construction algorithm. It is possible
that other PGS algorithms incorporating flexible modeling strategies will sufficiently capture or
correct for population stratification, resulting in the attenuation or absence of the trend. It is also
possible that the inclusion of more PCs as covariates when performing GWAS (i.e., greater than 10,
which we have used in our work) will sufficiently correct for population stratification. An extensive
investigation into other PGS algorithms and PC correction strategies would clarify this matter.

Our findings carry important implications for interpreting and evaluating PGSs. First, our
finding that non-significant variants capture population structure may appear to contradict the
widely-held view that many complex traits carry large numbers of variants each contributing a
small marginal effect. This latter view may still be true, although our analyses suggest that even
biobank-scale cohorts are insufficiently powered to estimate variant effects to a high precision, with
the inferred effects capturing population structure of the discovery cohort instead. PGSs that
are derived from flexible probabilistic models may overcome this issue by inferring more accurate
effect distributions for these variants, as evidenced by our observation that some MCH PGSs are
sensitive to random projections. However, it remains unclear what fraction of publicly available
PGSs suffer from over-parameterization capturing population stratification. A recent study on
the UKB reported that PGSs can be significantly correlated with geography despite adjustments
for population structure, reinforcing the difficulty in distinguishing between molecular-level and
population-stratification explanations of the strong prediction accuracies observed of PGSs (37).
In any case, we believe that the performance inflation and relative performance audits presented
in this work are valuable additions to standard performance metrics, to ensure that the effects of
non-significant variants in a PGS are reliably estimated or tuned post-GWAS.

Second, through computing various metrics to measure population stratification, PGS perfor-
mance and summary statistics related to the constituent variants of a polygenic effect vector (i.e.,
Perturbed-Fixed Architecture in Table 2 of Materials and Methods), we have identified some met-
rics that appear more useful than others at detecting PGS insensitivities. The greater incidence of
PGSs with low sensitivity to percentile-related metrics is consistent with recent work demonstrating
the large uncertainty in individual PGS estimation, which would naturally impact metrics relying
on groupings of individuals by risk strata (38). Our finding of low cosine similarity of a PGS with
phenotype, relative to random projections, being well-predicted by PC stratification is particularly
novel (Figure 4C-E), given that the use of cosine similarity as a PGS performance metric appears
scarce to our knowledge. In general, practitioners may improve the efficacy of sensitivity analyses
by computing the more discerning metrics identified in our work. In our application to MCH PGSs,
we have also observed that no one metric consistently selects the “most performant” PGS. While
this may be particular to the trait we have studied, our observation entails the potential utility of
investigating the use of a diverse set of metrics simultaneously in evaluating PGSs.

Given the implications of our findings, we note several actionable next steps to advance the
operationalization of trustworthy PGSs. First, our random projection sensitivity checks can be
applied to trait-specific PGSs other than MCH, which are trained using various methodologies and
on different cohorts, to evaluate the extent to which highly parameterized polygenic effect vectors
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are capturing small but precise variant effects (which would support their veridicality) rather than
population structure of the training cohort. Second, our sensitivity checks select variants whose p-
value exceeds a user-specific threshold. This approach may be limited by the availability of summary
statistics for a desired cohort, especially given that many GWASs remain biased toward cohorts
with European ancestry. In selecting variants to evaluate PGS sensitivity, one may also select
variants based on external functional annotations, given the possibility that particular annotations
are known to map biologically to a phenotype of interest. There is growing interest in variant
effect predictors (VEPs) developed from advanced machine learning methods (39); such tools can
be used to evaluate the precision of effects of classes of variants in a PGS defined by their predicted
functional impact. More generally, sensitivity analyses can be used to interrogate the precision of
the effects of variants at loci of interest.

Finally, our work contributes to ongoing discussions about improving personalized genomic
predictions. Given the demonstrated utility of PGSs in identifying high-risk individuals across
diseases, our work suggests that part of this success may be owing to the PGS capturing popu-
lation structure, which implies the usefulness of population structure as a predictive signal. One
promising direction is the development of methods that accurately disentangle ancestry-relevant
and phenotype-relevant signals, thereby leveraging the utility of both to improve PGS prediction
power (40). Ultimately, the inclusion of diverse individuals in GWAS and in training PGSs will
improve personalized genomic predictions. However, given that efforts to collect data on more an-
cestrally diverse human populations have yet to mature, current PGSs should be audited to prevent
overfitting to population structure, which would improve their generalizability. We believe that our
random projection approach is an important step forward.

Data availability. Results and scripts used for running our experiments are available at the
Github repository https://github.com/songlab-cal/StratPGS.
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4 Materials and Methods

Our work rests on a few key unifying concepts that we define and summarize in Table 2. The first
concept is a random projection, which encompasses random PGSs (rPGSs) as well as permuted
PGSs (pPGSs) and sign-flipped PGSs (sPGSs). Next, performance refers to how well a PGS
predicts or explains a phenotype. In this paper, we rely on up to 12 metrics to measure performance
(Supplementary Table S1). Given a PGS or phenotype, its alignment with population structure is
quantified by various measures of PC stratification, and we define and compute 12 such measures in
our paper (Supplementary Table S2). Finally, for a polygenic effect vector β, quantities measuring
statistical patterns related to either the set of non-significant variants or the complementary set of
fixed variants are computed, which we collectively term perturbed-fixed architecture (Supplementary
Table S3).

Table 2: Key concepts used throughout our work

Concept Definition Examples

Random Projection
linear combination of allelic dosages,

with some / all weights drawn randomly
x1β1 + · · ·+ xpβp, βj

iid∼ N(0, 1)
(see also Figure 2)

Performance
(of PGS)

how well a PGS predicts a phenotype
correlation between PGS and phenotype,

percentile-prevalence correlation

PC Stratification
(of PGS or phenotype)

how strongly a PGS or a phenotype
is stratified by the principal components

of a cohort of interest

correlation between PGS
and PC1, cosine similarity of

PGS and PC1

Perturbed-Fixed Architecture
(of PGS)

quantities calculated from effects of
either the set of (GWAS) non-significant

variants or the set of significant variants in a PGS

empirical variance of
effects of variants with
GWAS p-value >10−6

Mathematical Framework. Suppose a cohort consisting of n individuals genotyped across p
variants is provided for PGS construction. Many PGS methods rely on two quantities dependent
on the genotype matrix X ∈ Rn×p: (1) principal components (PCs) computed from a subset of
variants to estimate population-structural confounders; and (2) genome-wide association studies
(GWAS) summary statistics obtained from association mapping to select variants for inclusion in
the model. The latter quantities typically rely on the former PCs as covariates in the regression
procedure, and also depend on the phenotype vector y measured across the individuals. To proceed
with our mathematical treatment, we make two additional simplifying assumptions.

1. The set of p variants making up X are those used in constructing the PCs, and these variants
moreover include all variants selected for inclusion during PGS training.

2. The PGS is computed on the normalized version ofX. That is, X is obtained from the original
genotype matrix of allelic dosages, by subtracting the jth column by 2f̂j before scaling it down

by

√
2f̂j(1− f̂j) where f̂j is the cohort’s (estimated) allele frequency.

Note that these assumptions are violated in practice, and we only require them for stating and
deriving the key mathematical results that motivate our empirical study. (See Supplementary
Material S2 for a discussion.)

Under our simplifying assumptions, the PGS vector can be expressed as a weighted sum of the
PCs. Additionally, viewing X through its singular value decomposition (SVD), the PGS vector is a
weighted sum of the left singular vectors. Recall that the SVD is X = U diag(s1, . . . , sr) V

T , where
r = min{n, p},U = [u1, . . . ,ur] is the n-by-r matrix of left singular vectors, s1 ≥ s2 ≥ · · · ≥ sr ≥ 0
are the singular values, and V = [v1, . . . ,vr] is the p-by-r matrix of right singular vectors (principal
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directions). The kth principal component is given by PCk = skuk. We collect these statements
into Proposition 1 below.

Proposition 1 (Polygenic Scores are Linear Combinations of PCs and Singular Vectors). Let β be
a length p polygenic effect vector, so that βj encodes the effect of variant j. Then, the PGS vector
ŷ = Xβ is a weighted sum of the PCs of X:

ŷ =
r∑

k=1

wkPCk, (2)

where the weight wk associated with PCk measures (i.e., is proportional to) the cosine similarity
between the kth principal direction vk and the polygenic effect vector β. The PGS vector is also a
weighted sum of the left singular vectors of X:

ŷ = s1

(
w1u1 +

r∑

k=2

sk
s1

· wkuk

)
. (3)

We prove Proposition 1 in Supplementary Material S1. Proposition 1 provides intuition about
how a PGS can be evaluated for potential bias by population structure. According to Eq. (2), the
empirical distribution of the weights wk reflects the extent to which a particular PC drives the
overall distribution of the PGS vector. Because it is well-recognized that PCs capture population
structure (41; 42; 43), Eq. (2) suggests inspecting the empirical distribution of wk for the training
cohort to detect signs of “population structure”-related bias of the polygenic effect vector β. This
is closely related to the downstream diagnostic reported in Sohail et al. (34), where the authors first
estimated SNP loadings for each PC (equivalent to the principal directions, or the right singular
vectors vk), and then computed Spearman correlations of each loading vector, corresponding to one
of the top 40 PCs, with the polygenic effect vector (Supplementary Figure S1A). The Spearman
correlation computed for the kth PC is analogous to wk in Eq. (2), and would be in full agreement
with our framework had the authors computed cosine similarities between the loading vectors and
the polygenic effect vector (see Eq. (S4) in Supplementary Material S1 for exact formula of wk).
Nevertheless, the authors’ calculations are tantamount to measuring the relative weight placed on
each PC by the PGS, a consequence of the fact that PGS vector can be viewed as a weighted sum
of the orthogonal PCs.

Proposition 1 also provides intuition on how a phenotype’s stratification by PCs potentially
inflates the performance of a random PGS against the phenotype itself. According to Eq. (3), the
overall distribution of the PGS vector is influenced unequally by the collection of singular values
(sk : k = 1, . . . , r) of the genotype matrix. In practice, the singular values tend to be dominated by
the leading terms (e.g., s1), a consequence of the empirical observation that the eigenvalues of the
sample covariance matrix 1

n−1X
TX tend to be “spiked” (31; 32); see Supplementary Figure S1B

for an example. As a result, many of the terms sk/s1 appearing within the summands of Eq. (3)
are much less than 1. Now, suppose β is drawn from the standard multivariate normal distribution
to construct a random PGS: ŷ = Xβ, where β ∼ N (0, Ip×p). The corresponding weights (wk : k =
1, . . . , r) also follow a standard multivariate normal distribution (see Theorem S1 in Supplement
Material). Because each wk contributes the same effect on average owing to the distributional
symmetry, Eq. (3) implies that individual variant effects behaving like random noise can nonetheless
produce PGSs that are driven largely by the singular vectors corresponding to the leading singular
values. If, additionally, the phenotype were biased by the same PCs that correspond to the leading
singular values, then we would expect an inflated performance of such a random projection.
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In Supplementary Material S3, we derive an angular central Gaussian null distribution for the
vector of magnitudes of the projections of a random projection onto each PC-subspace (Theo-
rem S2). We also report mathematical formulas encoding the impact of a phenotype’s PC and
singular value bias on PGS performance, including the widely used phenotype-PGS correlation
(Theorem S3) and new performance measures like phenotype-PGS cosine similarity (Theorem S4).

As described in the Results section, our mathematical framework motivates our experiments
on UK Biobank (UKB) data. To facilitate reporting the rest of our data processing, we refer to
the experiment evaluating performance inflation of rPGSs as Performance Inflation by rPGS,
and the experiment evaluating the relative performance of original PGSs to random projections as
Performance Relative to pPGS and sPGS. We refer to our first experiment evaluating MCH
PGSs as Evaluation of MCH PGSs.

PGS Catalogue Processing. To obtain counts of variants included in each polygenic score, we
accessed raw .txt files following instructions on the REST API page (https://www.pgscatalog.
org/rest/#/, date of access: Aug 5, 2023). Because some variants in a score may have an effect
size of 0, we did not use the quantity reported in the “Number of Variants” cell under Score Details.
Instead, we filtered out variants with zero effect and reported counts of all remaining variants in
the score file. A table summarizing non-zero variant counts for all scores is provided on Github, as
is the script used for data mining.

Cohorts and Quantitative Traits. We use a set of n = 487, 296 individuals from UKB, most of
whom are of self-reported European ancestry. For Performance Inflation by rPGS, mirroring
the approach of Fiziev and McRae et al. (44) we choose 141 quantitative anthropometric (e.g.,
height, weight, body fat percentage), blood biomarker (e.g., glucose and LDL concentrations) and
urine biomarker (e.g., creatinine) phenotypes. First, to be sufficiently powered, we require that each
quantitative phenotype is measured in at least 100, 000 individuals (this excluded all “second visit”
phenotypes). We further exclude testosterone, which is a highly sex-specific phenotype. For systolic
and diastolic blood pressure, we take the average of the two consecutive measurements at each visit.
Each phenotype is then inverse-rank normal transformed (IRNT) and further corrected for a number
of other covariates in a phenotype-specific manner, as described in Table S3 (Supplemental Data)
of Fiziev and McRae et al. (44). On top of these IRNT phenotypes, the corresponding original
version of each phenotype is included in our analyses. This resulted in a total of 141 + 141 = 282
phenotypes. We analyze the Original and IRNT phenotypes separately. The list of quantitative
traits is available on Github (see Data Availability).

For Performance Relative to pPGS and sPGS, we restrict our cohort to only individuals
of self-reported European ancestry (nEur = 357, 659). We chose to focus on individuals of European
ancestry, to investigate if PGSs derived from an ancestrally more homogeneous population would
still be at risk of population stratification confounding — an issue that has been reported in
the literature (9). We further randomly split our restricted cohort, arriving at a training cohort
(ntrain = 288, 728) and a held-out test cohort (ntest = 68, 931), which are used for training PGSs
and performing sensitivity analyses respectively. Next, we pick a subset of the 141 phenotypes,
based on the number of variants in the trained PGS (see Polygenic Score Construction below for
details on our PGS training). Specifically, for inclusion in our analyses, we require the phenotype’s
PGS to have at least 5 variants with GWAS p-value exceeding the largest perturbation cutoff (10−6

for lenient PGS and 10−10 for stringent PGS). This ensures that enough distinct perturbed PGSs
can be constructed for our sensitivity analyses. For lenient PGSs, this reduces the number of
phenotypes to 103; for stringent PGSs, the number is reduced to 68.
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Finally, for investigation of mean corpuscular haemoglobin (MCH) PGSs obtained from the
PGS Catalogue, we perform all analyses on the held-out test cohort (ntest = 68, 931).

Association Mapping. We perform genome-wide association mapping as part of our PGS con-
struction procedure for Performance Relative to pPGS and sPGS, as well as for prioritizing
variants for performing perturbations in investigating MCH PGSs. Details of quality control (QC)
for variants in preparation for association mapping can be found in Churchhouse et al. (45). Briefly,
our genome-wide association study (GWAS) cohort comprises 357, 661 unrelated individuals of self-
reported white British ancestry. We excluded non-European participants to reduce confounding due
to population structure. A total of 13, 791, 468 genotyped common variants (AF > 0.01) are used,
and are either directly measured or imputed across the individuals. The individuals are restricted
to have self-declared white British genetic ancestry, with exclusion of closely related individuals (or
at least one of a related pair of individuals), individuals with sex chromosome aneuploidies, and
individuals who had withdrawn consent from the UKB study.

We perform GWAS on quantitative phenotypes using imputed genotypes from the UK Biobank.
For each trait we include the 13.8 million variants that passed QC. Each variant is tested for
association with the trait under an additive model, using the dosage of the minor allele. Analysis
of each trait used phenotype values which had been adjusted for age, sex, and usage of relevant
medications, and were inverse rank normalized prior to analysis. The marginal significance of
each variant was tested with a linear model which included age, sex, and the first ten genetic
principal components as covariates. Details on Principal Components Analysis are reported in
Supplementary Material Section S3 of (46). Covariates are standardized to mean = 0 and standard
deviation = 1 before regression.

Polygenic Score Construction and Processing. For Performance Inflation by rPGS,
each random PGS (rPGS) is independently constructed by selecting 10% of all available autosomal
variants uniformly at random (940, 851 variants selected each time); effect sizes are independently
drawn from the standard Gaussian distribution. For Performance Relative to pPGS and
sPGS, PGSs are constructed using Clumping and Thresholding (C&T) (47). Variants within a
1Mb window of a GWAS peak are clumped. Further, peaks out to 10Mb in high LD (i.e., r2 > 0.1)
are excluded in order to avoid re-including non-independent peaks and to ensure windows were
non-overlapping. During stepwise selection of variants within a 1Mb window, a restriction of three
variants per window is applied. The final PGS is obtained through an effect size re-weighting step:
multiple regressions were performed on the selected variants within each window, before aggregating
the resulting reweighted effects across all windows. We explore various p-value thresholds (from
10−100 to 10−4, see Figure 1A), and choose 10−5 and 10−8 as two thresholds that result in two
PGSs constructed per phenotype. We refer to the former PGS as the lenient PGS, which includes
variants that do not pass genome-wide significance but on average is more performant, as measured
by squared correlation coefficient. The latter PGS is referred to as the stringent PGS. PGS files
are available on Github (see Data Availability).

For our investigation of MCH PGSs, owing to differences in training cohorts and the lack of
information regarding each variant’s significance in the publicly-available PGS Catalogue files, we
match variants appearing in each PGS with our GWAS summary statistics. The average fraction of
unmatched variants across PGSs is 9%, with a majority of PGSs achieving at least a 97% matching
fraction (Supplementary Table S5). For PGSs that contain multiple variants on the same position,
we kept the variant that had the smallest GWAS p-value, or picked one at random if the p-values
were unavailable. Such variants, on average, accounted for less than 0.035% of variants included in
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PGSs.
We perform computations in R. To address the challenge of high-dimensional matrix-vector

operations associated with PGS computations, we compute all PGSs using bigsnpr package (48).

PGS Relative Performance Evaluation. When evaluating the relative performance of an
original PGS, we construct 200 random projections (100 pPGSs and 100 sPGSs). For each random
projection ŷ (either a pPGS or a sPGS), we compute its performance against the original phenotype
y, based on a chosen performance metric, as follows. For a fixed choice of perturbation threshold
parameter pnon-sig (we consider four values, 10

−6, 10−7, 10−8 and 10−10, altogether across lenient and
stringent PGSs), the set of variants included in the PGS is split into two subsets, one corresponding
to variants whose GWAS p-value exceeds pnon-sig (i.e., non-significant) and whose effects will thus
be drawn at random, and the other corresponding to variants whose p-value is smaller than pnon-sig
(i.e., their βj ’s are fixed throughout). By summing the corresponding effects across variants from
each subset, one obtains two scores, ŷR and ŷS , that sum to the PGS vector: ŷ = ŷS + ŷR.
(Note the subscripts S and R denote “Significant” and “Random,” respectively.) Concretely, ŷR =∑

variant j in subset 1 βjx
(j) and ŷS =

∑
variant j in subset 2 βjx

(j), with x(j) denoting the jth column of
genotype matrix X. Viewing the effects of variants contributing to ŷR as random, we additionally
compute a “reflected” PGS, ŷ− = ŷS − ŷR. Now let f = f(ŷ,y) be a given metric, for example,
f could be the rank correlation between ŷ and y. We compute two quantities, f+ := f(ŷ,y)
and f− := f(ŷ−,y). Finally, the performance is reported as max{f+, f−}, to account for the
fact that random effects have equal chances of being positively or negatively correlated with the
phenotype (see Supplementary Material S8 for details). In Evaluation of MCH PGSs, we used
pnon-sig = 10−6 to analyze and report our results. However, in general, on top of using multiple
pnon-sig’s as reported in Results, we also evaluated PGSs the usual way; that is, defining performance
by f(ŷ,y) instead of max{f+, f−}, and performing all analyses with respect to such an approach.
We found that the results did not change qualitatively (details reported in Supplementary Material
S8).

Evaluating Statistical Significance of Relationships. We perform various statistical tests
to identify significant relationships (e.g., two-sample comparisons for detecting dominance of one
distribution over another, correlations for detecting trends relating two quantities). Throughout
this work, We use non-parametric and distribution-free tests (e.g., Wilcoxon rank sum test and
rank correlation test), to achieve Type I Error control. Because of the multiplicity of metrics and
measures considered in our work, we further perform Bonferroni correction to control the family-
wise error rate at 0.05.
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