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Aging is a major risk factor for late-onset Alzheimer’s disease (LOAD). How aging
contributes to the development of LOAD remains elusive. In this study, we examined
multiple large-scale transcriptomic datasets from both normal aging and LOAD brains
to understand the molecular interconnection between aging and LOAD. We found
that shared gene expression changes between aging and LOAD are mostly seen in
the hippocampal and several cortical regions. In the hippocampus, the expression of
phosphoprotein, alternative splicing and cytoskeleton genes are commonly changed
in both aging and AD, while synapse, ion transport, and synaptic vesicle genes are
commonly down-regulated. Aging-specific changes are associated with acetylation
and methylation, while LOAD-specific changes are more related to glycoprotein (both
up- and down-regulations), inflammatory response (up-regulation), myelin sheath and
lipoprotein (down-regulation). We also found that normal aging brain transcriptomes
from relatively young donors (45–70 years old) clustered into several subgroups and
some subgroups showed gene expression changes highly similar to those seen in LOAD
brains. Using brain transcriptomic datasets from another cohort of older individuals
(>70 years), we found that samples from cognitively normal older individuals clustered
with the “healthy aging” subgroup while AD samples mainly clustered with the “AD
similar” subgroups. This may imply that individuals in the healthy aging subgroup will
likely remain cognitively normal when they become older and vice versa. In summary,
our results suggest that on the transcriptome level, aging and LOAD have strong
interconnections in some brain regions in a subpopulation of cognitively normal aging
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individuals. This supports the theory that the initiation of LOAD occurs decades earlier
than the manifestation of clinical phenotype and it may be essential to closely study
the “normal brain aging” to identify the very early molecular events that may lead to
LOAD development.

Keywords: aging brain, late-onset Alzheimer’s disease, human brain transcriptome, RNAseq, brain aging
subgroups, hippocampus, brain regions, meta-analysis

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia
and about 6.2 million Americans live with the disease based
on the Alzheimer’s Association 2021 report (2021). Aging is the
major risk factor for late-onset AD (LOAD), which occurs at
age 65 or older (Caselli et al., 2009) and represents over 95% of
the AD cases. A study analyzing 1,246 subjects aged 30–95 years
found that the risk of developing AD dramatically increases
in APOE ε4 carriers who are 70 years or older (Jack et al.,
2015). It has been well-recognized that normal brain aging and
LOAD share multiple common features, e.g., aging brains often
manifest certain degrees of cognitive impairment, memory loss,
metabolic disturbances, bioenergetic deficits, and inflammation.
Even though aging increases the risk of AD and the two processes
share similarities in multiple aspects, a detailed brain-region-
specific view of their interconnection at the molecular level is
not fully available. It is also unclear which aging mechanisms
are playing major contributions to AD development and why
some individuals may age without major cognitive deficits while
others develop AD (Koivisto et al., 1995; Herrup, 2010). To
help address these issues, we performed a global comparison of
the transcriptomes from normal aging and LOAD brains across
multiple regions in a hope to gain new insights into the molecular
interconnection between aging and AD.

Despite the fact that many transcriptomic studies have been
performed to investigate aging and LOAD independently, only
a few have compared normal aging and LOAD transcriptomic
datasets in a systematic way (Cribbs et al., 2012; Berchtold et al.,
2013; Mastroeni et al., 2017; Lanke et al., 2018). For example,
Berchtold et al. (2013) used microarray to profile 81 aging
and AD brains and found that synapse-related genes showed
progressive down-regulation in both aging and AD. Using the
same dataset, Lanke et al. (2018) performed an integrated
analysis on young, aging and AD brains by constructing co-
expression network models, and found that modules associated
with astrocytes, endothelial cells and microglial cells were up-
regulated while modules associated with neurons, mitochondria
and endoplasmic reticulum were down-regulated, and these
modules significantly correlated with both AD and aging.
All these studies greatly helped our understanding of the
interconnections between aging and AD; however, the previous
studies were limited in the brain regions examined and more
importantly, they all treated aging and AD samples as uniform
groups, and did not consider the possible heterogeneity in
either aging or AD.

In this study, we compared the gene expression profiles
of normal brain aging (age ≤ 70) with LOAD (age ≥ 60)

(Yang et al., 2015; Hodes and Buckholtz, 2016) to understand the
similarity and difference between aging and AD across multiple
brain regions. We also considered brain aging subgroups and
compared the aging subgroups with LOAD.

MATERIALS AND METHODS

Data Collection and Pre-processing
We compiled and processed multiple large-scale human brain
aging and AD gene expression datasets. We summarize and
describe each dataset below and list all the data we studied in
Table 1.

Genotype-Tissue Expression Brain Data
Genotype-tissue expression (GTEx) brain gene expression data
(v7 and v8) from 13 brain regions were downloaded from the
GTEx (genotype-tissue expression) portal (Consortium, 2015)
and NIH dbGaP database. Donor ages ranged between 20 and
70 years and we removed samples from donors annotated with
any brain diseases from further analysis. We corrected sex,
collection center (batch), RIN (RNA Integrity Number), PMI
(postmortem interval), and top 3 genotype principal components
(PCs) to calculate gene expression associated with donors’
chronological age.

UK Brain Data
Data from 134 post-mortem brain donors free of neurological
conditions were obtained from UK (Millar et al., 2007; Trabzuni
et al., 2011). 10 brain regions were included, namely, cerebellum
(CRBL, n = 131 samples), frontal cortex (FCTX, n = 128),
hippocampus (HIPP, n = 123), medulla (specifically inferior
olivary nucleus, MEDU, n = 120), occipital cortex (specifically
primary visual cortex, OCTX, n = 130), putamen (PUTM,
n = 130), substantia nigra (SNIG, n = 102), temporal cortex
(TCTX, n = 120), thalamus (THAL, n = 125), and intralobular
white matter (WHMT, n = 132). To make the donor age
distribution comparable between GTEx and UK, we only
considered samples from donors whose age≤ 70. The sample size
for each brain region after filtering by age≤ 70 is listed in Table 1.

Mount Sinai Brain Data
Three hundred and sixty-four human brains (238 females and
126 males) were accessed from the Mount Sinai/JJ Peters
VA Medical Center Brain Bank (MSBB–Mount Sinai NIH
Neurobiobank) cohort. These samples represented the full
spectrum of cognitive and neuropathological disease severity
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TABLE 1 | List of brain transcriptomic datasets used for obtaining aging and AD gene signatures.

Datasets Gene list ID List details (tissue, traits) # of genes (UP/DOWN) # of protein coding genes Sample size

GTEx “aging” sets (age ≤ 70)

GTEx G_AMY Amygdala 50(19/31) 46(19/27) 46

GTEx G _BA24_AC Anterior_cingulate_cortex (BA24) 1460(473/987) 1208(320/888) 56

GTEx G_CAU Caudate (basal_ganglia) 77(50/27) 55(34/21) 75

GTEx G_CRBH Cerebellar_Hemisphere 322(138/184) 277(108/169) 73

GTEx G_CRBL Cerebellum 427(213/214) 340(162/178) 87

GTEx G_CTX Cortex 97(34/63) 78(30/48) 71

GTEx G_BA9 DLPFC Frontal_Cortex (BA9) 15(8/7) 12(5/7) 61

GTEx G_HIPP Hippocampus 1804(950/854) 1403(705/698) 57

GTEx G_HYPO Hypothalamus 2140(822/1318) 1650(490/1160) 53

GTEx G_NC Nucleus_accumbens (basal_ganglia) 11(6/5) 9(5/4) 69

GTEx G_PUTM Putamen (basal_ganglia) 18(13/5) 17(13/4) 67

UK “aging” sets (age ≤ 70)

UK UK_FCTX Frontal cortex (FCTX) 170(50/120) 145(42/103) 94

UK UK_TCTX Temporal cortex (TCTX) 678(169/509) 510(91/419) 82

UK UK_OCTX Occipital cortex (OCTX) 54(30/24) 44(23/21) 95

UK UK_WHMT Intralobular white matter (WHMT) 464(267/197) 373(204/169) 93

UK UK_CRBL Cerebellum (CRBL) 186(101/85) 156(87/69) 92

UK UK_PUTM Putamen (PUTM) 65(30/35) 52(22/30) 95

UK UK_THAL Thalamus (THAL) 12(8/4) 9(5/4) 91

UK UK_HIPP Hippocampus (HIPP) 959(544/415) 755(431/324) 93

Other “AD” sets

MSSM MSSM_FP BM10(MSSM_FP) 54(20/34) 47(19/28) 135

MSSM MSSM_IFG BM44(MSSM_IFG) 71(24/47) 61(24/37) 116

MSSM MSSM_PHG BM36(MSSM_PHG) 1577(936/641) 1391(868/523) 103

MSSM MSSM_STG BM22(MSSM_STG) 269(150/119) 242(142/100) 122

Mayo Mayo_CRBL_Source* Cerebellum 2632(1360/1272) 2282(1231/1051) 151

Mayo Mayo_CRBL Cerebellum 1880(1008/872) 1600(901/699) 151

Mayo Mayo_TCTX_Source* Temporal cortex 3842(2034/1808) 3437(1933/1504) 151

Mayo Mayo_TCTX Temporal cortex 2951(1663/1288) 2628(1578/1050) 151

ROSMAP ROSMAP_DLPFC Dorsolateral prefrontal cortex (DLPFC) 162(89/73) 141(80/61) 241

Annese2018 Annese2018_HIPP Hippocampus 2122(808/1314) 1925(742/1183) 10

Rooij2019 Rooij2019_HIPP Hippocampus 2840(1109/1731) 2667(1045/1622) 28

Jager Jager_Clinical_AD Clinical_AD in DLPFC 855(466/389) 740(412/328) 478

Jager Jager_Cognitive_decline Cognitive_decline in DLPFC 3035(1481/1554) 2662(1281/1381) 478

Jager Jager_Tau_tangles Tau_tangles in DLPFC 238(155/83) 209(133/76) 478

Jager Jager_B_amyloid B_amyloid in DLPFC 2315(1158/1157) 2020(1060/960) 478

Jager Jager_Patho_AD Patho_AD in DLPFC 98(58/40) 85(51/34) 478

MS “AD” sets

MS MS_BM10_FP Frontal pole 19(5/14) 17(5/12) 63

MS MS_BM17_OCTX Occipital visual cortex 345(325/21) 297(279/19) 53

MS MS_BM20_ITG Inferior temporal gyrus 397(397/0) 349(349/0) 58

MS MS_BM21_MTG Middle temporal gyrus 635(81/565) 571(66/516) 58

MS MS_BM22_STG Superior temporal gyrus 25(0/25) 24(0/24) 60

MS MS_BM23_PCC Posterior cingulate cortex 34(7/27) 29(7/22) 58

MS MS_BM32_AC Anterior cingulate 239(33/207) 214(30/184) 59

MS MS_BM36_PHG Parahippocampal gyrus 55(7/49) 48(6/42) 60

MS MS_BM38_TP Temporal pole 44(28/16) 39(25/14) 58

MS MS_BM4_PCG Precentral gyrus 131(8/123) 122(7/115) 49

MS MS_BM44_IFG Inferior frontal gyrus 874(589/566) 764(513/495) 53

MS MS_BM46_DLPFC Dorsolateral prefrontal cortex 58(11/47) 53(8/45) 57

MS MS_BM7_SPL Superior parietal lobule 346(240/110) 314(220/97) 50

MS MS_BM8_SFG Superior prefrontal gyrus 953(426/670) 869(386/617) 56

MS MS_CD Caudate nucleus 31(30/1) 29(28/1) 52

MS MS_HIPP Hippocampus 107(25/82) 95(22/73) 55

MS MS_PUTM Putamen 94(52/42) 82(45/37) 52

*AMP-AD Mayo gene signature is based on SourceDiagnosis.
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in the absence of discernable non-AD neuropathology. Donor
ages for the samples ranged 61–108. For microarray profiling of
19 brain regions, a linear model was adopted to identify genes
differentially expressed among different disease stage groups
using R package Limma with default parameters and corrected
for covariates including sex, postmortem interval (PMI), pH,
and race (Wang et al., 2016). For each brain regions, DEGs
(Differential Expression Genes) with FDR ≤ 0.05 in any of the
6 traits (CDR, Braak, CERAD, PLQ_Mn, NPrSum, NTrSum
in contrast of High vs. Low, Low vs. Normal or High vs.
Normal) were combined as the DEGs for that brain region (see
Supplementary Table 1) (Wang et al., 2016).

Other Brain Data
The AMP-AD knowledge portal (Hodes and Buckholtz, 2016)
hosts datasets from three studies: Mayo Clinic Brain Bank
(Mayo), the Religious Orders Study and Memory and Aging
Project (ROSMAP) and Mount Sinai School of Medicine
(MSSM). Mayo dataset included temporal cortex (80 AD and
71 controls) and cerebellum (79 AD and 72 controls). ROSMAP
dataset contained samples from dorsolateral prefrontal cortex
BA9 region (155 AD and 86 controls). The MSSM cohort
included samples from four brain regions: parahippocampal
gyrus, inferior frontal gyrus, superior temporal gyrus, and the
frontal pole (n = 476, Table 1). DEGs were downloaded from the
portal and filtered for genes with FDR ≤ 0.05.

Jager Alzheimer’s Disease Gene
Signatures
Mostafavi et al. (2018) performed analyses on 478 ROSMAP
dorsal lateral prefrontal cortex (DLPFC) tissue samples. Five gene
lists were considered containing genes whose expression was
associated with AD-related traits including clinical diagnosis of
AD at the time of death, cognitive decline, tau, amyloid, and
pathologic diagnosis of AD.

Annese2018 and Rooij2019 AD Gene
Expression Signatures
Annese2018 profiled hippocampus CA1 gene expression in 10
males with age between 60 ∼ 81(5 AD and 5 controls) (Annese
et al., 2018). DEGs with | log2(Fold Change)| > 1 and
FDR ≤ 0.05 were selected. Rooij2019 profiled gene expression
of hippocampus samples from 18 AD and 10 controls. DEGs
with differential expression score ≥ 0.1 and FDR ≤ 0.05 were
considered (van Rooij et al., 2019).

Differential Expression Analysis and
Age-Associated Gene Expression
Identification
Differential expression (DE) analysis in aging and AD was
performed using the R package edgeR and Limma (Robinson
et al., 2010; Law et al., 2014) and we adjusted batch, RIN, sex,
and PMI in GTEx data and brain source, gender, batch effects and
PMI in UK data. A linear regression model was applied to identify
gene expression changes associated with age and we adjusted the

same covariates as we did in the DE analysis (Yang et al., 2015;
Zeng et al., 2020).

Subgroup Identification Using
Hierarchical Clustering
We used hierarchical clustering method to identify subgroups
in normal aging GTEx and UK brain samples. We selected the
top 5,000 most variable genes which showed similar clustering
result with using all genes (the adjusted Rand index > 0.9) for the
hierarchical clustering of GTEx data. Ward.D2 method in the R
hclust function was used (Murtagh and Legendre, 2014).

Deconvolution of Genotype-Tissue
Expression Bulk Tissue Gene Expression
Data to Infer Cell-Type Composition
The immunopanning-isolated cell RNAseq data covering 5
cell types: neuron, astrocyte, endothelial cell, microglia and
oligodendrocyte in normal temporal lobe cortex was used
as reference (Zhang et al., 2016) to infer the cell-type
composition of GTEx hippocampal samples. Based on a
recent work of deconvolution of GTEx brain samples across
multiple regions (Patrick et al., 2020), we used the DSA
(Digital Sorting Algorithm) (Zhong et al., 2013) for cell-
type proportion estimation. We followed the recommended
processing procedures (TMM normalization, top 100 markers)
and applied DSA to HIPP and BA24_AC gene expression data
(adjusted age, sex, PMI, RIN, batch, and 3 genotype PCs) to
compare the cell-type proportions among GTEx aging subgroups
and between brain regions.

Comparison of Parahippocampal Gyrus
and Genotype-Tissue Expression
Hippocampal Transcriptomes
We obtained gene expression data from 215 parahippocampal
gyrus (PHG) samples which were profiled at Mount Sinai (Wang
et al., 2018). To compare the PHG and GTEx hippocampal
gene expression data, we first calculated log2(tmp + 1) for
both datasets, merged these datasets and then removed the
batch effects using R ComBat package with age, PMI, sex,
RIN as covariates. Negative values were assigned to 0 followed
by sample-wide quantile normalization. We selected the PHG
samples with age > 70 and obtained 78 samples [19 normal
(CDR = 0, braak score: bbscore ≤ 3, CERAD = “NL”), 59 LOAD
(CDR ≥ 1, bbscore ≥ 5, CERAD = “definite AD”)]. Based on the
GTEx top 5000 variance genes, we clustered PHG samples and
found the normal and AD samples were mixed to some degree.
After removing the mixed samples, 51 samples (14 normal and
37 LOAD samples) showed clear separation into two groups
corresponding to donors’ AD status. We also performed DE
analysis in LOAD vs. normal in filtered version (PHG 51 samples)
and mixed version (PHG 78 samples) and compared the DEGs.

Functional Enrichment Analysis
We annotated the biological functions of each gene list using
DVAID tool (Huang et al., 2009; Sherman and Lempicki, 2009).
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We also performed pathway analysis using MetaCore integrated
software suite1 (last accessed in November 2019) to determine
enriched biological processes. Signal transduction gene
regulation network analysis was based on SIGNOR 2.0 (Licata
et al., 2020) from the SIGnaling Network Open Resource
(downloaded on Aug. 2020) using networkanalyst web tool
(Zhou et al., 2019).

RESULTS

A Global Comparison of Aging and
Alzheimer’s Disease Signatures Across
Brain Regions
Derive Brain Aging and Alzheimer’s Disease
Signatures From Multiple Transcriptomic Datasets
We collected multiple large-scale brain aging and AD gene
expression datasets (Figure 1) which are summarized in Table 1
and Supplementary Table 1. It is of note that to obtain “normal”
aging gene expression signatures, samples from donors annotated
with any brain-related diseases were removed in the GTEx data.
We used a linear regression model to identify gene expression
associated with donors’ chronological age and consider these
genes as brain aging genes (we call each list of brain aging genes
as an aging signature for the corresponding brain region). We
derived aging signatures in 11 out of 13 brain regions from
the GTEx data; two regions, i.e., the brain spinal cord and

1https://portal.genego.com/

substantia nigra showed no apparent age-associated genes (0 and
1 gene, respectively) and were not considered for further analysis.
Similarly, we derived aging signatures from 8 out of the 10 brain
regions profiled in UK data; substantia nigra and medulla tissues
showed no apparent aging signatures and were removed from
further analysis.

Genes differentially expressed between AD and normal
control samples were extracted from previously published work
(similarly we call them as AD signatures). These AD signatures
are MS AD sets from Mount Sinai Medical Center Brain Bank
(MSBB) AD cohort (Wang et al., 2016), and “Other” AD sets
included AMP-AD knowledge portal data (Hodes and Buckholtz,
2016), Jager gene lists from the dorsal lateral prefrontal cortex
(DLPFC) region (Mostafavi et al., 2018), Annese2018 DEG list
from hippocampal (HIPP) CA1 (denoted as Annese2018 HIPP)
(Annese et al., 2018) and Rooij2019 DEG list in HIPP (van Rooij
et al., 2019) (denoted as Rooij2019 HIPP) (see Table 1 and section
“Materials and Methods).

A Global Comparison of Aging and Alzheimer’s
Disease Signatures Across Brain Regions
We first identified genes that show similar gene expression
regulation across multiple brain regions in aging and AD datasets,
respectively (we call them global aging and AD signatures).
We found that 91 aging genes are consistently up or down-
regulated in more than 4 out of 19 aging gene lists (11 GTEx
and 8 UK brain regions). Among them, 27 are up-regulated and
64 are down-regulated (see Supplementary Table 2) with age.
Similarly, 86 AD signature genes show consistent regulation in
at least 9 out of 32 AD gene signature lists, among which 51 are

FIGURE 1 | Flowchart of the comparison between normal brain aging and Alzheimer’s disease (AD). We collect gene expression profiles from a large number of
normal aging brain and AD brain samples across multiple brain regions. We perform both a global comparison (Q1) and region-specific comparison (Q2) of aging
and AD transcriptomes. We also consider the subgrouping in aging brain samples and compare the aging subgroups with AD (Q3).
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consistently up-regulated and 35 are consistently down-regulated
in AD brains (see Supplementary Table 2). We then perform
function annotation of these global aging and AD signatures.

The Global Aging and Alzheimer’s Disease Signatures Show
Up-Regulation of Immune Complement Pathway Genes and
Down-Regulation of Synaptic Related Signaling Genes
We used the DAVID tool to annotate the functional
enrichment and found the 91 aging genes are enriched
for synapse, nucleotide-binding and ion genes (see
Supplementary Table 3.1); while the 86 AD signature genes
are enriched for synapse, phosphoprotein and transport genes
(see Supplementary Table 3.4). We further used MetaCore to
annotate the function of consistently up- or down- regulated
aging and AD signature genes. The 27 up-regulated aging genes
are enriched for regulation of lipid metabolism, insulin regulation
of glycogen metabolism (PHK gamma gene; FDR = 2.9E-2),
immune/inflammation complement pathway (C4B, C4, C4A;
FDR = 1.9E-06), response to metal ion/transport categories
(e.g., cellular response to copper ion; FDR = 1.7E-06), and
dopamine metabolic process (MAOB, MAO; FDR = 3.8E-
3) (see Supplementary Table 3.2); the 64 down-regulated
aging genes are enriched for MAPK (FDR = 1.2E-02)/ASK1
(FDR = 2.4E-02) pathway, synaptic vesicle/calcium ion exocytosis
categories, synaptic related signaling (NMDA, glutamate) (see
Supplementary Table 3.3). The 51 up-regulated AD genes
are involved in immune complement pathway (GPCRs),
TGF-beta receptor signaling (FDR = 4.6E-02), cytoskeleton
remodeling, and L-glutamate import/neurotransmitter
transport (see Supplementary Table 3.5); 35 down-
regulated AD genes are involved in synapse and GABAergic
neurotransmission, glutamate secretion/glutamatergic
pathways, vesicle fusion/recycling and transport, cytoskeleton
remodeling, cell adhesion and protein phosphorylation (see
Supplementary Table 3.6). Therefore, both AD and aging global
signature genes show up-regulation in immune complement
pathway and down-regulation in synapse (especially glutamate,
synaptic vesicle recycling) related pathways; while aging genes
are more involved in metal ion, transport, glycogen metabolism
and AD signature genes are more involved in cytoskeleton
remodeling, cell adhesion and synaptic categories.

SST and SVOP Are Down-Regulated and FOXJ1, SLC44A1
Are Up-regulated in the Global Aging and Alzheimer’s
Disease Signatures
Two genes, SST and SVOP are consistently down-regulated in
both global aging and AD gene signatures, while FOXJ1 and
SLC44A1 are consistently up-regulated.

SST (somatostatin) is a neuropeptide hormone that maintains
permeability and integrity of the blood–brain barrier (BBB) by
regulating LRP1 and RAGE expression. It abrogates Aβ-induced
JNK phosphorylation and expression of MMP2 to maintain
permeability and integrity of BBB (Paik et al., 2019). Reduction of
SST levels in the CSF and brain tissue is associated with impaired
cognitive function and memory loss (Solarski et al., 2018).
SVOP (synaptic vesicle 2-related protein) can bind to adenine
nucleotide (particularly NAD) via its C-terminal extremity

(Yao and Bajjalieh, 2009). Although the functions of SVOP
remain obscure, the evolutionary conservation and homology to
transporters support it may play a role in molecular trafficking in
synaptic vesicles (Janz et al., 1998).

In mammalian cells, FOXJ1 is a member of the
Forkhead/winged helix (FOX) family of transcription factors
that is involved in ciliogenesis (Yu et al., 2008). It is shown to
suppress NFκB, a key regulator in the immune response (Lin
et al., 2004). It is hypothesized that FOXJ1 may play a protective
role involved in the pathophysiology of brain injury and may
be required for the differentiation of the cells (Jacquet et al.,
2009). The solute carrier 44A1 (SLC44A1) is a plasma membrane
choline transporter. It is also a mitochondrial protein and acts
as a choline transmembrane transporter. Choline is essential
for the synthesis of the neurotransmitter ACh by cholinergic
neurons for regulating neuronal activity. Choline deprivation in
the central nervous system reduces acetylcholine (ACh) release,
memory retention, and spatial cognition in the hippocampus
(Canty and Zeisel, 1994; Nakamura et al., 2001; Zeisel, 2007).

Brain Region-Specific Comparison of
Aging and Alzheimer’s Disease
Signatures
In addition to comparing the global aging and AD signatures,
we also compared aging and AD signatures in a brain region-
specific manner.

Hypothalamus, Hippocampus, and Certain Cortical
Regions Show Stronger Age-Related Gene
Expression Changes Compared to Other Brain
Regions
As can be seen in Supplementary Figure 1, the number of aging
genes varies across brain regions. The regions showing a large
number of aging genes in the GTEx data are hypothalamus
(HYPO: 490 UP and 1160 DN genes), hippocampus (HIPP: 705
UP and 698 DN genes), and brain anterior cingulate cortex
BA24 (BA24_AC: 320 UP and 888 DN genes). For the UK data,
the brain regions showing a large number of aging genes are
hippocampus (HIPP:432 UP and 324 DN genes) and temporal
cortex (TCTX: 91 UP and 419 DN genes). It is of note that
GTEx and UK do not cover the same brain regions, e.g.,
the hypothalamus was profiled by GTEx but not in the UK
brain data. Among the 4 regions profiled by both GTEx and
UK, (i.e., HIPP, CRBL, PUTM, and FCTX), HIPP and CRBL
show a higher number of aging genes and stronger overlap
between GTEx and UK aging signatures than the other two
brain regions. Interestingly, the hippocampal aging signature
significantly overlaps with aging signatures from several cortical
regions, while the cerebellum aging signature has very little
overlap with other regions. The cerebellum show the most
distinguishable gene expression patterns from all other brain
regions which was also reported by the Allen Brain Atlases study
(Mahfouz et al., 2015).

Since a larger sample size provides greater statistical power
and generally allows more age-associated genes to be identified,
a fair comparison across brain regions requires the sample size to
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be identical or very close to each other. The GTEx HIPP (N = 57),
BA24_AC (N = 56), and HYPO (N = 53) have relatively small
sample sizes compared to other brain regions (see Table 1), so
the larger number of age-associated genes in these brain regions
were unlikely caused by their sample sizes. However, for the UK
brain data, the hippocampal region had relatively large sample
size (N = 93) compared to other brain regions, such as the TCTX
(N = 82), the brain region with the smallest sample size. To ensure
the large number of age-associated genes identified in UK HIPP
was not due to its sample size, we performed a down-sampling
test in three brain regions to compare their age-associated genes
when they have the same number of samples. As shown in
Supplementary Table 4, after down-sampling 565.76 ± 483.63
(mean ± standard deviation) age-associated genes could be
identified in the UK HIPP. Although much fewer genes were
found compared to the 959 age-associated genes identified from
the 93 HIPP samples, the HIPP remains to show the largest
number of aging genes among all the UK brain regions.

In summary, brain aging signatures are highly region-specific.
Hippocampus, hypothalamus, and cortex TCTX and BA24_AC
are more affected by aging on the transcriptome level than other
brain regions surveyed by the GTEx and UK brain data even
when the sample size difference is considered.

Common Hippocampal Aging Genes Between
Genotype-Tissue Expression and UK Data
In general, the aging signatures from GTEx and UK show
large reproducibility in matched brain regions. Using the
hippocampus as an example, the 705 up-regulated GTEx aging
genes significantly overlap with 431 up-regulated UK aging genes
by 77 genes (FDR = 2.6E-31); and the 698 down-regulated GTEx
aging genes overlap with 324 down-regulated UK aging genes
by 42 genes (FDR = 3.6E-12). The 119 commonly up- or down-
regulated hippocampal aging genes between GTEx and UK are
enriched for phosphoprotein, alternative splicing, acetylation,
complement, and synapse (see Supplementary Table 5.1).
In addition to the immune/inflammation categories found in
previous global aging signatures, the 77 commonly up-regulated
aging genes are also enriched for TGF-β signal, transcription
regulation [such as mRNA transcription by RNA polymerase
II with FDR of 2.2E-03, ATP-dependent chromatin remodeling
with FDR of 7.3E-03, blood vessel remodeling, membrane
protein intracellular domain proteolysis, protein transport,
and metabolic process (see Supplementary Table 5.2)].
Furthermore, from signal transduction network analysis (see
Supplementary Tables 5.4, 5.5), the top signal network contains
67 up-regulated genes and is connected with many metabolic-
related pathways such as endocrine resistance (FDR = 4.0E-15),
foxo signaling pathway (FDR = 1.4E-13), thyroid hormone
signaling pathway (FDR = 8.7E-12), sphingolipid signaling
pathway (FDR = 1.8E-10), neurotrophin signaling pathway
(FDR = 1.8E-10), autophagy – animal (FDR = 3.6E-10), and
insulin resistance (FDR = 1.5E-09).

The 42 commonly down-regulated aging genes between
GTEx and UK are related to insulin-like growth factor 1
(IGF-1) signaling, ERK1/2 pathway (for caveolin-mediated
endocytosis or signal transduction), methylation, cell adhesion

(e.g., synaptic contact), and long-term potentiation pathways
and previous reported energy-dependent pathways such as
synaptic categories (e.g., synapse vesicle), oxidative categories
(see Supplementary Table 5.3) based on MetaCore analysis.
IGF-1 (insulin-like growth factor) is a growth factor and
neurohormone with some evidence suggesting its involvement
in neurocognitive functions, neuroinflammation, and amyloid-
β clearance. Furthermore, from signal transduction network
analysis on the KEGG database (see Supplementary Tables 5.6,
5.7), the top signal network is involved in circadian entrainment
(FDR = 9.2E-07) and multiple synaptic-related pathways.

Brain Aging Signatures From the Hypothalamus, the
Hippocampus, and BA24 Anterior Cingulate Cortex
Significantly Overlap With Alzheimer’s Disease
Signatures
After we evaluated the aging signatures between GTEx and
UK data, we then compared the aging signatures with AD
signatures in a brain-region specific manner. We further
collected two hippocampal DEG lists (Rooij2019 and
Annese2018, listed in “Other” AD sets) for the following
analysis. As can be seen in Figure 2, strong overlap between
aging and AD signatures are observed in hippocampus,
hypothalamus, and several cortical regions. For example, the
GTEx hippocampus aging signature strongly overlaps with
AD signatures derived from either hippocampus or several
cortex regions. For the 698 GTEx_HIPP_DN aging genes,
they overlap with Rooj2019_HIPP_DN by 288 genes (adjusted
P-value = 2.78E-130); and the 705 GTEx_HIPP_UP genes
overlap with Mayo_TCTX _UP (1,578) by 150 genes (adjusted
P-value = 6.62E-28). It is of note that as we divide aging and
AD signatures into up- and down-regulated genes, in most
cases, the down-regulated aging genes only significantly overlap
with down-regulated AD genes, and vice versa, which supports
that these signatures represent real biological signals. The
overlap pattern is highly brain region specific. For example,
GTEx_HIPP_UP (705) significantly overlap with AD signatures
from hippocampus, while it only overlaps with AD signatures
from non-hippocampal regions such as MS_BM44_IFG_UP
(513) by 21 genes (adjusted P-value = 0.72). In both GTEx and
UK data, the aging signature in cerebellum shows relatively weak
overlap with our AD signatures.

We also observed that the GTEx hippocampus and UK
hippocampus aging signatures showed similar overlap pattern
with AD signatures across different brain regions. Similarly,
different AD signatures such as Annesse2018 and Rooj2019
showed similar overlap pattern with aging signatures across
different brain regions, which further suggests that the aging and
AD signatures from different studies are biologically meaningful
and contain real signals of aging and AD.

Functional Enrichment of Aging Specific,
Aging/Alzheimer’s Disease Common and Alzheimer’s
Disease Specific Genes in Hippocampus
Since aging and AD gene signatures show strong overlap in
the hippocampus as seen in Figure 2, we focused on this
brain region to investigate the functional enrichment of aging
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FIGURE 2 | Overlap between aging and AD signatures in different brain regions. AD signatures are plotted in rows and aging signatures are plotted in columns. We
separate each signature into up- and down-regulated genes and the number of genes in each signature is listed after its ID. The number in the heatmap indicates
how many genes are common in the corresponding aging and AD signatures while the color indicates the significance of the overlap.

and AD genes. To achieve better robustness, we annotated
hippocampus aging genes derived from both GTEx and UK
with hippocampus AD genes derived from both Annese2018
and Rooij2019 (Figure 3). We divided genes in the aging and
AD signatures into three categories: aging specific signature
genes (denoted as “ASGs”), aging-AD common signature
genes (denoted as “AADGs”), and AD specific signature genes
(denoted as “ADSGs”). Phosphoprotein and alternative splicing
are enriched in ASGs, AADGs and ADSGs (also in both up-
and down-regulated genes); while glycosylation/glycoprotein,
immune/inflammatory, stress response, mitochondria are more
enriched in ADSGs; acetylation, nucleus, and Ubl conjugation
are mostly enriched in ASGs (see Supplementary Table 6.1).
Down-regulated process of ASGs, AADGs, and ADSGs are
all associated with membrane/cytoskeleton categories. Down-
regulated AADGs are enriched for synapses (including cell
junction, cholinergic/GABAergic/dopaminergic/glutamatergic
synapse, AMPA etc.) and ion/transport (Figure 3 and
Supplementary Table 6); The comparison suggests that
different from the normal aging process, the AD-specific and

aging/AD commonly affected genes are more enriched for
glycoprotein, inflammatory response, synapse and mitochondrial
dysfunction, while the aging process are more related to the
nucleus, acetylation, coiled coil, which are less directly related
to neurodegenerative phenotype. The functional annotation of
AADGs suggests that dysregulation in transcription regulation,
energy metabolism, membrane remodeling, extracellular vesicles
(EV) and synapse pathways have already initiated and developed
to some degrees in normal brain aging even though these
individuals remain cognitively normal, while other biological
processes such as inflammation/immune response are further
escalated in AD patients.

Subgroup Identification in Normal Aging
Brain Hippocampus Samples
Subgroups Can Be Found in Both Genotype-Tissue
Expression and UK Hippocampus Datasets
Although we have shown that aging and AD share multiple
gene expression changes in the hippocampus, it is well known
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FIGURE 3 | Function annotation of hippocampus aging signatures (GTEx, UK) compared with AD signatures (Annese2018, Rooij2019). (A) Overlap among
UP-regulated genes in GTEx, UK, Annese2018 and Rooij2019; (B) Overlap among DOWN (DN)-regulated genes in the same gene lists. We consider the functional
enrichment of aging specific genes (ASGs), conserved AD specific genes (ADSGs) between two AD signatures, and the overlap between aging and AD genes
(AADGs) which represents genes shared by at least one aging list and one AD list. We list the most representative function categories with FDR < 0.05. To reduce
redundancy, only one representative functional category from each identified cluster of functions was selected.

that not every old individual will develop AD. This suggests
the interconnection between normal aging and AD may occur
at different intensity within the aging population. To examine
the potential heterogeneity of normal brain aging, we explored
subgrouping in both GTEx and UK hippocampus samples; and
we observed that both GTEx and UK samples can be divided into
major subgroups. As shown in Figure 4, 56 GTEx hippocampal
samples with donors’ age between 45 and 70 can form three major
clusters (named subgroups A, B, and C). We noticed that samples
from different age groups are relatively evenly distributed across
these subgroups, suggesting that subgrouping is not due to
difference in donor ages. Similar subgrouping is also observed in
UK hippocampal data (Figure 4B).

Differential Expression Genes Derived From
Comparing Aging Brain Subgroups Highly Overlap
With Alzheimer’s Disease Signatures
We performed pair-wise comparisons to derive DEGs between
subgroups in both GTEx and UK datasets, respectively. We
jointly considered these DEGs (FDR < 0.01) with 3 hippocampal
AD signatures (MS, Rooij2019, and Annese2018). As shown
in Figure 5, DEGs derived from comparing GTEx subgroups
B vs. A (denoted as GTEx DEG BvsA) show strong overlap
with AD signatures from Rooij2019 and Annese2018. For the
GTEx_DEG_BvsA down-regulated genes (3,018 genes), they
overlap with Rooij2019 down-regulated genes (1,622 genes) by
1,274 genes while they only overlap with Rooij2019 up-regulated
genes (1,045 genes) by 7 genes. This is highly significant, as

Rooij2019 down-regulated genes (1,622 genes) overlap with
another AD signature, Annese2018 down-regulated genes (1,183
genes) by 614 genes, which is comparable to the overlap we see
with aging subgroup DEGs. It is of note that GTEx samples used
in the subgroup analysis are from donors 45–70 years old without
AD or other types of brain diseases. Simply by performing
subgrouping, the DEGs from comparing these subgroups highly
overlap with AD signatures from independent studies, which
further supports that gene expression changes in a subpopulation
of the cognitively normal brains have very strong interconnection
with AD. Similarly, GTEx DEGs CvsA also strongly overlap
with AD signatures. Based on the pattern of overlap, we infer
that GTEx subgroup A is more likely to be a “healthy” aging
subgroup while GTEx subgroups B and C are more similar
to AD (here denoted as “AD similar group”). Since GTEx
DEG CvsB showed reverse overlap with AD signatures from
Annese2018 and Rooij2019, this indicates that subgroup B is
more similarity with AD samples compared to subgroup C.
Therefore, the order of subgroups judged by how similar they
are with AD samples can be inferred as AD samples > subgroup
B > subgroup C > subgroup A, which is also consistent with
the observation that GTEx DEG CvsA overlap with GTEx DEG
BvsA in the same gene regulation direction. Similarly, for the UK
data, we also observed very strong overlap between DEGs from
comparing various subgroups and AD signatures. For example,
the UK_DEG_AvsC_DN (3,144 genes) highly overlap with
Rooij2019_DN signature (1,622 genes) by 762 genes. Similarly,
we inferred the order of UK subgroups judged by how similar
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FIGURE 4 | Three major subgroups can be identified from either GTEx or UK hippocampus gene expression data. (A) Hierarchical clustering of GTEx hippocampus
samples. 56 samples with donor age between 45 and 70 are plotted. Three subgroups are labeled in different colors in the dendrogram. The top color bar indicates
that samples from different age groups are relatively evenly distributed into all the subgroups. (B) Hierarchical clustering of 70 UK hippocampus samples
(45 ≤ age ≤ 75) also suggests these samples can be divided into three major subgroups.

FIGURE 5 | Comparison of DEGs between GTEx subgroups and AD signatures from hippocampus. “GTEx DEG CvsB” represents DEGs derived from comparing
subgroups C vs. B in GTEx hippocampus, similar naming format is used for the rest gene lists.

they are with AD signatures as AD > UK subgroup A >> UK
subgroup B > UK subgroup C.

Function Annotation of Genotype-Tissue Expression
and UK Subgroup Differential Expression Genes With
Alzheimer’s Disease Signatures
We next used the DAVID tool to annotate the functional
enrichment for GTEx and UK subgroup DEGs (Figure 6 and
Supplementary Table 7). We focused on the DEGs (FDR < 0.01)
derived from comparing GTEx subgroup B (a subgroup that is

more similar to AD) with the relatively healthy aging subgroup
A (named GTEx DEGs BvsA) and similarly for UK DEGs
AvsC with two AD signatures (Annese2018 and Rooij2019).
Similar to previous annotations, we denote the aging subgroup
DEGs as ABGs and annotate the functional enrichment of
ABSGs (aging subgroup DEG specific genes), ADSGs, and
ABADGs (common genes between aging subgroup DEGs and
AD signature genes). As shown in Supplementary Table 7.1
and Figure 6, certain post translational modifications (PTMs)
(e.g., phosphoprotein, alternative splicing, Ubl conjugation,
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FIGURE 6 | Function annotation of ABSGs, ABADGs, and ADSGs for a comparison of aging subgroup DEGs and AD signatures. (A) Overlap among UP-regulated
genes in GTEx subgroup DEGs, UK subgroup DEGs, Annese2018 and Rooij2019. (B) Overlap among DOWN (DN)-regulated genes in the same gene lists. The
overlap of ABSGs between GTEx and UK is denoted as “Conserved ABSGs”. The union of Rooij2019 and Annese2018 subtracting any ABGs is denoted as
“ADSGs”. We list the most representative function categories with FDR < 0.05. To reduce redundancy, only one representative functional category from each
identified cluster of functions was selected.

and acetylation), membrane and cytoskeleton categories are
significantly enriched in ABSGs, ADSGs, ABADGs and also
enriched in both up- and down-regulated genes, respectively.
ADSGs (both up- and down-regulation) are enriched for
glycoprotein, while up-regulated ADSGs are more enriched
for immunity, inflammatory response categories and down-
regulated ADSGs are enriched for calcium/ion categories.
The up-regulated conserved ABSGs show enrichment in
cell cycle category and down-regulated conserved ABSGs
show enrichment in proteostasis such as proteasome, protein
transport and protein binding. For ABADGs, up-regulated
genes are mainly enriched for transcription regulation and
metabolism categories (e.g., PI3K-Akt signaling pathway, MAPK
signaling pathway, insulin resistance), while down-regulated
genes are mainly enriched for synapse, lipoprotein, and circadian
entrainment categories.

In summary, aging subgroup DEG functional analysis further
suggests that remodeling of PTMs (e.g., phosphoprotein and
alternative splicing), proteostasis, cytoskeleton, and metabolism
are likely initiated in normal aging subgroups that show highly
similar gene expression changes with AD patients.

Differentially Expressed Genes Between Subgroups
Could Be Partially Driven by Difference in the Cellular
Compositions
The differentially expressed genes we observed between
subgroups could be caused by either the dysregulation of

gene expressions or the change in the cellular compositions
or both. Since both GTEx and UK were bulk tissue gene
expression data, the cellular composition information was
not available. To evaluate if the cellular compositions were
different between subgroups, we used computational tools to
perform cell deconvolution. Based on a recent cell deconvolution
work which provided experimental data validation (Patrick
et al., 2020), we used the DSA (Digital Sorting Algorithm)
method (Zhong et al., 2013) and cell-type reference data
(Zhang et al., 2016) for cell-type proportion estimation (see
section “Materials and Methods”). We were able to reproduce
Patrick et al. (2020)’s result in the GTEx hippocampus when
we made no adjustment to GTEx gene expression data
(Supplementary Figure 2A). When we adjusted the GTEx data
by covariates like age, sex, PMI, we did notice some difference
in the estimated proportion of several cell-types compared
to Patrick et al. (2020)’s results (Supplementary Figure 2B).
When we applied this approach to GTEx HIPP gene expression
data, as can be seen in Figure 7, neurons, oligodendrocytes
and microglia showed significant difference among GTEx aging
subgroups. Interestingly, the GTEx subgroup A (the healthy
aging subgroup) showed higher proportions of neurons than
AD similar subgroups; GTEx subgroup C (an AD similar group)
showed to have elevated proportion of microglial cells; while
GTEx subgroup B (another AD similar subgroup) showed to
have elevated number of oligodendrocytes. In addition, the
cell-type proportion of GTEx subgroup A was highly similar
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FIGURE 7 | Subgroup comparison of estimated 5 cell-type proportions of GTEx HIPP and PHG data using DSA method and Zhang’s reference data. 5 cell type
proportion in GTEx subgroup (36 A, 9 B, and 11 C) and PHG normal (14 NL), Mixed normal: normal samples that clustered with AD samples (5 M_NL), LOAD (37
AD) and Mix LOAD: AD samples that clustered with normal control samples (22 M_AD). Kruskal–Wallis rank sum test and Wilcox test rank sum test were used to
calculate the significance levels between the groups.

to PHG normal control group, while subgroups B and C were
more similar to PHG AD group. Not surprisingly, the control
samples clustered with AD showed similar estimated cell-type
proportion as AD samples, while the AD samples clustered
with control showed similar estimated cell-type proportion
as control group. Similarly, as shown in Supplementary
Figure 3, almost all the five cell-types’ proportions were
different between hippocampus and BA24 (the two brain
regions we chose to compare), suggesting cell-proportion
difference widely existed across brain aging subtypes and
brain regions.

Genotype-Tissue Expression “Healthy Aging”
Subgroup Will Likely Remain Cognitively Normal in
Older Ages as Implied From Joint Analysis With
Another Brain Transcriptomic Dataset
In both GTEx and UK datasets, we observed a subgroup that is
quite different from AD and subgroups that are more similar to
AD on the transcriptome level. We hypothesize that the subgroup
least similar to AD is a “healthy aging” subgroup and donors
in this subgroup will have a better chance of being cognitively
normal if they could live into 70s or older. In contrast, the

“AD similar” subgroups will likely have a higher chance of
developing cognitive deficits if these individuals could live into
70s or older. To test this hypothesis, a longitudinal study that
follows-up these subgroup individuals for several decades will
be required. This is not feasible mainly because brain tissues are
mostly available from postmortem donors which do not permit
longitudinal studies. To evaluate the hypothesis, we have to rely
on alternative approaches.

To indirectly test the hypothesis, we relied on another large
brain transcriptomic dataset which profiled more than 200 brain
tissues from the parahippocampal gyrus (PHG) region (Wang
et al., 2018). Although PHG is a different brain region, it is
next to the hippocampus and our analysis showed that the
two transcriptomic datasets are comparable. From these PHG
samples, we selected two groups of samples, i.e., control and AD
samples. The normal control samples were chosen from donors
with age > 70, CDR = 0, braak score (bbscore)≤ 3, CERAD = ‘NL’
which has 19 samples. For this group, the donor ages ranged from
73 to 103, with mean and standard deviation of 83.3 ± 8.7 years.
The second group is the AD group, which we required donors to
be >70 years, CDR ≥ 1, bbscore ≥ 5, CERAD = ‘definite AD.’ 59
samples met these criteria, and the donor ages ranged from 71 to
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104, with mean and standard deviation of 86.966± 8.4 years. We
merged these PHG data with the GTEx hippocampus RNA-seq
data and corrected the batch effect using the R ComBat package
(see section “Materials and Method”) to form a unified dataset.
The joint processing introduced some changes to the GTEx gene
expression. Therefore, we performed the hierarchical clustering
on the 56 GTEx samples again and observed that the new
subgrouping structure (subgroup B [n = 11] > C [n = 10] > A
[n = 35]) is highly similar to the previous clustering results
(subgroup B′ [n = 9] > C’ [n = 11] > A’ [n = 36]). For
example, the new subgroup A (35 samples) overlaps with the
previous subgroup A’ (36 samples) by 32 samples. We performed
hierarchical clustering on the 78 PHG samples and found normal
control and AD samples were partially mixed together (see
Supplementary Figure 4A). The partial mix of control and AD
samples is not unexpected. For the control samples, they were
from cognitively normal donors. Just like the GTEx and UK
brain data, we have repeatedly observed that a subgroup of
cognitively normal individuals showed gene expression changes
highly similar to AD. On the other hand, there were “AD”
samples mixed with the control samples, which is possibly
due to the subtypes of AD samples (Neff et al., 2021) as in
some AD subtypes, the PHG region could be relatively normal.
Since we want to obtain samples that truly represent normal
control and AD based on their gene expression, including the
mixed samples will likely dilute the contrast between healthy
and AD and blur the biological signals between the two. Based
on this rationale, we removed the mixed samples and obtained
14 normal (ages 73 ∼ 103, 5 males and 9 females) and 37
AD samples (ages 73 ∼ 104, 11 males and 26 females) which
formed two fully separated groups based on their gene expression
(see Supplementary Figure 4B). We then assigned these PHG
samples to the GTEx subgroups by adding one PHG sample at
a time to the 56 GTEx samples for hierarchical clustering. We
found that all the 14 control samples clustered with the GTEx
“healthy aging” subgroup A. For the 37 PHG AD samples, 5 (3
APOE ε3/ε4 and 2 APOE ε3/ε3) clustered with GTEx subgroup
B and 26 clustered with GTEx subgroup C (the two “AD similar”
subgroups), only 6 samples (all APOE ε3/ε3) clustered with the
“healthy aging” subgroup A. This result suggests that the gene
expression of the “healthy aging” subgroup is mainly associated
with cognitively normal status in older individuals while the gene
expression of the “AD similar” subgroup is largely associated
with AD in this older cohort. To ensure the result is robust,
we also compared the results when we kept the mixed sample
and the results are summarized in Supplementary Table 8.
Without removing the mixed samples, for the 78 PHG samples
(age > 70), 5 control samples were mixed with AD while 22 AD
samples were mixed with controls (a total of 27 mixed samples).
We assigned these PHG samples to the GTEx subgroups by
adding one sample at a time using hierarchical clustering. 4
control samples clustered with GTEx group C and the other
control sample clustered with GTEx group A. 7 AD samples
clustered with GTEx group C, 1 clustered with group B (the
first AD similar group), and 14 AD samples clustered with
GTEx group A. This is largely consistent with our expectations,
that the control samples mixed with AD clustered with an AD

similar group, while majority of the AD samples that mixed
with control samples (14/22) clustered with the healthy aging
subgroup (GTEx subgroup A). Considering all the 78 PHG
samples, our observation remains largely the same, i.e., most
of the control samples (14 out of 19) clustered with the GTEx
healthy aging subgroup, while majority of the AD samples (37 out
of 59) clustered with GTEx AD similar subgroups. In addition,
as shown in Supplementary Figure 5, the filtered version (PHG
51 samples) captured much stronger gene expression differences
between AD and control compared to the DEGs obtained from
the mixed samples (PHG 78 samples).

DISCUSSION

To better understand the interconnection between aging and
LOAD, we collected gene expression profiles from several large-
scale transcriptomic datasets covering multiple brain regions
and systematically compared aging and LOAD gene expression
signatures. Different brain regions showed varied levels of gene
expression changes in aging and AD, respectively. Among all the
brain regions we studied, hippocampus is one of the top regions
that show a very strong interconnection between aging and AD
on the transcriptomic level. We observed common functional
enrichment in aging and LOAD related to PTMs (especially
for alternative splicing and phosphoprotein), neurotransmission
(especially glutamate), membrane, cytoskeleton, and lipid
metabolism. We also showed that gene expression changes
in aging brain has more association with acetylation while
AD-specific gene expression changes are more related to
inflammatory response, glycoprotein, mitochondria and synapse.
Importantly, we demonstrated that cognitively normal brains
are not homogeneous in their transcriptomes and several major
subgroups could be identified. By comparing gene expression
among different subgroups, we showed that gene expression
changes in a subpopulation have strong overlap with the AD
signature, suggesting that although aging is a general risk factor
for AD, only a subset of individuals may experience gene
expression changes to a level that is significantly associated with
the onset of the disease.

From our study, several biological processes shared between
LOAD and normal aging could point to the mechanisms of
how aging and AD interconnect. First, PTMs related genes
such as alternative splicing and phosphoprotein are enriched
in both up- and down-regulated ASGs, AADGs/ABADGs, and
ADSGs (e.g., top function terms in Figures 3, 6). PTMs
regulation plays critical role for synaptic plasticity at several
levels (Kiltschewskij and Cairns, 2017) by increasing proteome
diversity through alternative splicing, or by enabling activity-
dependent regulation of mRNA localization, translation or
degradation in the dendrite. It will be interesting to investigate
what events trigger the PTMs that are observed in aging and
AD. Second, the immune response strongly showed-up in AD
signatures as can be seen in our results and previous studies
(Verbitsky et al., 2004; Reichwald et al., 2009; Bordner et al., 2011;
Cribbs et al., 2012). Since it was less significantly up-regulated in
either ASGs/AADGs or ABSGs/ABADGs, this supports that the
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escalated inflammation is a hallmark of AD, relative to normal
brain aging which is also known to be associated with low-grade
neuroinflammation. Whether the inflammatory response plays a
key causative role in the early stage of AD development or it is
more of a reactive response to the upstream pathology requires
further investigation.

Since it is infeasible to directly test if individuals in the
“healthy aging” subgroup A will remain cognitively normal
decades later, we relied on an alternative strategy in which we
compared transcriptomes between GTEx brain aging subgroups
with a cohort of older individuals who were either AD or
cognitively normal. For the 51 PHG samples (14 control
and 37 AD samples), we observed that 31 out of 37 AD
samples clustered with GTEx subgroups B and C (AD
similar subgroups); while all the 14 normal control samples
clustered with GTEx subgroup A, which presumably represents
a healthy brain aging group. This result suggests that the
gene expression in subgroup A is strongly associated with
normal cognitive functions in both relatively younger and
older individuals, which supports that GTEx subgroup A is
a healthy aging subgroup and individuals in this subgroup
will likely remain cognitively normal when they get older.
However, we did observe that several AD patients have their
PHG transcriptome clustered with GTEx subgroup A (6 out
of 37 AD samples). This indicates that an individual with a
healthy aging gene expression pattern in the hippocampus or
PHG can still have AD. We think this could be explained
by the heterogeneity of AD which is increasingly known to
have multiple subtypes (Neff et al., 2021). For example, at least
four subtypes of AD (typical, limbic-predominant, hippocampal-
sparing, and minimal atrophy AD) have been reported based
on distribution of tau related pathology and regional brain
atrophy (Ferreira et al., 2020). It is possible that some subtypes
of AD could have their hippocampal transcriptomes similar
to our healthy aging subgroup. For example, it has been
reported that hippocampal-sparing AD subtype has a lower
frequency of APOE ε4 compared with typical and limbic-
predominant AD (Ferreira et al., 2020); interestingly, all the
6 AD samples clustered with the GTEx subgroup A are from
donors of APOE ε3/ε3. Since AD is not a single brain-
region disease, to accurately predict AD development based
on gene expression or any type of brain region-specific data,
we believe that multiple regions should be examined and
studied together.

Although the PHG data suggest that different aging subgroups
may have distinct probabilities of developing AD decades later,
the “causal link” between certain aging subtypes and AD
should not be assumed. Other alternative mechanisms should be
considered which may explain our observations. For example,
the aging subtypes could correspond to the natural fluctuation
of brain states, while LOAD may represent a rather different state
(or several states) that is difficult to escape once entered. To fully
elucidate the underlying mechanisms of aging subtypes and their
link to AD development, much more studies are needed.

The results from cell decomposition of the bulk gene
expression data suggest that the differentially expressed gene
expression between subtypes is at least partially due to the

changes in cell proportions across the subgroups. For example,
the down-regulation of synapse genes in the GTEx aging
subgroup B might be explained by the decrease in the number
of neurons in the samples in this subgroup. However, the
deconvolution method we used assumed that the reference gene
expressions do not change across conditions (in our case, the
aging subgroups), which may not necessarily be true. Therefore,
although it is very likely that cell compositions changed across
subtypes, it is also possible that some gene expressions changed
in a cell-type specific manner across the aging subgroups. To fully
resolve this issue, single-cell profiling of samples from these aging
subgroups will be highly useful.

The cell deconvolution analysis suggested cell-type proportion
changes in certain aging subgroups. The loss of neurons and
repression of their gene expression in AD brains have been
reported (Zarow et al., 2005; Mathys et al., 2019), similarly
the activation of microglia in AD is also well-recognized
(Hopperton et al., 2018). Recently single-nucleus RNA-seq data
from AD and control brains also suggest the increase of certain
subpopulations of oligodendrocytes in AD brains (Mathys et al.,
2019; Lau et al., 2020). Although the technical variation in
sample dissection may contribute to the cell-type proportion
difference across samples, the cell-proportions estimated in GTEx
subgroup A and PHG control samples are highly comparable
(see Figure 7), suggesting the possible sampling variation within
the same brain region is unlikely a major factor for causing
the cell-type proportion variation. In addition, we estimated
cell-type proportions explained ∼36% total gene expression
variation in GTEx HIPP samples and ∼28% for PHG samples,
implying other factors such as cell-type specific gene expression
changes occurred in these samples. Again, single-cell gene
expression data from aging subgroups and comparison with
AD single-cell data will be needed to further understand the
differential gene expressions among aging subgroups at a cell-
type specific level.

Finally, we observed no significant difference in sex
distribution among GTEx subgroups (Fisher exact test,
p-value = 0.81) and UK subgroups (p-value = 0.37). For
example, for the 36 samples in GTEx subgroup A, 27 were males,
and 9 were females; for the 9 samples in GTEx subgroup B, 8
were males and 1 was female; and for GTEx subgroup C, 8 were
males and 3 were females. Since there were only very limited
number of female samples in the AD similar subgroups, we did
not have sufficient statistical power to investigate the sex-related
difference in these aging subgroups.

In summary, our study suggests that combined analysis of
aging and LOAD can help us to understand how aging may
contribute to the development of LOAD. Since most genomic
studies on AD relied on AD samples from donors in 70s
to 90s, these samples may not provide the information for
the molecular events occurred in the very early stage of the
disease development. As we demonstrated in this work, the
brains from a subpopulation of cognitively normal individuals
in their 40–70s already show gene expression changes similar
to AD, this supports that the initiation of LOAD could occur
decades earlier than the manifestation of clinical phenotypes
and it may be critical to closely study cognitively normal
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individuals in their 40s-60s to identify the triggering events
in AD development.
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