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Protein tunnels and channels are attractive targets for drug design. Drug molecules
that block the access of substrates or release of products can be efficient modulators
of biological activity. Here, we demonstrate the applicability of a newly developed
software tool CaverDock for screening databases of drugs against pharmacologically
relevant targets. First, we evaluated the effect of rigid and flexible side chains on
sets of substrates and inhibitors of seven different proteins. In order to assess the
accuracy of our software, we compared the results obtained from CaverDock calculation
with experimental data previously collected with heat shock protein 90α. Finally, we
tested the virtual screening capabilities of CaverDock with a set of oncological and
anti-inflammatory FDA-approved drugs with two molecular targets—cytochrome P450
17A1 and leukotriene A4 hydrolase/aminopeptidase. Calculation of rigid trajectories
using four processors took on average 53min per molecule with 90% successfully
calculated cases. The screening identified functional tunnels based on the profile of
potential energies of binding and unbinding trajectories. We concluded that CaverDock is
a sufficiently fast, robust, and accurate tool for screening binding/unbinding processes of
pharmacologically important targets with buried functional sites. The standalone version
of CaverDock is available freely at https://loschmidt.chemi.muni.cz/caverdock/ and the
web version at https://loschmidt.chemi.muni.cz/caverweb/.
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INTRODUCTION

Until the beginning of the new millennium, drug design mostly relied on experimental high-
throughput screening (Kansy et al., 1998; Zhang et al., 1999; Bleicher et al., 2003). These techniques
evolved rapidly up to the beginning of the nineties. However, although at that time they seemed
promising and the best techniques for drug design and discovery, they were expensive in both
time and labor (Bajorath, 2002; Bielska et al., 2014). More cost-effective methods emerged with
the introduction of docking algorithms and thorough analysis of protein-ligand interactions.
This boom in docking approaches led to the development of over 60 software tools for docking
(Sousa et al., 2010; Pagadala et al., 2017). At the beginning of the new millennium, a new
technique for drug design called “virtual screening” started to gain recognition (Clark, 2008;
Ripphausen et al., 2010).
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Virtual screening is now a well-established technique for drug
design (Bottegoni et al., 2016), both in academic research and
the pharmaceutical industry (Mangoni et al., 1999; Clark, 2008;
Huang et al., 2008; Totrov and Abagyan, 2008; Cheng et al.,
2012; Kaczor et al., 2016). Many docking programs are available
for virtual screening and several comparisons and benchmarks
have been published (Cummings et al., 2005; Cross et al., 2009;
Lavecchia and Di Giovanni, 2013; Bielska et al., 2014; Chaput
et al., 2016; Kim et al., 2016). These programs help in the first
step of the drug design process and follow a general protocol
of screening a large database of small compounds on a chosen
target (receptor). After selecting a target, a library of ligands is
chosen. The ligands can be taken from many publically available
or commercial libraries. Of these, ZINC (http://zinc15.docking.
org/) (Sterling and Irwin, 2015), ChEMBL (https://www.ebi.ac.
uk/chembl/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/)
are among the most widely used and largest ligand libraries.
However, other databases with fewer compounds may be useful
when searching for compounds with specific characteristics. An
example is Drugbank (https://www.drugbank.ca/) (Law et al.,
2014), which is a database of drugs approved by the FDA and
Canadian Agency for Drugs and Technologies in Health. It also
enables selection of experimental, investigational and illicit drugs.

The success of virtual screening boosted the development of
techniques used for drug design and in recent years, binding
kinetics has gained increased momentum in the drug design
community. A research program supported by the European
Innovative Medicine Initiative has, for the last 6 years, focused
on understanding target binding kinetics (Laverty et al., 2012;
Goldman et al., 2013; Kush and Goldman, 2014). Although there
has been a steep rise in the development of methods for drug
design, there is still space for further improvements.

The binding of a substrate and release of the products
of an enzymatic reaction have been studied using different
computational approaches (Straatsma and McCammon, 1992;
Kollman, 1993; Lamb and Jorgensen, 1997). Classical and
accelerated molecular dynamics simulations have been used to
calculate ligand binding affinities. These methods use the free
energy perturbation approach to calculate the relative binding
free energy between a receptor and two ligands based on the
thermodynamic cycle (Kruse et al., 2012; Tomić et al., 2015).
However, such methods are computationally demanding and
not suitable for screening large libraries. Development of new
approaches for analysis of ligand binding and unbinding is
clearly needed.

Several computational tools have been developed for
searching the best binding positions in the active site pocket of
a target molecule and then binding positions with increasing
distance from the active site. PELE is a web server that
incorporates a wide range of different types of calculation,
including protein local motions (Lucas and Guallar, 2012). PELE
also enables ligand binding refinement, binding site searches
and ligand migration. The latter three scripts yield multiple-pose
docking results through all protein free space, which cannot
be achieved with simple docking algorithms (Guallar et al.,
2009; Hernández-Ortega et al., 2011; Espona-Fiedler et al.,
2012; Madadkar-Sobhani and Guallar, 2013). MOMA-LigPath
(Devaurs et al., 2013) has a robotics algorithm for space search,

not only in the active site pocket but also along an unbinding
trajectory. However, as the tool does not output information
on the energy of conformations, it is not possible to prioritize
individual pathways. SLITHER (Lee et al., 2009) is a web
server built to generate conformations of substrates while
traveling through membrane channels. It is based on both the
AUTODOCK (Morris et al., 2009) and MEDock (Chang et al.,
2005) docking algorithms. Energetic information is available
from these calculations. However, docking trajectories are
often sparse.

We have developed a fast method based on analysis of protein
tunnels (Marques et al., 2017) combined with molecular docking
in a single implementation—called CaverDock—and used it to
address important biochemical problems. Protein tunnels are
structural features connecting the buried active site cavities with
the protein surface. First, tunnels in proteins are identified using
the specialized software Caver (Chovancova et al., 2012). Then,
an extensively optimised version of AutoDock Vina (Trott and
Olson, 2010) is used to dock a ligand along the tunnel to produce
a continuous trajectory. Algorithms implemented in CaverDock
(Filipovic et al., 2019; Vavra et al., 2019) can be used to run a
virtual screening protocol for binding a library of ligands into
and from the active site. This procedure identifies energetically
favorable binding sites located outside the active site, providing a
profile of potential energies. The goal of CaverDock, in current
implementation, is not the calculation of the free energy of
binding. Instead of obtaining several trajectories to calculate
the free energy (Jarzynski, 1997; Fernández, 2014), CaverDock
calculates the binding energy along the several, predetermined,
points along the tunnel.

We have utilized the new CaverDock tool in three
applications. The first examined differences between substrates
and inhibitors and selection of flexible side chains along
tunnels bottlenecks, which serve as potential hot spots for
mutagenesis. The datasets used for testing of the flexible
simulations consisted of seven proteins with six tunnels and
one channel: (i) cytochrome P450 17A1, (ii) leukotriene A4
hydrolase/aminopeptidase, (iii) acetylcholinesterase (AChE),
(iv) human plasma cholesteryl ester transfer protein (CETP),
(v) inducible nitric oxide synthase (iNOS), (vi) UDP-3-O-
N-acetylglucosamine deacetylase (LpxC), and (vii) matrix
metalloproteinase-13 (MMP-13). Trajectories were calculated
for both the natural substrates and inhibitors. The second
application was the study of human N-terminal domain of heat
shock protein 90α (N-HSP90), an important pharmaceutical
cancer target, with a diverse set of inhibitors. The dataset was
obtained from previously published study (Kokh et al., 2018).
We compared the resulting conformations from CaverDock with
positions of inhibitor molecules found in the crystal structures.
Furthermore, we analyzed the correlations between CaverDock
energies and measured experimental values (Kokh et al., 2018).
The third application was the screening of potential inhibitors
and identification of the access pathways through simulation of
binding processes. The applicability of CaverDock for virtual
screening pharmaceutically important molecules was validated
with cytochrome P450 17A1 and a dataset of oncological
drugs from the NIH.gov website and with leukotriene A4
hydrolase/aminopeptidase and a dataset of anti-inflammatory
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drugs from the drugbank.ca website. The presented results
demonstrate that CaverDock is a ready-to-use tool that should
be of broad interest to biochemists, protein engineers, and
medicinal chemists.

METHODS

Protein Targets
Cytochrome P450 17A1 and leukotriene A4
hydrolase/aminopeptidase were selected for flexibility testing
as well as the model systems to validate the applicability of
CaverDock for the virtual screening of ligand libraries. Seven
protein targets were considered, as described below. The
description of the structure and function of Acetylcholinesterase
(AChE), Cholesteryl ester transfer protein (CETP), Nitric oxide
synthase (iNOS), Metal-dependent deacetylase (LpxC), and
Matrix metalloproteinase-13 (MMP-13) is provided in the
Supplementary Information.

Cytochrome P450 17A1 functions as a drug-processing enzyme
and was selected as the target protein for both application
studies. The starting structure for this work was the crystal
structure taken from the Protein Data Bank (Berman et al., 2000)
with PDB-ID 3RUK (DeVore and Scott, 2012). The structure
comprised an agglomerate of 4 cytochromes P450 17A1, from
which we only used chain A. The structure also contained the
inhibitor Abiraterone, which blocked access to the active site and
was deleted prior to CaverDock screening.

Leukotriene A4 hydrolase/aminopeptidase, with crystal
structure PDB-ID 4L2L (Stsiapanava et al., 2014), was selected as
the second target for both application studies. Leukotrienes are
a family of lipid mediators that play important roles in a variety
of allergic and inflammatory reactions (Haeggström et al., 1990;
Funk, 2001; Haeggström, 2004; Szul et al., 2016). Leukotriene
A4 hydrolase/aminopeptidase (EC 3.3.2.6) is a bifunctional
zinc metalloenzyme that catalyzes formation of the chemotactic
agent LTB4, a key lipid mediator in the immune response. This
enzyme, had an inhibitor, 4-(4-benzylphenyl) thiazol-2-amine,
bound to the crystal structure, which had to be removed prior to
screening. LTA4H possesses two known activities, both of which
are exerted via distinct but overlapping active sites and depend
on a catalytic zinc atom. The catalytic zinc atom is bound to the
signature HEXXH, known also for other M1 metallopeptidases
(Gomis-Rüth et al., 2012; Zhang et al., 2015).

Heat shock protein 90α (HSP90) is a chaperone protein that
assists the folding of client proteins. The HSP90 consists of three
domains. The highly conserved N-terminal domain with ATP-
binding cleft which is responsible for the catalytic activity. The
middle domain contains a large hydrophobic surface needed for
the folding of client proteins. The C-terminal domain is involved
in the dimerization of HSP90 (Li et al., 2012). The function
of HSP90 is linked to hydrolysis of ATP and the dimerization.
A number of the HSP90 client proteins are part of cancer
cell-associated signaling pathways, therefore the HSP90 is an
important target in drug design. The function of HSP90 can be
blocked by small molecules. This inhibition leads to degradation
of the client proteins and impacts tumor growth (Kabakov et al.,
2010). In this study, we analyzed the bound (HOLO) crystal

structures with several small inhibitors inside the ATP-binding
pocket. Furthermore, we conducted CaverDock simulations with
a larger set of inhibitors using the unbound (APO) crystal
structure of N-HSP90 (Kokh et al., 2018).

Structural Analysis of N-HSP90 HOLO
Complexes
We studied the ability of CaverDock to find protein-ligand
conformations similar to the crystal structures using the set
of previously published complexes (Kokh et al., 2018). We
analyzed the 34 crystal complexes of the N-HSP90 with
different co-crystallized inhibitors. The list of the PDB IDs is in
Supplementary Table S1. The crystal structures were aligned by
DeepAlign (Wang et al., 2013) to simplify the following analyses.
The tunnels for CaverDock runs were calculated by Caver 3.02
(Chovancova et al., 2012) in each inhibitor-free structure starting
from the catalytic residues 93 and 138 with the probe radius, shell
radius and shell depth set to 1.5, 20, and 20 Å, respectively. The
tunnel leading through the main opening of the ATP-binding
cleft to the active site was selected, discretized with 0.3 Å steps
and extended by 20 Å to ensure complete unbinding of the tested
inhibitor molecules. The receptor and ligand PDBQT files for
CaverDock were prepared by MGLtools (Morris et al., 2009).

Energy Analysis of N-HSP90 HOLO and
APO Complexes
Based on the previously published kinetic data (Kokh et al.,
2018), we prepared two datasets. The first dataset consists of a
subset of 32 inhibitors and HOLO structures from the HOLO
structure analysis dataset described above. The kinetic data
for two inhibitors (compound_01 and compound_04) was not
complete in the original publication. The second dataset was
created to check the findings from the HOLO dataset. It consists
of 68 inhibitors. In this case, we ran the CaverDock calculations
with the APO structure of N-HSP90 (PDB ID 3T0H). The
CaverDock calculations were carried out in the same manner as
described above for the structural analysis.

Libraries of Small Ligands
Several approaches can be used to choose libraries for virtual
screening. For instance, screening as many ligands as possible
from a broad dataset of molecules, such as the ZINC database.
Another approach is to screen for drug-like compounds with
specific biological activities. Virtual screening may also be
performed using cognate ligands belonging to a group of
compounds that the enzyme naturally binds and/or catalyzes. In
the present study, we conducted a virtual screening campaign on
a group of drug-like molecules possessing predefined biological
activities. The chosen ligands were converted to the AutoDock
Vina-compatible PDBQT format using MGLTools v1-5-7rc1
(Morris et al., 2009). We used the inhibitors complexed in the
structures for validation of flexible side chains (inhibitor dataset).
We built the substrates in Avogadro and minimized them with
the UFF forcefield (Hanwell et al., 2012) for the natural substrates
(substrate dataset).

A dataset of 133 cancer drugs was downloaded from the
NIH.gov website for the cytochrome P450 17A1. The drugs were
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all FDA-approved and have been used against different types of
cancer. Of the 133 drugs, 105 were used for the screening and
28 were excluded due to being salts or having unconventional
atoms that could not be properly handled by AutoDock Vina.
Among the 28 excluded drugs, 22 had two ligand molecules
in the same file. The other six drugs had some atoms (one
with arsenic, three with platinum and two with boron) for
which there were no parameters available in the force field of
AutoDock Vina. A dataset of 56 anti-inflammatory drugs was
downloaded from the drugbank.ca website for leukotriene A4
hydrolase/aminopeptidase. Out of these 56 drugs, 54 were used
and 2 were excluded from the screening. One excluded drug
contained a gold atom, for which AutoDock Vina had no defined
parameters. The other drug was a silicate mineral with two
molecules in the same file.

CaverDock Calculation
The software tool CaverDock is available free of charge at
the website https://loschmidt.chemi.muni.cz/caverdock/. The
CaverDock protocol (Figure 1) starts with finding the tunnels
by using Caver (Chovancova et al., 2012). Caver can be used
as a standalone program or as a Pymol plugin. The active site
is selected as a starting point for the Caver calculation. For all
seven proteins, the location of ligand binding in the active site
was known (Gerber et al., 1997; Funk, 2001; Thunnissen et al.,
2001; Epps and Vosters, 2002; Rudberg et al., 2002; Haeggström
et al., 2007; Gattis et al., 2010; Singh and Konwar, 2012; Clayton
et al., 2013; Khatri et al., 2014; Yoshimoto and Auchus, 2015).
All the other settings were fixed at default values. This step of the
protocol yields several tunnels for each protein. The numbering
of the tunnels is given by a parameter called priority, which is
the ratio between (i) bottleneck radius, (ii) tunnel length and (iii)
curvature of the tunnel. The tunnels were represented as a series
of sequential spheres.

We only used tunnels with priority 1 for the flexible
simulations. These tunnels had the inhibitor already inside,
although we removed it before the Caver calculation since we did
not relax the protein in any way. Hence, there was an implicit
bias for these tunnels. The flexibility in CaverDock arises from
the already implemented flexibility capabilities of AutodockVina.
Flexibility on side chains was introduced in three iterations. In
the default mode, CaverDock adds flexibility to two residues
in each iteration, up to three iterations. These values may be
changed by the user to better fit their needs. For each tunnel in the
substrate and inhibitor datasets, two flexible bottleneck residues
were added in each iteration. These flexible residues were not
necessarily the same for the substrate and inhibitor simulations.
Since substrates and inhibitors may differ in length and volume,
the bottlenecks that they encounter along a tunnelmay also differ.

For cytochrome P450 17A1, we used three tunnels for our
virtual screening study. The first two tunnels found by Caver
were also described in the literature, whereas the third tunnel
was ranked as #5 by Caver. By individually inspecting every
tunnel, we noted that tunnels ranked #3 and #4 by Caver were
too long and narrow to be feasible as a ligand access pathway. For
leukotriene A4 hydrolase/aminopeptidase, we used two tunnels
ranked #1 and #2 by Caver. The results obtained were consistent

FIGURE 1 | Workflow of virtual screening using CaverDock. (1) Receptor and
(2) ligand specification follow established protocols of the software tool
AutoDock (Morris et al., 2009). (3) Identification of protein tunnels using Caver
(Chovancova et al., 2012). (4) Tunnel discretization and sequential ligand
binding study using CaverDock (Filipovic et al., 2019; Vavra et al., 2019). (5)
Analysis of docking trajectories and energy profiles, extraction of energy
barriers and protein-ligand complexes possessing the lowest energies.

with the literature (Cui et al., 2015), confirming that these two
tunnels were used by the protein to transport ligands/drugs
in and products out. Since the active site in leukotriene A4
hydrolase/aminopeptidase is inserted deeper into the protein and
the protein itself is packed closer together than in cytochrome
P450 17A1, only six tunnels were described for this protein vs. 15
tunnels described for cytochrome P450 17A1. A literature search
showed that the tunnels ranked highest by Caver were indeed
tunnels used by the natural substrate and inhibitors (Yu et al.,
2013; Stsiapanava et al., 2014).

After selecting the tunnels to study, the next step in
a CaverDock protocol is to discretize the tunnels. Tunnel
discretization divides each tunnel into a set of discs. The ligand
is glued to a disc by one of its atoms and as the disc moves
through the tunnel, the software defines a ligand path coordinate.
After discretization, we extended the tunnels by two Ångströms.
This step ensured that the tunnels were long enough to enable
identification of the local binding minima at the tunnel mouth.
Having prepared the tunnels, we used MGL tools to set the
AutoDock atom types and Gasteiger charges for the receptor and
ligands. MGL tools provide scripts that convert pdb and mol2
files into pdbqt file format. Having prepared the receptors and
ligands, we next prepared a CaverDock file to run the docking
step. This file was equivalent to the one used by AutoDock
Vina but with the path to the file containing tunnel information
instead of the receptor (Trott and Olson, 2010). We then
added information about the studied tunnel from Caver to the
configuration file. This new information allowed the “docking”
conformation to be searched along the tunnel on each disc. One
configuration file needs to be created for each ligand. Figure 2
shows a representation of a ligand bound along a tunnel taken
from several snapshots of a CaverDock calculation.
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FIGURE 2 | Analysis of an inhibitor passing through a tunnel using CaverDock. Left: structure of cytochrome P450 17A1 and tunnel #3 with seven (7/254) snapshots
of a ligand bound along the tunnel. The minimum binding energy conformation is shown in green, whereas the maximum binding energy is shown in brown, in a
ball-and-stick representation. Right: energy profile obtained from the CaverDock calculation for cytochrome P450 17A1 and its tunnel #3 with the ligand.

An AutoDock Vina virtual screening was also performed with
the same targets as the CaverDock virtual screening. To ensure
that AutoDock Vina yielded the best result possible within a
reasonable time, we used an exhaustiveness setting of 30. The
center of the matrix grid was the same as that used for the
CaverDock calculation and the box was 27 Å on each side.

RESULTS

Simulations With Flexible Side Chains
CaverDock allows flexibility of residue side chains along a tunnel.
We tested the intrinsic flexibility of AutoDock Vina implemented
in CaverDock with the substrate and inhibitor datasets. We
introduced flexibility in three iterations by adding two flexible
bottleneck residues in each iteration. Thus, iteration 1, 2, and
3 had two, four and six flexible side chains, respectively. The
energetic barrier for the substrate and inhibitor to travel from
the inside to outside of cytochrome P450 17A1 or leukotriene A4
hydrolase/aminopeptidase was lowered when we added flexible
side chains (Figure 3). For cytochrome P450 17A1, the binding
energy was lowered with each iteration for both the inhibitor
and substrate. In the case of the substrate of leukotriene A4
hydrolase/aminopeptidase, the energetic barrier was stabilized
with only two flexible side chains and addition of further flexible
side chains gave no apparent change in the energetic barrier
along the trajectory of the substrate. On the other hand, the
inhibitor of leukotriene A4 hydrolase/aminopeptidase had a
lower energetic barrier with each iteration. As expected, the
inhibitor had a similar or more stable binding energy when
compared to the substrate.

We showed that the flexible simulations were able to open
parts of the tunnel with high barriers with the substrate and
inhibitor datasets (electronic SI). Significant energetic barriers
were lost in the iteration with six flexible residues. In this

scenario, the ligand was able to leave without any spatial or
energetic hindrance. The flexible side chains moved out of the
way to let the ligand escape, but the new conformations of side
chains were close to the rest of the protein structure. Adding
flexible residues did not affect the energetic barrier in iNOS,
which showed a similar profile through all iterations in the ligand
simulations (electronic SI). In these cases, the tunnel radius was
already large enough for unrestricted ligand exchange with no
obvious bottleneck.

The usage of the intrinsic AutoDock Vina flexibility in
CaverDock is still under development and new algorithms are
being tested for obtaining better results.With the current version,
users are advised to use both rigid and flexible simulations with
four or less flexible side chains. We can get more information
about the tunnel with the flexible side chains, e.g., to identify
which residues need to be flexible to open the tunnel for ligand
passage since these residues are natural hot-spots for potential
mutagenesis. However, there is an obvious computational price
to pay when using flexible simulations, as shown in Table 1.
In particular, adding flexible residues leads to longer simulation
times. We advise running CaverDock simulations with lower
bound trajectories only when running in a rigid mode because
rigid trajectories may yield unrealistic high barriers when
running upper bound simulations (discussed below).

Comparison of Calculated and
Experimental Results
Structural Analysis of HOLO Structures
We calculated the RMSD between the positions of bound
inhibitors and the lower-bound CaverDock snapshots. We
report the lowest RMSDs and the RMSDs for the lowest
energy conformations in Supplementary Table S1. Validation of
CaverDock in terms of reproducibility of experimental structures
of enzyme-inhibitor complexes revealed that the tool identified
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FIGURE 3 | Plots of the binding energies of cytochrome P450 17A1 (left) and leukotriene A4 hydrolase/aminopeptidase (right) obtained from CaverDock with and
without flexibility. Binding energies between substrate and inhibitor with tunnel radius present (top). Binding energies from substrate simulations with flexibility, rigid
simulation, and tunnel radius on the background (middle). Binding energies from all inhibitor simulations with flexibility, rigid simulation and tunnel radius on the
background (bottom).
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TABLE 1 | Summary of calculation times for lower bound calculations with rigid and flexible simulations and indication of the flexible residues added on each iteration.

Cytochrome P450 17A1 Leukotriene A4 hydrolase/aminopeptidase

Inhibitors Substrates Inhibitors Substrates

Rigid Time 47min 48 s 48min 13 s 205min 32 s 24min 39 s

1st Iteration Time 110min 35 s 66min 18 s 338min 41 s 50min 32 s

Flexible
Residues

Ile205,
Tyr201

Ile205,
Ile246

Val381,
Val367

Val367,
Phe362

2nd Iteration Time 252min 28 s 168min 3 s 854min 20 s 112min 56 s

Flexible
Residues

Arg239,
His235

Tyr201,
His235

Lys364,
Phe362

His360,
Lys364

3rd Iteration Time 436min 20 s 332min 22 s 1,994min 1 s 156min 11 s

Flexible
Residues

Ile198,
Leu242

Leu243,
Arg239

His360,
Lys385

Gln136,
Ile372

Residues are chosen automatically to lower potential energy at bottlenecks.

FIGURE 4 | Structural comparison of CaverDock binding poses and X-ray structures. (A) Compound_14 correctly predicted by CaverDock (green) with low RMSD
compared to the original crystal structure (red). (B) Compound_70 wrongly fitted in the pocket by CaverDock (green) with the original size of the tunnel. The overall
position is similar, but orientation of the compound is incorrect. (C) Compound_70 correctly fitted in the pocket with the increased size of the tunnel. CaverDock
(green) predicted a pose in equivalent position to the original crystal structure (red).

proper location and configuration in a vast majority (29 out of
34) cases. We show the example of correct fit in Figure 4A. In
the case of compound_11, compound_19, compound_38, and
compound_70 the correct pose was found by CaverDock but was
not correctly identified. A different pose with the lowest energy
was picked. In the case of the compound_18, CaverDock failed
to find the correct conformation both for the closest and the
lowest energy case. The high RMSDs may be caused by incorrect
orientation of the ligand and also by the location of the inhibitor.
The conformations of inhibitors which are deeper in the protein
structure and are out of the tunnel may become unreachable
for CaverDock since the ligand is always spatially constrained to
the disks.

We experimented with the settings of CaverDock and
recalculated the trajectories for the five problematic cases.
We found out that by extending the radius of discretized
tunnel discs by 10 Å, CaverDock is able to explore deeper
parts of the cavity since the ligand has more freedom
for movement. The resulting changes of RMSD are shown
in Supplementary Table S2. The RMSDs were lowered and
the binding poses were improved tremendously in case
of compound_18, compound_19, and compound_70. This
improvement in geometry for the compound_70 is shown in

Figures 4B,C. The lowest energy pose for the compound_38
was still not identified correctly. Based on these findings,
we decided to implement the tunnel extension for our
future CaverDock calculations since the improvements were
substantially beneficial.

Energy Analysis of N-HSP90 HOLO and APO Forms
CaverDock was used to analyze the unbinding of inhibitors
from corresponding HOLO structures. We studied 32 cases
with available kinetic data (Kokh et al., 2018). Selected energy
values were extracted from the energy profiles: the energy
minimum close to the start of the trajectory corresponding
with the ligand-bound in the active site (EBound) and the
energy at the tunnel mouth—the last disk of the original
tunnel—related with the surface-bound ligand (ESurface). In this
specific case, there were no visible barriers as shown in the
energy profiles Supplementary Figure S1. Therefore, we had
to use the difference between bound and surface state, the
1EBS as possible energy barrier which needs to be overcome
during the process of unbinding. We calculated the correlation
between 1EBS and the experimentally measured values for
kon, KD, and koff. We found a significant correlation of
0.53 for 1EBS with log(koff). Comparison of our results with
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FIGURE 5 | Structure of cytochrome P450 17A1 with tunnels calculated using Caver and binding poses obtained by CaverDock. (A) Global view of tunnels—tunnel 1
(blue), tunnel 2A (red), tunnel 3 (green). (B) View of tunnels with no protein visualized. Each tunnel has the ligand bound in the minimum obtained from the CaverDock
continuous trajectory calculation. (C) Tunnel 1 and minimum binding energy pose obtained from CaverDock (blue) and AutoDock Vina (black). (D) Tunnel 2A and
minimum binding energy pose obtained by CaverDock (red) and AutoDock Vina (black). (E) Tunnel 3 and minimum binding energy pose obtained by CaverDock
(green) and AutoDock Vina (black).

the previously published correlation 0.63 for the computed
relative residence times from molecular dynamics simulations,
tcomp, with the measured residence times texpt (texpt = 1/koff),
we confirmed that CaverDock is able to predict koff rates
when HOLO structures are used with only a fraction of the
computational effort.

We checked the previous findings from the HOLO dataset by
simulating the complete set of inhibitors with the APO structure.
We did not find any correlation in this case. This, together with
no visible barriers in the CaverDock profiles and slow kinetic
rates suggests conformational changes in the protein during
the binding and unbinding of the inhibitor molecules. Essential
conformational change is missing in the APO structure forcing
the molecules to bind differently when simulated by CaverDock.
Development of the new version of CaverDock that will be taking
into account protein backbone dynamics is currently on-going in
our laboratory.

Screening of Inhibitors
The purpose of this analysis was to test whether CaverDock
(Filipovic et al., 2019; Vavra et al., 2019) could be used for
virtual screening. After deciding on the targets and libraries of
compounds to use, we analyzed the tunnels for both targets.
First, we choose the tunnels according to their ranking given
by Caver and information from the literature and then used

CaverDock to move the ligands from the outside of the proteins
to the active site. Next, we performed virtual screening with
the same libraries and targets using AutoDock Vina. It is worth
noting that there was a large difference in the exhaustiveness
used between the two programs: an exhaustiveness of thirty
was used with Autodock Vina, whereas an exhaustiveness of
one was used with CaverDock to keep the run time as short
as possible. We showed that CaverDock provided new insights
into the receptor ligand affinity. We also showed that CaverDock
was a computationally cheap method with low run times.
We studied 5 tunnels in the two proteins: three tunnels in
cytochrome P450 17A1 (Figure 5) and two tunnels in leukotriene
A4 hydrolase/aminopeptidase (Figure 6). Tunnel 1 was much
shorter than the other two tunnels studied in cytochrome P450
17A1 (Table 2). It also had a narrow mouth when compared
to the rest of the tunnel, but it was still wider than tunnel
3. Tunnel 2A was the most sinuous tunnel of the three, with
more twists than the other two tunnels. However, they were not
as sharp as the turn in tunnel 3. Tunnel 3 had a sharp turn
halfway through the tunnel. It was narrow at the entrance of the
protein, but after the turn widened sufficiently to allow a bulky
inhibitor like Abiraterone to bind to the heme-group, as in the
crystal structure.

The tunnels are modeled with the drug Temozolomide in
both the CaverDock (Supplementary Video) and AutoDock
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FIGURE 6 | Structure of protein leukotriene A4 hydrolase/aminopeptidase with tunnels calculated using Caver and binding poses obtained by CaverDock. (A) Global
view with tunnels LTA4 (blue) and PGP (red). (B) Tunnel LTA4 and minimum binding energy pose represented by balls and sticks obtained from CaverDock (blue) and
AutoDock Vina (black). (C) Tunnel PGP and minimum binding energy pose represented by balls and sticks obtained from CaverDock (red) and AutoDock Vina (black).

TABLE 2 | Summary of data for tunnels in the target proteins.

Cytochrome P450 17A1 Leukotriene A4 hydrolase/aminopeptidase

Tunnel 1 Tunnel 2A Tunnel 3 Tunnel LTA4 Tunnel PGP

Size of library 105 105 105 54 54

Continuous 41 (39.0%) 42 (40.0%) 42 (40.0%) 20 (37.0%) 21 (38.9%)

Lower bound 100 (95.2%) 91 (86.7%) 93 (88.6%) 48 (88.8%) 50 (92.6%)

Only lower bound 49 (46.7%) 59 (56.2%) 51 (48.6%) 28 (51.8%) 29 (53.7%)

Stopped at bottleneck 5 (4.8%) 14 (13.3%) 11 (10.5%) 6 (11.1%) 4 (7.4%)

Time average 41min 50 s 68min 59 s 52min 11 s 36min 17 s 22min 23 s

Highest time 272min 42 s 136min 4 s 269min 38 s 73min 13 s 47min 6 s

Lowest time 4min 1 s 14min 10 s 5min 22 s 2min 59 s 1min 20 s

Length (Å) 15.1 24.9 28.2 20.4 25.4

Curvature (Å) 1.2 1.4 1.4 1.3 1.2

Maximum bottleneck (Å) 1.4 1.3 1.3 1.9 1.7

Average ligand RMSD lower bound docking (Å) 3.0 5.3 1. 9 5.4 2.8

Average ligand RMSD continuous docking (Å) 6.8 10.8 10.5 11.2 6.8

Vina virtual screening (Figure 5). CaverDock yielded aminimum
binding energy for a conformation inside the tunnel, rather
than close to the heme group indicated by the AutoDock Vina
calculation. The distance to the heme group was 10.3 Å with
CaverDock for tunnel 3 and 2.6 Å with AutoDock Vina. Similar
trends were observed for the other two tunnels. For tunnels 1
and 2A, CaverDock gave a minimum binding energy at 8.1 and
7.5 Å from the heme group, respectively. It should be noted that
CaverDock was still able to bind the ligand to the heme group
but at a higher energy than the conformations presented here.

This result clearly demonstrates the value of the analysis of ligand
binding and unbinding using CaverDock. Whereas, AutoDock
Vina performs docking in amatrix box set by the user, CaverDock
considers a continuous motion from the entrance of the tunnel
to the active site, restrained to the tunnel found by Caver. It
is also apparent in Figure 5, that tunnel 2A was deprecated by
AutoDock Vina. Whereas, the closest nitrogen was bound to the
heme group, the rest of the molecule was in a common area
overlapping both tunnel 1 and tunnel 3. At the same time, the
ligand was positioned away from tunnel 2A, with only a few

Frontiers in Chemistry | www.frontiersin.org 9 October 2019 | Volume 7 | Article 709

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Pinto et al. Screening of Ligand Binding/Unbinding

atoms in the common space where all three tunnels overlapped.
Despite these differences in the docking calculations, the minima
binding energy obtained from CaverDock and binding affinity
obtained from AutoDock Vina showed no significant differences
for the case presented here. A complete data table comparing the
AutoDock Vina and CaverDock virtual screening is presented in
the Supporting Information.

Results for leukotriene A4 hydrolase/aminopeptidase are
shown in Figure 6. Comparing tunnel LTA4 (blue) with tunnel
PGP (red), only slight differences were discerned in the sizes of
the tunnels. Tunnel PGP had a sharp turn, whereas tunnel LTA4
did not. Tunnel LTA4 had a higher overall curvature than tunnel
PGP. Both tunnels are presented with the minimum binding
energy pose obtained from CaverDock with the drug Ketorolac.
Ketorolac was not bound to the zinc atom in the active site for
both studied cases. AutoDock Vina yielded a conformation with
the drug molecule at a distance of 4.8 Å from the zinc atom
and clearly docked in the tunnel PGP, with only one ring in
the common area overlapping both tunnels (Figure 6). Using
CaverDock, the minima were even farther away from the zinc
in the active site: the distance in tunnel PGP was 8.8 Å and in
tunnel LTA4 11.8 Å. When the drug molecule is bound in tunnel
LTA4, higher energetic barriers were obtained. It is known that
pro-inflammatory mediator biosynthesis occurs through tunnel
LTA4 and that the inhibitor Pro-Gly-Pro enters and exerts its
effects through a different tunnel (Sanson et al., 2011; Čolović
et al., 2013).

One of the main objectives of this study was to assess the
computational costs of a project with the novel computational
tool. In total, 105 drugs were docked to the three tunnels in
cytochrome P450 17A1 (Table 2). From these, CaverDock was
able to finish a continuous (upper bound) trajectory calculation
for 39.7% of the drugs and a discontinuous (lower bound)
trajectory for 90.2%. On average, the drugs were not able to
overcome the bottlenecks 9.8% of the time. This result does not
mean that the calculation failed but that the ligand was not able
to pass through the rigid receptor. Values were also similar for
leukotriene A4 hydrolase/aminopeptidase. The length of the five
tunnels studied ranged from 15.1 to 28.2 Å, the curvature of
the tunnels ranged from 1.2 to 1.4 Å and bottlenecks ranged
from 1.3 to 1.9 Å. These differences in length, curvature and
bottlenecks yielded very different tunnels and tunnel shapes, as
evident in Figures 5, 6. The approach presented here constitutes
a computationally low-cost method for virtual screening with
a run time average of 2,660 s (∼44min). Moreover, when the
upper bound calculation was turned off, the lower bound results
could be completed within several minutes using a computer
with 4 processors. Note that each calculation runs independently,
allowing users with sufficient computing power to perform a
virtual screening protocol on a full library in a parallel manner.

Using data obtained from a virtual screening campaign, it is
possible to analyze a functionally important tunnel for a given
target and set of drugs. Although it is not always easy to select
a preferred tunnel, it may be possible to identify tunnels that
are not favored. We found that in the case of cytochrome P450
17A1, the jobs finished successfully with a continuous trajectory
and tunnel 2A had higher barriers than the other two tunnels

FIGURE 7 | Box and Whiskers plot representing the maxima (energy barriers)
for each continuous (up) and lower bound (down) trajectories obtained for
cytochrome P450 17A1. Outlying values are indicated by circles.

(Figure 7), therefore it is not preferred. However, we could
not determine which of the two remaining tunnels 1 and 3
would be better to consider in a drug design project since there
was no statistically significant difference in the energy barriers.
Possibly both tunnels can be explored by ligands during their
(un)binding. The results were more conclusive for leukotriene
A4 hydrolase/aminopeptidase, as shown by the differences in
energy barriers (Figures 7, 8). In the case of the continuous
(upper-bound) calculation, the drug molecule was taken through
one smooth trajectory with the possibility of backtracking if it
encountered a bottleneck. Backtracking allowed the drug to find a
more favorable conformation to overcome the bottleneck. In the
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FIGURE 8 | Box and Whiskers plot representing the maxima (energy barriers)
for continuous (up) and lower bound (down) trajectories obtained for
leukotriene A4 hydrolase/aminopeptidase. Outlying values are indicated by
circles.

case of the lower-bound calculation, once the drug encountered
a bottleneck, it was allowed to flip in order to find a more
suitable conformation on the other side of the bottleneck, while
the point being dragged through the discs of the tunnel was kept
constant (Figure 8). This trajectory always yielded a lower energy
value for the barrier because, by definition, the bottleneck was
easier to overcome. On the other hand, lower time demands and
similar results make the lower bound calculation very powerful
for virtual screening.

CONCLUSIONS

Our results demonstrate that CaverDock is applicable for
screening of large libraries of potential inhibitors. It provides
information on binding and unbinding processes. The tool
estimates a profile of potential energies and calculates respective

trajectories without the need for time-demanding molecular
dynamics simulations. Setting up a calculation using CaverDock
is simple and comprises five steps: (i) definition of a receptor,
(ii) definition of the ligands, (iii) calculation of tunnels using
Caver, (iv) screening of un/binding trajectories, and (v) data
analysis. The tool is accompanied by a user manual that explains
the setting up of calculations as well as troubleshooting. A
standalone version of CaverDock with detailed documentation
is available at https://loschmidt.chemi.muni.cz/caverdock/.
The automated version of CaverDock is available via the
web https://loschmidt.chemi.muni.cz/caverweb/.

The dynamics of side chains lining the protein tunnels and
channels can be described to a certain level with the current
implementation of CaverDock. Making residue side chains
flexible increases calculation times but ultimately considers
protein dynamics. We concluded that simulations employing a
large number (>4) of flexible amino acid residues may cause
undesirable steric clashes. Thus, we advise that results obtained
with flexible residues should be interpreted carefully using
biochemical intuition when analyzing calculated trajectories and
energy profiles. Implementation of a more thorough protocol
to address protein flexibility is on-going in our laboratory.
CaverDock calculations can be extended to ensembles of protein
structures. Particularly challenging is the trade-off between
rigorous description of flexible systems and time demands
connected with such calculations. Structural comparison of
complexes obtained by CaverDock with those determined
by crystallographic analysis revealed that we were able to
predict the correct poses for a vast majority of inhibitors.
The comparison of our profile of potential energies with
the rates obtained by kinetic results yields a correlation of
0.53 whereas the more computational expensive molecular
dynamics simulation had a correlation of 0.63. Prediction
accuracy can be potentially improved by proper treatment of
backbone flexibility.

Our study demonstrates that CaverDock is sufficiently fast
to screen even large libraries of ligands. Calculation of rigid
trajectories using 4 processors took on average 53min per
molecule with 90% successfully calculated cases. Bulky or
very flexible ligands take more time, but some of these
large ligands may not be able to access the active site
via the studied access tunnels. Although it takes longer to
perform a CaverDock calculation than a pure virtual screening
of ligand binding to the active site with AutoDock Vina,
CaverDock provides more data, which may be useful in rational
drug design projects. Information on the bottlenecks and
energy required for ligands to pass through these narrowed
parts of the access tunnel could be useful for medicinal
chemists. CaverDock was able to correctly identify tunnels
in the proteins explored by the inhibitors included in our
screening campaigns.

In summary, we have shown that CaverDock is a
robust and ready-to-use software that can be employed
in screening campaigns of important pharmacological
targets. CaverDock analysis may be a useful complement
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to virtual screening campaigns carried out using traditional
docking tools.
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