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Abstract
Purpose of Review Adoption of poor lifestyles (inactivity and energy-dense diets) has driven the worldwide increase in the
metabolic syndrome, type 2 diabetesmellitus and non-alcoholic steatohepatitis (NASH). Of the defining features of themetabolic
syndrome, an atherogenic dyslipidaemia characterised by elevated triglycerides (TG) and low plasma concentration of high-
density lipoprotein cholesterol is a major driver of risk for atherosclerotic cardiovascular disease. Beyond lifestyle intervention
and statins, targeting the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) is a therapeutic option.
However, current PPARα agonists (fibrates) have limitations, including safety issues and the lack of definitive evidence for
cardiovascular benefit. Modulating the ligand structure to enhance binding at the PPARα receptor, with the aim of maximising
beneficial effects and minimising adverse effects, underlies the SPPARMα concept.
Recent Findings This review discusses the history of SPPARM development, latterly focusing on evidence for the first licensed
SPPARMα, pemafibrate. Evidence from animal models of hypertriglyceridaemia or NASH, as well as clinical trials in patients
with atherogenic dyslipidaemia, are overviewed.
Summary The available data set the scene for therapeutic application of SPPARMα in the metabolic syndrome, and possibly,
NASH. The outstanding question, which has so far eluded fibrates in the setting of current evidence-based therapy including statins,
is whether treatment with pemafibrate significantly reduces cardiovascular events in patients with atherogenic dyslipidaemia. The
PROMINENT study in patients with type 2 diabetes mellitus and this dyslipidaemia is critical to evaluating this.

Keywords Pemafibrate . Selective peroxisome proliferator-activated receptor alpha modulator . SPPARM . Triglycerides .
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Introduction

The metabolic syndrome poses a global challenge as so-
cieties become increasingly urbanised, sedentary and
obese. A key requirement for identification is the

combination of three or more of the following: increased
waist circumference, elevated triglycerides (TG), low
plasma concentration of high-density lipoprotein choles-
terol (HDL-C), elevated blood pressure and raised fasting
blood glucose (Table 1) [1]. Worldwide, 20–30% of
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adults are affected, although this varies with age, ethnicity
and gender [2]. The metabolic syndrome is no longer a
disease of affluence, with escalating prevalence in emerg-
ing regions coincident with rising rates of obesity [3, 4],
or a disease of adults, as globally more than 5% of chil-
dren and adolescents are affected [4, 5]. The extensive
comorbidity of the metabolic syndrome confers a substan-
tial burden, from the increased risk for atherosclerotic
cardiovascular disease (ASCVD), affecting multiple vas-
cular territories [6], and type 2 diabetes mellitus [7, 8]. In
fact, ASCVD and diabetes are the two leading causes of
death.

Beyond the increased risk for ASCVD, metabolic derange-
ments that characterise the metabolic syndrome predispose to
the development of non-alcoholic fatty liver disease
(NAFLD), the most common chronic liver disease worldwide.
NAFLD encompasses the spectrum of disease ranging from
asymptomatic fatty infiltration of hepatocytes in the absence
of inflammation to progression to non-alcoholic
steatohepatitis (NASH), liver fibrosis and liver failure.
Among NAFLD patients, about half exhibit the metabolic
syndrome with dyslipidaemia the most prevalent characteris-
tic (in ~ 70% of patients) [9]. The pathogenesis of NAFLD is
multifactorial, involving genetic, environmental and metabol-
ic factors. Of the latter, TG accumulation in the liver,
reflecting the imbalance between free fatty acid influx and
efflux/catabolism, is a hallmark feature which also drives in-
flammation [10, 11]. Globally, it is estimated that NAFLD
affects about one billion people, with an overall prevalence
of ~ 25% in adults, with the highest rates in South America,
the Middle East and Asia [9]. The clinical, economic and
health-related quality-of-life burden of NAFLD is already
substantial and growing [9].

Thus, given the changing landscape of cardiovascular risk
associated with escalating obesity, the metabolic syndrome
poses a global socioeconomic challenge. Renewed thinking
about therapeutic options is imperative.

Pathogenesis

A key driver of the metabolic syndrome is visceral obesity, a
marker of ectopic fat deposition [12•, 13•] (Fig. 1). Expansion
of visceral adipose tissue to a greater extent than that of subcu-
taneous adipose tissue is associated with metabolic alterations
which promote inflammation. Key amongst these metabolic de-
rangements is atherogenic dyslipidaemia, in particular increases
in TG-rich lipoproteins, their remnants and apolipoprotein (apo)
C-III [14, 15]. These effects are mediated via crosstalk between a
multitude of pathways that promote impaired adipogenesis,
adipokine dysregulation and inflammation, and increase free fat-
ty acids, oxidative stress, adipose tissue hypoxia and lipotoxicity
(both local and systemic) [16••]. Recently, attention has focused
on angiopoietin-like protein 2 (ANGPTL2), a glycoprotein
which is expressed abundantly in adipose tissue. Under normal
conditions, ANGPTL2-mediated expression contributes to an-
giogenesis and tissue damage repair, whereas overexpression
promotes chronic inflammation [17–19]. In obese women with
insulin resistance, ANGPTL2 production by adipocytes was
shown to upregulate proinflammatory cytokine production in
macrophages, in turn increasing adipose tissue inflammation,
systemic insulin resistance and hyperinsulinaemia [20]. Thus,
ANGPTL2 provides a link between the metabolic syndrome,
NAFLD and ASCVD.

Hypertriglyceridaemia is a key component of the
dyslipidaemia associated with the metabolic syndrome and
NAFLD, its hepatic manifestation. Moderately elevated TG
levels (a surrogate for elevated TG-rich lipoproteins and their
remnants) result from increased dietary-derived apo B48-
containing intestinal chylomicrons, overproduction of hepatic
very low-density lipoproteins (VLDL) and reduction in catabo-
lism of TG-rich lipoproteins. Evidence from epidemiologic,
mechanistic and genetic studies supports a causal association
between TG-rich lipoproteins and their TG-hydrolysed remnants
and ASCVD [21•, 22]. Specifically, it is the cholesterol
contained within these lipoproteins (i.e. remnant cholesterol) that
promotes the development of atherosclerosis and ischaemic heart
disease, in part mediated via low-grade inflammation [23, 24].
Postprandial hypertriglyceridaemia is also an emerging contrib-
uting factor in residual cardiovascular risk [25•]. Clinically, the
combination of elevated TG and increased waist circumference
(hypertriglyceridaemic waist) represents a marker of high-risk
carotid atherosclerosis features, and highlighting this dual anom-
aly can improve the identification of individuals with metabolic
syndrome and preclinical atherosclerosis beyond traditional risk
factors [26•].

PPAR: a Key Therapeutic Target

Lifestyle intervention, encompassing both dietary changes and
increased physical activity, is an important first step in the

Table 1 Harmonised definition of the metabolic syndrome. Derived
from Alberti et al [1]

Waist >94 cm (men) or > 80 cm (women)* together with the presence of
two or more of the following:

Fasting blood glucose greater than 5.6 mmol/L (100 mg/dL) or
diagnosed diabetes

HDL cholesterol < 1.0 mmol/L (40 mg/dL) in men, < 1.3 mmol/L
(50 mg/dL) in women or drug treatment for low HDL-C

Fasting blood triglycerides > 1.7 mmol/L (150 mg/dL) or drug
treatment for elevated triglycerides

Blood pressure > 130/85 mmHg or drug treatment for hypertension

*Based on the International Diabetes Federation thresholds for Europid
population, with subsequent regional-specific definitions in men and
women
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management of mild to moderate hypertriglyceridaemia, but long-
term adherence is usually problematic [27]. Beyond lifestyle,
agents that target the nuclear receptor peroxisome proliferator-
activated receptor (PPAR) are obvious therapeutic candidates giv-
en their role in regulating the expression of key genes involved in
adipogenesis, lipoproteinmetabolism, inflammation andmetabolic
homeostasis [28••, 29, 30]. Three isoforms are identified to date,
PPARα, PPARγ and PPARβ/δ, each encoded by separate genes
[31]. PPARα is abundant in energy-demanding tissues, such as the
liver, kidney, heart and skeletal muscle; PPARγ is predominantly
found in adipose tissue, macrophages and the large intestine,
whereas PPARβ/δ is more ubiquitous in distribution [32, 33].
These PPARs are controlled through their interaction with fatty
acids and their derivatives and are the pharmacological targets for
the lipid-lowering fibrates (PPARα) or the insulin sensitizer
thiazolidinediones (PPARγ).

PPARα

Activation of PPARα by binding of endogenous ligands (e.g. fatty
acids or eicosanoids), or drugs (fibrates) to the ligand binding
domain and subsequent heterodimerisation with the ligand-
activated retinoid X-receptor (RXR) trigger a conformational
change which influences cofactor recruitment, either promoting
(transactivation) or inhibiting (transrepression) expression of target
genes. This process is mediated by the interaction between the
activated PPARα, the PPAR response element (PPRE) of the
target gene and relevant cofactors which render the complex tran-
scriptionally active (or inactive in the case of transrepression) [32].
PPARα activation targets key genes involved in TG metabolism,
specifically increasing the production of lipoprotein lipase and apo
A-V and decreasing plasma levels of apo C-III; increasing HDL
synthesis by targeting genes encoding apoA-I andA-II, scavenger

receptor BI, and theATP binding cassette transporters A1 andG1;
and enhancing beta-oxidation by increasing expression of hepatic
acyl CoA synthase [34–38]. The net effects are reduction in serum
TG, an increase in HDL-C concentration, attenuation of very-low-
density lipoprotein (VLDL) particles, as well as a shift in the low-
density lipoprotein (LDL) profile to fewer small, dense LDL par-
ticles and a proportional increase in larger, less dense LDL parti-
cles. There is also transrepression of proinflammatory genes, lead-
ing to lower levels of inflammatory mediators such as C-reactive
protein, interleukin-6 and prostaglandins [39]. Emerging evidence
also suggests that PPARα favourably influences glucose homeo-
stasis and insulin sensitivity, possibly mediated via effects on
acetyl-CoA [40], and inhibits thrombogenesis and improves vas-
cular function, although the underlying mechanisms are not fully
defined.

Other PPAR Isoforms

PPARγ appears to be important in cell differentiation and
energy metabolism, binding to the PPRE of almost all
adipogenic genes, including those implicated in glucose and
fatty acid metabolism. Although less well characterised,
PPARβ/δ appears to regulate lipid metabolism, glucose ho-
meostasis and inflammation, suggesting a role in the mainte-
nance of energy homeostasis [29, 41].

Current Therapeutic Options

PPARα

Given their pharmacological profile, PPARα ligands
(fibrates) are appropriate treatments for correcting atherogenic
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Fig. 1 Dyslipidaemia is an important feature of the metabolic syndrome.
Overproduction of large very low-density lipoprotein particles is a
fundamental defect contributing to the increase in the triglyceride pool.
This initiates a sequence of lipoprotein changes, leading to higher levels

of remnant particles, an increase in small, dense low-density lipoprotein
particles and lower plasma concentration of high-density lipoprotein
cholesterol. IDL, intermediate-density lipoprotein; HDL-C, high-density
lipoprotein cholesterol; LDL, low-density lipoprotein; TG, triglyceride
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dyslipidaemia that is characteristic of the metabolic syndrome.
Current fibrates are either specific for PPARα (fenofibrate and
gemfibrozil) or activate all three PPAR subtypes (pan-agonist,
bezafibrate). While the TG-lowering efficacy of fibrates is
well established, their clinical benefit in terms of reduction
in cardiovascular events is less convincing. Two prospective
trials with gemfibrozil, the Helsinki Heart Study, a primary
prevention trial in men with elevated non-HDL-C [42], and
the Veterans Affairs High-Density Lipoprotein Cholesterol
Intervention Trial (VA-HIT), a secondary prevention trial in
men with low HDL-C [43], showed significant reduction in
cardiovascular events. It must be borne in mind, however, that
both were essentially monotherapy lipid-lowering trials as
these were conducted before widespread statin use. Of the
remaining trials, two with fenofibrate, Fenofibrate
Intervention and Event Lowering in Diabetes (FIELD) [44]
and the Action to Control Cardiovascular Risk in Diabetes
(ACCORD) Lipid trial [45], both in patients with type 2 dia-
betes, and one with bezafibrate (Bezafibrate Infarction
Prevention [BIP] study) in patients with established coronary
disease [46] were inconclusive. None was positive in terms of
reduction in their primary endpoint for the total study popula-
tion, and in the case of the FIELD study, was further compli-
cated by discrepancies in the uptake of statin use between the
two groups. The ACCORD Lipid study was the only trial
conducted against background statin treatment; the lack of
benefit may largely relate to inappropriate patient selection
in terms of baseline TG levels and prevalence of atherogenic
dyslipidaemia at inclusion [45].

There are, however, important insights from subgroup
analyse of the fibrate trials. Analyses of the Helsinki
Heart Study and the VA-HIT showed greater reduction
in cardiovascular events in patients with the combination
of both elevated TG and low HDL-C [47], or with insulin
resistance [48], respectively. In the FIELD study, post hoc
analysis showed that patients who satisfied the metabolic
syndrome criteria (about 80% of the total study popula-
tion), derived greater clinical benefit, with maximum re-
duction in cardiovascular events in those with the combi-
nation of elevated TG and low HDL-C [49]. Subgroup
analysis of the ACCORD Lipid study also showed benefit
in type 2 diabetes patients with this atherogenic
dyslipidaemia [45]. When data from the major fibrate tri-
als were combined, individuals with atherogenic
dyslipidaemia gained significant clinical benefit for reduc-
tion in risk of cardiovascular events, whereas those with-
out this lipid profile did not [50].

Longer-term follow-up of the BIP study showed that pa-
tients with the combination of three of the five criteria of the
metabolic syndrome derived significant benefit in terms of
reduction in myocardial infarction [51]; added to this, 22-
year follow-up also showed that elevated TG was a significant
predictor of all-cause mortality [52]. There is also evidence to

suggest a legacy cardiovascular benefit from fenofibrate treat-
ment in the ACCORDION study, an observational follow-up
of the ACCORD Lipid study [53].

There are, however, well-recognised safety concerns with
the current fibrates. A major issue is an elevation in serum
creatinine with fenofibrate [54]; although this is reversible,
there are practical disadvantages in stopping and restarting
treatment, as well as limitations to its use in patients with renal
dysfunction. The potential for drug-drug interactions is anoth-
er issue, most notably the risk of myopathy with statin coad-
ministration, clearly demonstrated with gemfibrozil [55, 56].

Other PPAR Agonists

PPARγ agonists are currently limited to pioglitazone, indicat-
ed as a glucose-lowering agent for the management of type 2
diabetes mellitus [57]. In addition to beneficial effects on ath-
erogenic dyslipidaemia, pioglitazone has been shown to re-
gress atherosclerosis and reduce cardiovascular events in this
patient group [58–60]. The IRIS (Insulin Resistance
Intervention after Stroke) trial demonstrated cardiovascular
benefit in patients with insulin resistance but without diabetes
[61], and significantly reduced the development of diabetes
[62]. Safety issues in the trial included weight gain and in-
creases in fracture risk and oedema [63].

Despite encouraging experimental findings, the clinical de-
velopment of PPARβ/δ agonists in metabolic disorders has
been disappointing. Seladelpar (MBX-8025) favourably im-
pacted metabolic parameters, reducing apo B100, TG, non-
HDL-C and C-reactive protein and increasing HDL-C, in a
short-term trial in overweight men and women with mixed
dyslipidaemia, with and without atorvastatin treatment [64].
There was, however, no benefit in NASH, leading to termina-
tion of clinical development of this agent [65].

Improved understanding of interactions at the PPAR recep-
tor has invigorated the search for selective and potent perox-
isome proliferator-activated modulators (SPPARMs), which
aim to maximise beneficial effects and minimise the adverse
effects of current PPAR agonists [28••].

SPPARMs for the Metabolic Syndrome?

The underlying aim of a SPPARM is to improve specificity
and potency (i.e. efficacy) and minimise safety issues with
established PPAR agonists, such as fibrates. This rationale
borrows from that used in the development of selective
oestrogen receptor modulators [66]. Understanding binding
interactions at the PPAR has been key to the development of
SPPARMs, as previously discussed [28••]. In brief, binding of
the ligand (drug) at the receptor induces specific conforma-
tional changes and selective recruitment of coactivators which
then selectively activate or repress key target genes, with
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downstream therapeutic effects. This is the paradigm on
which the search for a SPPARM is based.

In the history of SPPARM development, some have
shown dual activity, such as aleglitazar, a PPARα/γ ago-
nist (terminated) and elafibranor (previously known as
GFT505), a PPARα/δ agonist, which had been targeted
to the management of NASH. The latest interim analysis
of the RESOLVE-IT Phase 3 trial with elafibranor, how-
ever, failed to show a significant benefit for the
predefined primary endpoint of NASH resolution without
worsening of fibrosis, or secondary endpoints related to
metabolic parameters versus placebo [67]. Most recently,
lanifibranor, a pan-PPAR agonist, met primary and sec-
ondary endpoints in a phase 2b study in NASH [68, 69].

The very few pure SPPARMα agonists that have been de-
veloped to date include LY518674, GW7647 and most recent-
ly, pemafibrate (previously referred to as K-877), now licensed
in Japan for the management of dyslipidaemia [70]. LY518674
potently upregulated apo A-I production and catabolism in hu-
man subjects with the metabolic syndrome [71] but was not
superior to fenofibrate in lowering TG and raising HDL-C in
patients with atherogenic dyslipidaemia. Additionally, eleva-
tion in serum creatinine (similar to that observed with
fenofibrate) was also reported with this agent [72].

Pemafibrate is the culmination of the systematic synthesis
of over 1500 compounds which were rigorously screened for
SPPARMα activity. As for traditional PPARα agonists, the
pemafibrate molecule has an acidic region, but the addition of

unique benzoxazole and phenoxyalkyl sidechains gives it a Y-
shaped structure. As a result, pemafibrate has an enhanced fit
within the ligand-binding domain of the PPARα (Fig. 2) [73,
74, 75•]. This structural differentiation confers an increase in
PPARα activation potency compared with other fibrates and a
high degree of PPARα subtype selectivity [28, 76].
Transcriptome analysis showed that gene expression profiles
also differed between these two agents, particularly in terms of
magnitude of effect. For example, pemafibrate induced key
target genes such as VLDLR and ABCA1 at a concentration
10-fold lower than fenofibrate [77].

In preclinical studies, there was more robust reduction in
TG and elevation in HDL-C with pemafibrate compared with
fenofibrate, as well as enhanced cholesterol efflux from mac-
rophages, upregulation of fibroblast growth factor 21 (FGF-
21), reduced inflammation and attenuation of atherosclerosis
[78]. Additionally, pemafibrate attenuated postprandial
hypertriglyceridaemia in a mouse model [79], by suppressing
the postprandial increase in chylomicrons and the accumula-
tion of chylomicron remnants. This response was achieved
with a pemafibrate dose 100-fold lower than with fenofibrate
[79], implying that pemafibrate is more efficient in decreasing
TG and apo B48-containing chylomicron remnants, which are
highly atherogenic lipoproteins, more so than those containing
apoB100 [80, 81].

Insights from rodent models of NASH have suggested that
pemafibrate may have potential in NASH. In a diet-induced
amylin NASH mouse model, pemafibrate improved

Insertion of phenoxyalkyl and benzoxazole side-chains

gives pemafibrate a Y-shape. As a result, it binds entirely

within the ligand binding domain for PPARα
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Fig. 2 Pemafibrate is the
realisation of the SPPARMα
concept. Understanding binding
interactions at the PPAR have
been critical in driving the
development of SPPARMα.
Systematic structural
modifications based on a
precision medicine approach led
to the creation of pemafibrate.
This agent demonstrated an
enhanced fit completely within
the ligand binding domain of
PPARα, in contrast to the linear
structure of conventional fibrates
such as fenofibrate. PPARα,
peroxisome proliferator-activated
receptor alpha
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dyslipidaemia, liver dysfunction and NASH features. These ef-
fects were attributed in part to stimulation of lipid turnover [82•].
A subsequent study using a STAM NASH mouse model which
demonstrates NASH progression resembling the clinical disease
showed that pemafibrate improved the histological severity of
NASH, aswell as inflammatory and fibrosismarker gene expres-
sion, without influencing hepatic TG content [83•]. The findings
from this study are therefore consistent with current thinking that
combination therapy targeting multiple components is needed to
manage NASH [84].

Pemafibrate in Metabolic Syndrome: Clinical
Profiling

Preclinical data support the SPPARMα concept and sug-
gest potential therapeutic application in managing
dyslipidaemia associated with the metabolic syndrome.
Additionally, because pemafibrate is metabolised in the
liver and excreted into the bile [85], it can be used safely
in patients with renal impairment, as borne out in clinical
trials [86, 87•].

An early study in Japanese subjects with atherogenic
dyslipidaemia (TG > 200 mg/dL and low HDL-C, < 50 mg/dL
in men and < 55 mg/dL in women) showed robust TG-
lowering (by ~ 45%) with pemafibrate (0.2 or 0.4 mg daily)
that was superior to fenofibrate 100 mg daily [88].
Pemafibrate treatment was also effective against other com-
ponents of the dyslipidaemia associated with the metabolic
syndrome, including lowering VLDL-C (43 to 48%), rem-
nant cholesterol (48 to 50%) and apo B and C-III, raising
HDL-C (21 to 14%) and promoting a shift to a more
favourable lipoprotein profile, with fewer small and very
small LDL. Importantly, pemafibrate treatment was well
tolerated with no increase in serum creatinine and decreased
liver enzymes [88]. Pemafibrate also attenuated postprandi-
al hyperlipidaemia [89], consistent with preclinical findings
[90] and reduced inflammatory markers such as serum am-
yloid A and high-sensitivity C-reactive protein [89].

Furthermore, pemafibrate (0.4 mg daily for 24 weeks)
was similarly effective in Japanese patients with type 2
diabetes mellitus and hypertriglyceridaemia (≥ 150 mg/dL
or 1.7 mmol/L), as assessed by reduction in TG and other
markers of TG-rich lipoproteins. Pemafibrate treatment
also lowered fasting glucose, insulin and homeostasis
model assessment of insulin resistance (HOMA-IR) levels
[91]. In a hyperinsulinaemic-euglycemic clamp study in
subjects with hypertriglyceridaemia and insulin resistance,
pemafibrate treatment improved hepatic glucose uptake
and insulin sensitivity [92]. This effect may be attributed
to the stimulation of fatty acid beta-oxidation and amelio-
ration of liver dysfunction [92] and/or mediated by the
effect of increases in FGF21, as shown by this and other

studies [91, 92], on insulin-dependent hepatic glucose dis-
posal [93]. These findings imply benefit with pemafibrate
beyond lipid-lowering, consistent with the pharmacology
of PPARα activation.

Pooled clinical trial data confirmed the favourable
benefit-risk profile for pemafibrate. In one analysis in-
cluding 1253 patients (677 also treated with a statin) with
atherogenic dyslipidaemia in six phase II-III clinical trials
[94•], pemafibrate 0.4 mg daily lowered TG by ~ 50%,
irrespective of statin treatment, with almost all (98.6%
on statin and 97.7% on pemafibrate monotherapy) pa-
tients showing an appropriate response. Efficacy against
other components of this dyslipidaemia was robust, nota-
bly lowering remnant cholesterol by ~ 50% (Fig. 3). The
safety of pemafibrate was also reassuring. Regardless of
statin use, pemafibrate was well tolerated, with a
favourable renal and hepatic safety profile, even among
patients with mild to moderate renal impairment [86].
There was no evidence of interaction with concomitant
statin therapy [94•].

Finally, the PROVIDE study provided insights regarding
the long-term efficacy and safety of pemafibrate (0.2 or
0.4 mg daily for 52 weeks) in patients with type 2 diabetes
mellitus and elevated TG [95•]. Robust lowering of TG and
remnant cholesterol with pemafibrate (~ 50%) was sustained
over this period, together with improvement in fasting insulin
and HOMA-IR. Additionally, pemafibrate treatment im-
proved liver function tests (such as alanine aminotransferase
and gamma-glutamyl transferase), and was not associated
with clinically meaningful increases in creatine kinase or se-
rum creatinine, supporting the favourable safety profile of this
SPPARMα.

Conclusions

SPPARMα poses an attractive approach to managing ath-
erogenic dyslipidaemia associated with the metabolic syn-
drome. Despite early disappointment with the first com-
pounds tested, the latest candidate, pemafibrate, has
shown a promising benefit-risk profile in patients with
atherogenic dyslipidaemia or hypertriglyceridaemia, key
features of the metabolic syndrome. In addition to robust
lowering of TG and remnant lipoproteins and elevation in
HDL-C, pemafibrate treatment improved insulin sensitiv-
ity and reduced inflammation. Importantly, pemafibrate
was well tolerated, with no evidence of clinically mean-
ingful elevation in serum creatinine, a concern with con-
ventional fibrate therapy.

The outstanding question, which has so far eluded fibrates
in the setting of current evidence-based treatment including
statins, is whether treatment with pemafibrate significantly
reduces cardiovascular events in patients with atherogenic
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dyslipidaemia. This is being tested in the PROMINENT study
(Pemafibrate to Reduce cardiovascular OutcoMes by reducing
triglycerides IN diabetic patiENTs), a cardiovascular out-
comes study in 10,000 patients with type 2 diabetes mellitus
and atherogenic dyslipidaemia (TG ≥ 2·3 mmol/L and < 5·
6 mmol/L, and low HDL-C), in both primary and secondary
prevention settings [96••]. Results are eagerly anticipated in
the next 2–3 years.

Finally, despite the ongoing obesity pandemic, there are
still no approved treatments for NAFLD, the hepatic manifes-
tation of the metabolic syndrome. As the SPPARMα
pemafibrate favourably impacts lipoprotein metabolism and
inflammation, it may offer therapeutic potential. Promising
results in experimental NASHmodels and evidence of benefit
in lowering liver enzymes in clinical trials are encouraging
[97]. On this basis, pemafibrate is being tested in an ongoing
trial in NAFLD (ClinicalTrials.gov identifier NCT03350165)
[98]. It should, however, be borne in mind that the
multifactorial pathogenesis of NAFLD and lack of robust

surrogate trial endpoints have presented obstacles to drug
development in this area.

The coming 2–3 years are critical in defining whether
SPPARMα will offer new approaches to managing the meta-
bolic syndrome and, as a consequence, reducing the associat-
ed morbidity, mortality and disability of ASCVD.
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cholesterol
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