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Abstract: We previously demonstrated that astaxanthin (ASTX), a xanthophyll carotenoid, has an
antifibrogenic effect in hepatic stellate cells (HSC), primarily responsible for the accumulation of
extracellular matrix protein during the development of liver fibrosis. Studies have shown that
microRNAs (miRNAs) are involved in HSC activation. Therefore, we analyzed the expression of
84 miRNAs using miRNA arrays in primary mouse quiescent HSC (qHSC) and activated HSC
(aHSC) treated with/without ASTX during their activation. Compared with qHSC, the expression of
14 miRNAs and 23 miRNAs was increased and decreased by more than 2-fold, respectively, in aHSC.
Among the 14 miRNAs increased in aHSC, the expression of miR-192-5p, miR-382-5p, and miR-874-3p
was reduced by ASTX. In addition, ASTX increased the expression of miR-19a-3p, miR-19b-3p, and
miR-101a-3p among 23 miRNAs decreased in aHSC. Moreover, we confirmed miR-382-5p expression
was ~15-fold higher in aHSC than qHSC, and ASTX markedly inhibited the induction measured by
quantitative real-time PCR. We identified that the expression of Baz1a and Zfp462 from the predicted
miR-382-5p target genes was significantly reduced in aHSC while increased by ASTX treatment
similar to the levels in qHSC. The roles of Baz1a and Zfp462 in HSC activation and the antifibrogenic
effect of ASTX need to be further investigated.

Keywords: astaxanthin; microRNA; fibrogenesis; hepatic stellate cell

1. Introduction

Liver fibrosis is characterized by excessive accumulation of extracellular matrix (ECM)
proteins, including collagen [1]. The abnormal accumulation of ECM proteins in the liver
distorts the liver architecture and further impairs hepatic function [2]. Liver fibrosis occurs
in most chronic liver diseases by repeated or long-lasting liver injury [3]. In developed
countries, common causes of liver fibrosis include chronic hepatitis C infection, alcohol
abuse, and nonalcoholic steatohepatitis (NASH) [3].

Hepatic stellate cells (HSC) play an essential role in developing liver fibrosis. In the
normal liver, HSC are present in the space between endothelial cells and hepatocytes, called
Space of Disse, in a quiescent state [4]. Quiescent HSC (qHSC) store vitamin A in the
intracellular lipid droplets [5]. When an injury occurs in the liver, qHSC are activated
and transdifferentiate into myofibroblast-like cells, i.e., activated HSC (aHSC) [4]. aHSC
produce ECM proteins and inhibit their degradation by producing tissue inhibitors of
metalloproteinases, leading to ECM accumulation in the liver [6].

MicroRNAs (miRNAs) are a family of endogenous short noncoding RNAs of ~21–
25 nucleotides in length [7], which can regulate gene expression post-transcriptionally in a
sequence-specific manner [8]. miRNAs are transcribed from miRNA genes into primary
miRNAs and processed into precursor miRNAs, and finally mature miRNAs [9]. The
estimated numbers of total mature miRNAs in humans and mice are 2300 [10] and 1317 [11],
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respectively. About 1% of mammalian genes encode miRNAs [12], and their targets are
estimated to be more than 60% of mRNAs in mammals [13]. Studies have demonstrated
that miRNAs are associated with human diseases, including breast cancer, lung cancer,
gastric cancer, liver cancer, viral diseases, Parkinson’s disease, Alzheimer’s disease, type 2
diabetes, and nonalcoholic fatty liver disease (NAFLD) [14]. Moreover, it has been studied
that miRNAs can promote HSC activation [15–17] or inhibit HSC activation [18–21].

Astaxanthin (ASTX) is a xanthophyll carotenoid with antioxidant properties [22].
Studies have shown that ASTX exerts antifibrogenic actions in HSC in vitro [23–25] and in
the liver in vivo [26,27]. We previously demonstrated that ASTX inhibits HSC activation by
reducing intracellular reactive oxygen species accumulation [25], decreasing the expression
of histone deacetylase 9 [24], and regulating the cells’ energy metabolism [28,29]. However,
the role of miRNAs in the antifibrogenic effect of ASTX in HSC has been poorly investigated.
Therefore, in the present study, we sought to identify new miRNAs and their target genes
that may be crucial to the antifibrogenic action of ASTX in primary mouse HSC.

2. Materials and Methods
2.1. Primary Mouse HSC Isolation and Culture

The pronase and collagenase digestion method was used to isolate primary mouse
HSC from C57BL/6J mice, as previously described [23]. Primary mouse HSC were plated on
uncoated plastic dishes (BD Falcon, Franklin Lakes, NJ, USA) for spontaneous activation [4]
and maintained in low-glucose Dulbecco’s Modified Eagle Medium supplemented with
10% fetal bovine serum, 4 mM L-glutamine, penicillin (100 U/mL), and streptomycin
(100 µg/mL) as previously described [23,25]. The cells were cultured at 37 ◦C under 5%
CO2. Cell culture supplies were purchased from HyClone (Thermo Scientific, Logan, UT,
USA). The cells at day 1 and day 7 after isolation represent qHSC and aHSC, respectively.

2.2. ASTX Treatment

ASTX was a gift kindly provided by Fuji Chemical Industry Co., Ltd. (Toyama, Japan).
ASTX stock and ASTX-containing media were prepared as previously described [23].
Primary mouse HSC were treated with ASTX from day 2 to day 7 with daily media change.

2.3. miRNA Array and Quantitative Real-Time PCR (qRT-PCR)

Total RNA, including miRNA, was isolated from primary mouse HSC using miRNeasy
Mini Kit (Qiagen, Germantown, MD, USA). Mature miRNA was selectively converted
into complementary DNA (cDNA) using miScript II RT Kit (Qiagen). Mature miRNA
expression profiling was measured using a pathway-focused miScript miRNA PCR Array
for mouse fibrosis (Qiagen). The miRNA PCR Array layout is shown in Supplemental
Figure S1. The expression of miRNAs was confirmed by qRT-PCR using miScript Primer
Assays (Qiagen) in a Bio-Rad CFX96 Real-Time System (Bio-Rad, Hercules, CA, USA). All
procedures were conducted according to the manufacturer’s protocols.

2.4. RNA Sequencing and Identification of Target Genes

RNA sequencing in primary mouse qHSC and aHSC treated with or without ASTX
was conducted as previously described [28]. The miRDB [30], an online database for miRNA
target prediction and functional annotations, was used for predicting the miR-382-5p target
genes. Among 308 target genes of mmu-miR-382-5p predicted by miRDB, 12 potential
target genes were identified based on the RNA sequencing data.

2.5. Target Gene Analysis by Reverse Transcription and qRT-PCR

Total RNA isolated from primary mouse qHSC and aHSC treated with or without
ASTX was converted into cDNA and used for measuring the expression of target genes
using the SYBR green method in a Bio-Rad CFX96 Real-Time System (Bio-Rad) as previously
described [31,32].



Nutrients 2022, 14, 962 3 of 11

2.6. Statistical Analysis

One-way analysis of variance (ANOVA) with Bonferroni correction was conducted
using GraphPad Prism 6.0 (GraphPad Software, La Jolla, CA, USA). p values less than 0.05
were considered statistically significant. All values were expressed as mean ± standard
error of the mean.

3. Results
3.1. The Expression of miRNAs Involved in Fibrosis Was Measured in qHSC, aHSC, and aHSC
Treated with ASTX

Primary mouse qHSC and aHSC treated with or without ASTX during the activation
were subjected to miRNA array analysis, which can detect 84 miRNAs known to be related
to fibrosis (Supplemental Figure S1). We compared the expression of miRNAs between
qHSC and aHSC, and between aHSC and aHSC treated with ASTX (Figure 1A). Overall,
about half of the changes in miRNA expression profiles during HSC activation were
attenuated by ASTX (Figure 1B).
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Figure 1. miRNA PCR array heatmaps. Primary mouse qHSC, aHSC, and aHSC treated with 25 µM
of ASTX (aHSC + ASTX) were subjected to miRNA PCR array for mouse fibrosis. (A) Heatmaps
of the miRNA array comparing miRNA profiles of aHSC vs. qHSC, and aHSC treated with ASTX
(aHSC + ASTX) vs. aHSC. (B) Heatmap of miRNA expression in primary mouse HSC. Lanes 1, 2,
and 3 show qHSC, aHSC, and aHSC + ASTX, respectively. The magnitude of expression is shown in
the scale bar.

3.2. miRNAs Were Identified Whose Expression Was Altered in aHSC Compared to qHSC, Which
Was Attenuated by ASTX

Among 84 miRNAs investigated, miRNAs demonstrating at least 2-fold increases
or decreases during HSC activation or by ASTX treatment were selected (Figure 2A,B).
There were 14 miRNAs with a more than 2-fold increase and 23 miRNAs with a more than
2-fold decrease in aHSC compared with qHSC. ASTX treatment during HSC activation
upregulated 4 miRNAs and downregulated 10 miRNAs. The miRNAs whose expression
was altered during HSC activation and by ASTX treatment are listed in Tables 1 and 2.
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Figure 2. Scatter plots of miRNA expressions by miRNA PCR array. The expression of 84 miRNAs
and 6 small nucleolar RNAs as log10 (2ˆ-DeltaCt) in primary mouse aHSC and in qHSC (A) and in
aHSC + ASTX and aHSC (B). The midline indicates no difference in the expression between two
groups, while lines above or under the midline indicate the boundary of 2-fold regulation in the
expression. Red and green dots represent each miRNA or small nucleolar RNA, upregulated and
downregulated, respectively.

Table 1. Fold changes of the expression of miRNAs in primary mouse aHSC compared to qHSC. The
lists of miRNAs overexpressed and underexpressed during HSC activation.

Overexpressed Fold Change Underexpressed Fold Change

miRNAs (aHSC vs. qHSC) miRNAs (aHSC vs. qHSC)

mmu-miR-148a-3p 17.35 mmu-miR-122-5p 0.02
mmu-miR-192-5p 9.83 mmu-miR-126a-3p 0.05
mmu-miR-324-5p 5.23 mmu-miR-335-5p 0.05
mmu-miR-382-5p 4.91 mmu-miR-150-5p 0.07
mmu-miR-27b-3p 4.31 mmu-miR-19a-3p 0.09
mmu-miR-181b-5p 3.91 mmu-miR-19b-3p 0.11
mmu-miR-365-3p 3.7 mmu-miR-101a-3p 0.13
mmu-miR-744-5p 2.9 mmu-miR-200b-3p 0.16
mmu-miR-34a-5p 2.63 mmu-miR-146a-5p 0.16
mmu-miR-21a-5p 2.58 mmu-miR-223-3p 0.18

mmu-miR-125b-5p 2.53 mmu-miR-29b-3p 0.19
mmu-miR-15b-5p 2.44 mmu-miR-203-3p 0.29
mmu-miR-330-3p 2.32 mmu-miR-29a-3p 0.3
mmu-miR-874-3p 2.14 mmu-miR-338-5p 0.31

mmu-miR-3094-5p 0.31
mmu-miR-194-5p 0.32

mmu-miR-195a-5p 0.34
mmu-miR-29c-3p 0.35

mmu-miR-146b-5p 0.37
mmu-miR-143-3p 0.39
mmu-miR-129-5p 0.43
mmu-miR-17-5p 0.45

mmu-miR-322-5p 0.47
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Table 2. Fold changes of the expression of miRNAs in primary mouse aHSC treated with ASTX
compared with control aHSC 1.

miRNAs Fold Change
(aHSC + ASTX vs. aHSC)

Overexpressed mmu-miR-138-5p 29.75
mmu-miR-19a-3p 3.17

mmu-miR-101a-3p 2.80
mmu-miR-19b-3p 2.05

Underexpressed mmu-miR-192-5p 0.04
mmu-miR-223-3p 0.16
mmu-miR-150-5p 0.33

mmu-miR-449a-5p 0.37
mmu-miR-1a-3p 0.37
mmu-miR-328-3p 0.41
mmu-miR-874-3p 0.42

mmu-miR-146b-5p 0.43
mmu-miR-382-5p 0.45

mmu-miR-3094-5p 0.50
1 The lists of miRNAs overexpressed and underexpressed by ASTX treatment.

3.3. ASTX Attenuated the Changes in the Expression of miRNAs during HSC Activation

To investigate whether ASTX attenuated the changes in the expression of miRNAs
that were altered during HSC activation, we compared the miRNAs that showed at least
2-fold differences during HSC activation and those changed by ASTX. The expression of
miR-192-5p, miR-382-5p, and miR-874-3p upregulated in aHSC was decreased by ASTX
(Figure 3A). Additionally, ASTX increased the expression of miR-19a-3p, miR-19b-3p, and
miR-101a-3p downregulated in aHSC.
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Figure 3. The expression of miRNAs in primary mouse HSC. (A) The expression of miR-192-5p,
miR-382-5p, miR-874-3p, miR-19a-3p, miR-19b-3p, and miR-101a-3p from miRNA array. (B) The
expression of miR-192-5p, miR-382-5p, and miR-101a-3p measured by qRT-PCR. n = 3. Bars with a
different letter are significantly different (p < 0.05). Mean ± SEM.

Among those six miRNAs, miR-192-5p, miR-382-5p, and miR-101a-3p were selected
for further investigation due to their high expression and higher magnitude of changes
between groups. First, we confirmed their expression by qRT-PCR. The expression of miR-
192-5p showed a different trend between groups from miRNA array data (Figure 3B). The
expression of miR-101a-3p had a similar trend as the miRNA array result, but the magnitude
of changes between groups was less than that from the array. However, the expression of
miR-382-5p showed the same trend as the miRNA array with a high magnitude of changes
between groups. Therefore, miR-382-5p was selected to be further investigated.
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3.4. The Expression of Potential Target Genes of miR-382-5p Showed Drastic Differences between
qHSC and aHSC, Which Were Attenuated by ASTX

As miRNAs repress their target translation by inducing mRNA cleavage, mRNA
degradation, or translational repression [33], the target gene expression might be reduced by
miRNAs. A total of 308 potential target genes of miR-382-5p were predicted by miRDB [30].
Among the 308 target genes, 12 genes were selected whose expression was decreased
during HSC activation and increased by ASTX by more than 1.5-fold based on the RNA
sequencing data (Figure 4A). Potential miR-382-5p target genes include Xirp2, Hdc, Akr1c6,
Fam169a, Elovl2, Flrt3, Exoc6, Hif3a, Yy2, Crem, Baz1a, and Zfp462, and their functions
are listed in Table 3. We selected Hif3a, Crem, Baz1a, and Zfp462 based on their known
functions and expression pattern during HSC activation and ASTX treatment. We found
that the expression of Hif3a was decreased in aHSC regardless of ASTX treatment, and Crem
expression was not altered during HSC activation and by ASTX treatment. The expression
of Baz1a and Zfp462 was significantly reduced in aHSC, which was increased by ASTX to a
similar level of qHSC (Figure 4B). Further studies are needed to investigate the roles of the
target genes regulated by ASTX during HSC activation.
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in cardiac and skeletal muscle interacting with filamentous actin and α-actinin 

via the actin-binding motif, the Xin repeat. 
Hdc Histidine decarboxylase HDC catalyzes the decarboxylation of histidine to form histamine. 
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Figure 4. The potential target genes of miR-382-5p in primary mouse HSC. (A) The expression of
12 target genes of miR-382-5p was analyzed by RNA sequencing in qHSC, aHSC, and aHSC treated
with ASTX (aHSC + ASTX). Z-scores for the expression are shown in the scale bar. n = 4. (B) The
expression of Hif3a, Crem, Baz1a, and Zfp462 measured by qRT-PCR. n = 6. Bars with a different letter
are significantly different (p < 0.05). Mean ± SEM.
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Table 3. The potential target genes of miR-382-5p altered during HSC activation and ASTX treatment
in HSC.

Gene Full Name Function

Xirp2 Xin actin-binding repeat containing 2
Xirp2 belongs to muscle-specific, actin-binding Xin gene family. It is

expressed in cardiac and skeletal muscle interacting with filamentous
actin and α-actinin via the actin-binding motif, the Xin repeat.

Hdc Histidine decarboxylase HDC catalyzes the decarboxylation of histidine to form histamine.

Akr1c6 Aldo-keto reductase family 1, member C6

Akr1c6 encodes estradiol 17 β-dehydrogenase 5, which catalyzes the
reduction of 4-androstenedione, 5-α-androstane-3,17-dione,
androsterone and dehydroepiandrosterone to testosterone,

dihydrotestosterone, 5-α-androstane-3-α,17-β-diol, and
5-androstene-3-β,17-β-diol, respectively.

Fam169a Family with sequence similarity 169,
member A Soluble lamina-associated protein of 75 kD.

Elovl2 Elongation of very long chain fatty acids
(FEN1/Elo2, SUR4/Elo3, yeast)-like 2

ELOVL2 is a condensing enzyme catalyzing the elongation of
long-chain polyunsaturated fatty acids.

Flrt3 Fibronectin leucine rich transmembrane
protein 3

FLRT3 is involved in cell–cell adhesion, cell migration, and
axon guidance.

Exoc6 Exocyst complex component 6
EXOC6 is a component of the exocyst complex involved in vesicle

trafficking, specifically the tethering of secretory vesicles to the plasma
membrane during exocytosis.

Hif3a Hypoxia inducible factor 3, alpha subunit HIF3A belongs to the transcription factor family of hypoxia-inducible
factors, which regulate the cellular response to hypoxia.

Yy2 Yy2 transcription factor
Yy2 acts as a multifunctional transcription factor regulating a large

number of genes positively and negatively. It is involved in
development and differentiation.

Crem cAMP responsive element modulator
CREM is a component of cAMP-mediated signal transduction during
various physiological processes, including spermatogenesis, cardiac

function, and circadian rhythm.

Baz1a Bromodomain adjacent to zinc finger
domain 1A

BAZ1A is the accessory, noncatalytic subunit of the ATP-dependent
chromatin assembly factor, which regulates spacing of nucleosomes
using ATP to form evenly spaced nucleosomes along the chromatin.

Zfp462 Zinc finger protein 462 ZFP462 or ZNF462 belongs to C2H2-type zinc finger family of proteins.
It is involved in transcription by regulating chromatin structure.

4. Discussion

HSC play a vital role in developing liver fibrosis as they are the primary ECM-
producing cells in the liver. We previously demonstrated that ASTX attenuated the activa-
tion of HSC by decreasing the expression of fibrogenic genes [23–25]. To identify miRNAs
that may play a crucial role in the regulation of HSC activation and be sensitive to ASTX,
we performed miRNA arrays in primary mouse qHSC and aHSC treated with or without
ASTX. Through our follow-up studies using RNA-Seq analysis and qRT-PCR, we identified
miR-382-5p and its putative target genes, Baz1a and Zfp462, as potential mediators of the
antifibrogenic effect of ASTX. As the roles of miR-382-5p, BAZ1a, and ZFP462 in HSC
activation have not been studied, they may hold keys to identifying new mediators for HSC
activation and expanding our understanding of how ASTX exerts an antifibrogenic effect.

Kriegel et al. [34] demonstrated that miR-382 was upregulated by transforming growth
factor β (TGFβ), a potent fibrogenic cytokine, and induced during epithelial-mesenchymal
transition (EMT) of human kidney epithelial cells. EMT also contributes to fibrogenesis
in the liver by generating myofibroblasts [1], although its contribution may not be sub-
stantial [35]. In our previous study, ASTX prevented TGFβ1-induced fibrogenic gene
expressions in human HSC line LX-2 cells [23] and primary human HSC [24]. In the present
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study, primary mouse aHSC had increased expression of miR-382-5p by ~15-fold compared
to qHSC, which was significantly reduced by ASTX treatment. We further identified the
potential target genes of miR-382-5p predicted by miRDB analyzing miRNA and target
interactions [30]. Among the 308 predicted target genes, 12 genes were selected whose
expression was decreased during HSC activation but increased by ASTX using RNA se-
quencing data. Furthermore, we selected Hif3a, Crem, Baz1a, and Zfp462 based on their
function and expression pattern during HSC activation and by ASTX treatment. Of these
four genes, the expression of Baz1a and Zfp462 was significantly reduced in aHSC, which
was increased by ASTX to the level of qHSC, suggesting that these two genes may play
crucial roles in mediating antifibrogenic effects of ASTX.

BAZ1A or ATP-dependent chromatin assembly factor 1 (ACF1) is an accessory, non-
catalytic subunit of ACF that regulates spacing of nucleosomes using ATP to form evenly
spaced nucleosomes along the chromatin [36]. The function of BAZ1A in HSC has not been
reported to date. A recent study has shown that knockdown of Baz1a by lentivirus-mediated
short hairpin RNA (shRNA) induced senescence-associated phenotypes in various cells,
such as A549 (a lung adenocarcinoma cell line), U2OS (human bone osteosarcoma epithelial
cells), HUVEC (human umbilical vein endothelial cells), NIH3T3 (a murine embryonic
fibroblast cell line), and MEF (mouse embryo fibroblasts) [37]. The Baz1a knockdown upreg-
ulated genes in four signaling pathways, including p53, forkhead box O (FoxO), cell cycle,
and TGFβ signaling pathways [37]. In particular, Baz1a knockdown increased mRNA and
protein expression of SMA- and MAD-related protein 3 (SMAD3), an important mediator of
the TGFβ signaling pathway [38], in A549 and U2OS cells [37]. As we previously reported
that the antifibrogenic effect of ASTX was mediated by SMAD3 in HSC [23], BAZ1A may
play a crucial role in HSC activation and mediate the antifibrogenic activity of ASTX in
HSC. In addition, Zfp462 expression was significantly decreased in aHSC compared to
qHSC, which was inhibited by ASTX in the present study. ZFP462 or ZNF462 belongs
to the C2H2-type zinc finger family of proteins, which is involved in transcription by
regulating chromatin structure [39]. ZFP462 is known to be crucial for early embryonic
development [40] and neuronal differentiation [41]. The role of ZFP462 in HSC activation
has not been determined, and thus it is worthwhile to investigate whether ZFP462 is an
important mediator of HSC activation.

In the present study, we focused on miR-382-5p due to its high expression and the
magnitude of changes between groups in primary mouse HSC. The other five potential
target miRNAs, including miR-192-5p, miR-874-3p, miR-19a-3p, miR-19b-3p, and miR-
101a-3p, may be worthy of future investigation. Studies have demonstrated that circulating
miR-192 is upregulated in patients with NAFLD [42], NASH [43], alcoholic hepatitis [44],
and acetaminophen-induced liver injury [45]. Circulating miR-192 was also increased in
mice fed alcohol [44] and mice with acetaminophen-induced liver injury [46]. In addition,
exosomal transport of miR-192 from hepatitis C virus-infected hepatocytes increased the
protein expression of fibrogenic markers, such as procollagen type I α1 and α-smooth
muscle actin in LX-2 cells [47]. Moreover, miR-192 was induced by TGFβ in rat tubular
epithelial cells [48] and mouse mesangial cells [49]. However, miR-192 expression is lower
in primary mouse aHSC than qHSC [50], consistent with the present study. In addition,
primary HSC isolated from mice with carbon tetrachloride (CCl4) or bile duct ligation-
induced liver fibrosis showed a decrease in miR-192 expression compared with control [50].
The discrepancy between studies may result from different stages of HSC activation. In
addition, the in vivo activation of HSC may cause a different result, as aHSC are exposed
to various other factors from neighboring cells in vivo. Therefore, further studies are
necessary to investigate the expression and function of miR-192 in the activation of HSC in
human livers with various pathologies, mouse livers with liver fibrosis, or HSC.

There are limited studies examining the functions of the other four potential miRNAs,
i.e., miR-874-3p, miR-19a-3p, miR-19b-3p, and miR-101a-3p, in HSC. Consistent with our
findings in primary mouse HSC, miR-874 was upregulated in rat aHSC compared with
qHSC [51]. However, several studies have reported that miR-874 expression was reduced
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in the liver of patients with hepatocellular carcinoma [52–54]. The expression of miR-101a
was decreased in the CCl4-induced fibrotic mouse liver and mouse aHSC [55]. In addition,
HSC-T6 cells, a rat HSC line, transfected with miR-101 showed suppressed proliferation,
migration, and TGFβ signaling [55]. Our study showed no change in miR-101a expression
during HSC activation, while it was increased by ASTX. It suggests that the antifibrogenic
effect of ASTX may be partially mediated by the induction of miR-101a. miR-19a and
miR-19b are known to be downregulated in primary rat aHSC and the fibrotic rat and
human liver [56]. miR-19b inhibited transdifferentiation of primary rat HSC by reducing
phosphorylated SMAD3 [56]. We previously demonstrated that ASTX attenuates TGFβ1-
induced phosphorylation and nuclear translocation of SMAD3 in LX-2 cells [23]. Based on
our observation, the effect of ASTX on the level of miR-19a and miR-19b was minimal; thus,
the role of ASTX in the regulation of SMAD3 may not be mediated by miR-19.

There is limited, somewhat conflicting information on miRNA changes in HSC and
the liver. It is probable that miRNA expression in HSC and the liver may differ depending
on the stage of HSC activation and liver pathogenesis. Regardless, we demonstrate the
potential role of miR-382-5p and its target genes in the activation of HSC and liver diseases.
Therefore, future investigation is warranted to gain detailed insight into their functions in
regulating HSC activation in vivo and in vitro.

5. Conclusions

In our previous studies, we have demonstrated that ASTX has antifibrogenic properties
in HSC [24,25,28,29]. The present study provides potential miRNAs, especially miR-382-
5p, possibly involved in the antifibrogenic effect of ASTX during HSC activation. In
addition, we identified target genes of miR-382-5p, including Baz1a and Zfp462, for further
investigation to determine their roles in HSC activation. Therefore, this study provides
a new avenue of investigation to dissect the mechanisms for HSC activation and the
antifibrogenic effect of ASTX.
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