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Abstract: Thrombus imaging characteristics are associated with treatment success and functional
outcomes in stroke patients. However, assessing these characteristics based on manual annotations is
labor intensive and subject to observer bias. Therefore, we aimed to create an automated pipeline
for consistent and fast full thrombus segmentation. We used multi-center, multi-scanner datasets of
anterior circulation stroke patients with baseline NCCT and CTA for training (n = 228) and testing
(n = 100). We first found the occlusion location using StrokeViewer LVO and created a bounding
box around it. Subsequently, we trained dual modality U-Net based convolutional neural networks
(CNNs) to segment the thrombus inside this bounding box. We experimented with: (1) U-Net
with two input channels for NCCT and CTA, and U-Nets with two encoders where (2) concatenate,
(3) add, and (4) weighted-sum operators were used for feature fusion. Furthermore, we proposed a
dynamic bounding box algorithm to adjust the bounding box. The dynamic bounding box algorithm
reduces the missed cases but does not improve Dice. The two-encoder U-Net with a weighted-sum
feature fusion shows the best performance (surface Dice 0.78, Dice 0.62, and 4% missed cases). Final
segmentation results have high spatial accuracies and can therefore be used to determine thrombus
characteristics and potentially benefit radiologists in clinical practice.
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1. Introduction

Ischemic stroke treatment outcome is shown to be associated with thrombus imaging
characteristics, such as perviousness, length, and distance from the internal carotid artery
terminus (ICA-T) [1,2]. In order to calculate thrombus perviousness and length, the loca-
tion of the thrombus should first be detected. Next, the extent of the thrombus should be
annotated or marked by several volumes of interest (VOIs). An alternative to this partial
thrombus annotation involves segmenting the entire thrombus, which leads to a more accu-
rate calculation of thrombus imaging characteristics [3]. Furthermore, radiomic features,
which are also shown to be associated with treatment outcome [4,5], can only be extracted
from full thrombus segmentations. However, manual annotations or segmentations of the
entire thrombus are inconsistent and oftentimes inaccurate. Additionally, they are highly
time consuming and cannot be done in the acute setting of stroke. Currently, thrombus
location is the only thrombus imaging characteristic that is taken into account in ischemic
stroke patient management [6]. An automatic thrombus segmentation method, however,
can result in accurate and fast determination of other thrombus imaging characteristics,
and consequently facilitate their use in stroke patient assessment.

The most common imaging modality for the acute diagnostic work-up in stroke is
computed tomography (CT). On non-contrast CT (NCCT) scans, thrombi may appear as a
hyper-attenuated vascular area, which is known as the “hyperdense artery sign” (HAS) [7].
The attenuation of an HAS has a positive correlation with the concentration of red blood
cells (RBCs) in the thrombus [8]. HAS is one of the earliest signs of ischemic stroke and
can be detected with high sensitivity and specificity, which indicates that the majority of
patients with confirmed acute ischemic stroke show a visible hyperdensity on NCCT [9].
Additionally, thin slice reconstruction of NCCT improves HAS visibility [10]. Therefore, the
detection of HAS is improved as acquisition of NCCT with thinner slices becomes possible.

On CT angiography (CTA), the location of the proximal side of the thrombus can
be detected as a termination or disruption of the contrast-enhanced artery. In case of
sufficient perfusion of the distal side of the occlusion by collaterals, the distal side can also
be correctly inferred. However, insufficient retrograde filling can result in over-estimation
of the thrombus size on CTA [11]. Therefore, if HAS is visible on NCCT, it may be a more
reliable indicator of the thrombus extent than a lack of attenuation on CTA.

Several clinically validated software solutions exist which provide large vessel oc-
clusion (LVO) detection on NCCT scans [12] or CTA scans, including Brainomix e-Stroke
Suite, iSchemaView RAPID [13], Viz. ai LVO [14] and Nicolab StrokeViewer LVO. However,
there are only a few studies that address thrombus segmentation on CT scans. The main
challenges in the thrombus segmentation task are (1) the small size of the thrombi compared
to the entire brain, (2) the occasional existence of other highly attenuated vascular areas on
NCCT that mimic HAS, such as calcified arteries, high hematocrit, and beam hardening
artefacts [9], (3) lack of HAS on NCCT for thrombi with low concentrations of RBCs, and
(4) over-estimation of thrombus on CTA due to insufficient collateral flow.

Thrombus segmentation on CT scans was first reported by Santos et al. [11] who
developed a semi-automated method, which uses manually selected proximal and distal
seed points and the contralateral artery to segment the thrombus on CTA scans. Bee-
somboon et al. [15] extract a number of brain regions with similar intensity on NCCT
and then proceed to eliminate the non-thrombus regions with a rule-based algorithm.
However, they only provide visual comparison with ground truth without reporting any
quantifiable measures.

Convolutional neural networks (CNN)s have shown great promise in medical image
segmentation. Lucas et al. [16] use two cascaded CNNs to segment thrombi on NCCT. The
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first network is a U-Net architecture that takes a region of interest (ROI) containing middle
cerebral artery (MCA) and ICA regions as input and segments all the candidate regions
in it. The second network is used for false positive reduction by predicting whether the
left, right or none of the hemispheres contains a thrombus. They achieve a Dice score of
0.5 on a small test set. Tolhuisen et al. [12] train two patch-based CNNs: one for detecting
asymmetry between hemispheres and another for HAS detection on NCCT scans. First,
the image patches are classified using both networks, and then voxel-wise segmentation
is done on the patches that were classified as positive using the HAS detection network.
However, even though their method is able to detect thrombi with the same accuracy
as expert neuroradiologists, the volumetric, and spatial agreement of the segmentation
predictions with the ground truth is low.

In this study, we present and validate a proof-of-concept for automatic thrombus
segmentation using dual-modality U-Net based CNNs. We use an off-the-shelf algo-
rithm, StrokeViewer LVO (Nicolab, Amsterdam, The Netherlands; www.nicolab.com/
strokeviewer-home accessed on 12 March 2022), to detect the thrombus location and then
limit the search area by creating a bounding box around the detected thrombus location.
The overlapping NCCT and CTA bounding boxes are subsequently given as input to the
CNNs to automatically segment the thrombi. We introduce the dynamic bounding box
algorithm to improve the chance of enclosing the entire thrombus inside the final bounding
box. Limiting the segmentation space alleviates the problem of size disparity between
thrombus and brain. Additionally, it simplifies the segmentation task by omitting some
of the potential HAS mimics. Furthermore, despite NCCT being a more reliable informa-
tion source for thrombus segmentation, it is easier to detect the thrombus based on the
vessels shown on CTA. Both modalities can therefore be more effectively utilized when the
detection and segmentation steps are separated.

2. Materials and Methods
2.1. Dataset

Baseline NCCT and CTA scans of 228 patients with an anterior cerebral large vessel
occlusion (LVO) stroke (ICA, M1, and M2 segment of the MCA) from two datasets were
included for the train and validation set. The first dataset contains 129 patients from the
multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke
in the Netherlands (MR CLEAN) [17]. The second dataset contains fully anonymized
data from a globally collected cohort of 99 patients with confirmed large vessel occlusions
in the anterior cerebral circulation. The data were collected according to local standards
and regulations. The train set contains 208 scans, 115 of which are from the first dataset.
The validation set contains 20 scans, 14 of which are from the first dataset. The scans are
randomly divided between the train and validation set.

The test set consists of baseline NCCT and CTA scans of 100 randomly chosen patients
from the MR CLEAN-NO IV trial [18].

Patients with an LVO of the anterior circulation from twenty centers in the Nether-
lands, France, and Belgium were included in this trial between 2018 and 2020. Patients
were excluded for the following reasons: NCCT scans with slice thickness ≥5 mm (n = 29),
no visible HAS at all which makes accurate annotation of thrombus impossible (n = 7), CTA
slice thickness >2 mm or minimum number < 8, incomplete brain, or sharp convolutional
kernels (such as “boneplus”, “h70h”, “FC30”, or “FC31”) (n = 18), failed automatic regis-
tration (n = 4), patients with extracranial occlusions (n = 3), and no occlusion detected by
StrokeViewer (n = 15).

The 15 cases where StrokeViewer LVO did not produce a prediction include proximal
and distal M2 (n = 11), ICA-T (n = 2), and M1 (n = 2) occlusions. The 100 test set scans
include ICA-T (n = 22), M1 (n = 70) and proximal and distal M2 (n = 8) occlusions.

Descriptive characteristics of the thrombi in the training, validation, and test set are
summarized in Table 1.

www.nicolab.com/strokeviewer-home
www.nicolab.com/strokeviewer-home
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Table 1. Dataset characteristics. Numbers in the parenthesis show the 95% confidence interval.

Dataset
% Right

Hemisphere
Affected

Average
Thrombus

Volume (mm3)

Average
Thrombus

Length (mm)

Average
Hounsfield

Value of
Thrombus on

NCCT

Training set 55 221 (196, 246) 31 (28, 34) 47 (45, 49)
Validation set 55 187 (111, 263) 23 (16, 29) 45 (42, 48)

Test set 48 168 (147, 188) 32 (29, 36) 50 (49, 51)

2.1.1. Ground Truth: Manual Annotations

All of the thrombus delineations were initially made by a trained observer (MM) based
on both NCCT and CTA scans. The annotations for the scans in training and validation
set were checked by a trained observer with 10 years of annotating experience (IJ). The
annotations for the scans in the test set were checked by a neuroradiologist with over
15 years of experience in neuroradiology (BE).

2.1.2. Pre-Processing

The pre-processing steps included skull stripping, registering the NCCT and CTA
scans to the MNI-305 atlas brain [19], clipping the intensity values in the NCCT and CTA
images between (0, 100) and (0, 250) HU, respectively, and normalizing the resulting
intensity values between (0, 1). Skull stripping was performed using a deep learning
based method developed by Nicolab. For registration, the affine registration feature of
SimpleElastix software [20] was used.

2.2. Modelling and Analysis

Our method first acquired the location of the thrombus using LVO detection and
localization of StrokeViewer. Subsequently, an initial bounding box was created around
the thrombus location on both CTA and NCCT. Different CNNs were used to segment
the thrombus inside the bounding box. Our proposed dynamic bounding box algorithm
adjusted the size and location of the bounding box to improve the chance of the entire
thrombus being segmented by the network. The algorithms used in this study are available
upon reasonable request.

2.2.1. Segmentation Networks

Since both NCCT and CTA contain important information about the thrombus, we
used multi-modal networks for thrombus segmentation. All segmentation networks were
based on a fully convolutional encoder–decoder architecture similar to U-Net. We evaluated
four ways of combining the two CT modalities (NCCT and CTA) in the U-Net: (1) one
was to give the two modalities as two input channels to the U-Net. Another option was to
have a separate encoder for each modality and combine the features by (2) concatenation,
(3) adding, or (4) weighted sum. Additionally, we report the results of using only NCCT
as the single input modality to the U-Net network as a baseline to examine the effect of
including information from CTA.

Since the dynamic bounding box algorithm creates bounding boxes of different sizes,
our networks should be capable of accepting inputs of various sizes. Although U-Net is
fully convolutional, the existence of skip connections between the encoder and the decoder
results in a limited set of acceptable input sizes for this network. Therefore, we transformed
each bounding box to the closest acceptable input size by zero padding. The models were
implemented using PyTorch 1.9.0 [21].

U-Net

In the U-Net architecture, we concatenated the NCCT and CTA images in the beginning
and fed them as a single matrix with two channels to the U-Net. Consequently, the features
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were combined in the first convolutional layer of the network. The details of this network
are depicted in Figure 1. All 3D convolutional layers had a kernel size of 3 and a padding
size of 1. The kernel size for both MaxPool and UpConv operations was 2. The upsampling
algorithm used for UpConv was ‘trialinear’ with align corners set to “True”. The number
of channels for each layer are depicted in Figure 1.

Figure 1. U-Net architecture. The number of input and output channels to each conv-block is depicted
on the outside of the conv-block box. The number inside the conv-block box shows the number of
channels after the first Conv3D operation.

Concatenate

In the network with the concatenate feature fusion, we combined the features at a
deeper level by using a separate encoder for each modality. Having separate encoder paths
allows the network to create more specialized features for each modality. The architecture
of this network is depicted in Figure 2. The final features of both encoders were combined
and given as input to the decoder. Additionally, the features of the two encoders were
combined at each level and passed to the decoder by residual connections. All of the feature
fusions were done by concatenation. Feature fusion by concatenation is also used in the
skip connections in U-Net, DenseNet [22], and the inception block in GoogLeNet [23].

Figure 2. U-Net with two encoders where the features are combined using concatenation. The details
of the Conv-block, MaxPool, and UpConv operations are similar to the U-Net with one encoder.
For other feature fusion methods, namely add and weighted-sum, the concatenate operation was
replaced by addition and weighted-sum, respectively.
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Add

Combining the features with concatenation is a common feature fusion method. How-
ever, it significantly increases the number of parameters in the model. An alternative
common feature fusion method is to add the two feature matrices together. With this
method, no additional trainable parameters are required for the fusion process. Feature
fusion by addition is also used in the residual connections in ResNet [24] and the feature
pyramid network (FPN) [25].

Weighted-Sum

In addition to the two common feature fusion methods of concatenation and adding,
we also fused the features with weighted sum, where a weight was learned for the con-
tribution of each modality per channel. This method is illustrated in Figure 3. Given two
feature sets A, B ∈ RC×D×H×W , where C is the number of channels and D, H, and W are
depth, height, and width, respectively, weighted-sum applies 1× 1× 1 convolutions to
each channel in A and B. The result is a fused feature set F ∈ RC×D×H×W . Considering
the convolutional kernel for each channel to be Ki = [k1, k2] ∈ R2×1×1×1 each channel
Fi ∈ RD×H×W in F is therefore computed as:

Fi = k1 Ai + k2Bi (1)

where matrices Ai and Bi are the i-th channel of the feature sets A and B. Using 1 × 1 × 1
convolutions instead of concatenation significantly reduces the number of parameters and,
consequently, the computational power and amount of data needed for training the model.

Figure 3. Implementation of the weighted-sum feature fusion. Since it is not possible to depict the
original 4D structure, the features are depicted in 3D. A and B are the feature sets of the first and
second modalities, respectively. The dotted arrows show the separation of the i-th channel from both
the red and the blue feature-set, where Ai and Bi are the i-th channel of A and B. A convolutional
operator is then used to combine these two channels into one channel, depicted as Fi.

2.2.2. Network Training

The input bounding boxes have different sizes and the thrombus can be in different
locations within the bounding box. In order to make the network invariant to these changes,
we prepared the training data as follows: we created five bounding boxes for each patient
in our train set. For each bounding box, we first made a tight box around the thrombus
and subsequently chose a random offset between (−0.1 × thrombus size, n ×maximum
bounding box size) to add to the bounding box size in each direction. Five different values
were chosen for n [0.2,0.3,0.5,0.7,0.9].

All networks were trained for 150 epochs with a batch size of 1 using the Adam opti-
mizer. Since the number of thrombus voxels was smaller than the number of background
voxels, there was a class imbalance between the positive and negative classes. We used
weighted cross entropy loss to account for the class imbalance problem. For each network,
the optimum positive weight of weighted cross entropy and initial optimizer learning rate
were chosen by hyperparameter tuning on the validation set. Hyperparameter tuning was
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conducted using the hyperparameter sweep feature of the weights and biases package.
Hyperparameter tuning was run for the same amount of time for each model. The search
intervals of hyperparameter tuning were (0.0001–0.1) and (10–50) for the initial learning
rate and the weight of the weighted cross entropy loss, respectively.

2.2.3. Dynamic Bounding Box Algorithm

An initial 3D bounding box was automatically generated around the detected throm-
bus point location. Its size was pre-defined, such that the initial bounding box for all
patients had the same proportions. These proportions were chosen based on the train set,
such that 90% of the thrombi in the train set completely fit inside it: in the longitudinal
axis, the thrombus point location was 15 and 65 voxels away from the cranial and caudal
sides of the initial bounding box, respectively. In the frontal and sagittal axes, the thrombus
point location was 24 voxels away from both sides of the initial bounding box.

Due to variability in size and orientation of thrombi, and also in the position of the
predicted thrombus point location, the initial bounding box occasionally only partially
contains the thrombus. Furthermore, in case thrombus detection is not accurate, the initial
bounding box may not contain the thrombus at all. Therefore, we propose the dynamic
bounding box algorithm to customize the location and proportions of the initial bounding
box. The dynamic bounding box algorithm consists of the flexible bounding box and the
moving bounding box methods. The flow chart of the dynamic bounding box algorithm
is depicted in Figure 4. The hyperparameters of this algorithm are chosen experimentally
based on the validation set. We evaluated the effectiveness of this algorithm’s methods
with an ablation study based on the results of the best performing segmentation network.

Figure 4. Flow chart of the dynamic bounding box algorithm.
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Moving Bounding Box Method

In cases where the network’s segmentation prediction is small, there is a chance that
the segmentation is erroneous because the bounding box does not contain the thrombus.
Therefore, if the segmentation network’s prediction was smaller than 100 voxels, we used
the moving bounding box method to explore the area around the initial bounding box.
This method moved the initial bounding box 2

3 of its length in 6 cube side directions to
create 6 alternative bounding box candidates. Subsequently, the segmentation network was
used to make a segmentation prediction for each of these candidates. Finally, the candidate
bounding box that yielded the largest thrombus segmentation volume was chosen.

Flexible Bounding Box Method

If the predicted thrombus is close to the edge of the bounding box (5 voxels or less),
there is a chance that part of the thrombus is left outside of the bounding box. In this case,
the flexible bounding box method increases the size of the bounding box in that dimension
by 10 voxels, and proceeds to pass the new bounding box through the segmentation
network. If the resulting segmentation is still close to the edge, this procedure can be
repeated up to 5 times.

2.2.4. Post-Processing

Predicted segmentations in the validation set commonly included small artefacts at
the edges of the large main segmentation prediction volume. Therefore, we performed
morphological closing with a kernel size of 3× 3× 3 to connect these components to the
main volume. Additionally, we omitted components that were smaller than 10 voxels.

2.3. Evaluation Metrics

We evaluated the segmentation results using five spatial measures: Dice, surface
Dice, 95th percentile Hausdorff distance (HD), number of non-overlapping connected
components, and percentage of missed thrombi; and two volumetric measures: the intra-
class correlation coefficient (ICC) and Bland–Altman analysis. The use of these metrics is
briefly explained in this section. Additionally, we report precision and recall for the best
performing network.

2.3.1. Dice

Considering Vp and Vgt to be the set of voxels in the automated segmentation and
ground truth respectively, the Dice coefficient [26] is defined as:

Dice =
2|Vgt

⋂
Vp|

|Vgt|+ |Vp|
(2)

It should be noted that Dice is also equal to the harmonic mean of voxel-wise precision
and recall. In order to calculate metrics such as precision and recall for segmentations, each
voxel in the scan is defined as true/false positive/negative. Namely, a true positive is a
voxel that is correctly classified as thrombus and a true negative a voxel that is correctly
classified as non-thrombus. However, these metrics are sensitive to class imbalance, and
are affected more severely by errors in small segments than in large segments [27]. For
instance, completely missing a small object will result in a few false positives and many
true negatives.

2.3.2. Surface Dice

The Dice coefficient does not distinguish between the voxels on the surface and interior
of the volume. As a result, a negligibly small deviation from the surface in many locations
affects Dice similarly to a great deviation in one location. Nikolov et al. [28] propose surface
Dice coefficient to resolve this issue. Similar to Dice, this metric is also a score between 0
and 1. Considering Sτ

overlap to be the set of points on the prediction surface that overlap
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with the ground truth at a specified tolerance τ (we choose τ = 1 mm) and Sgt and Sp to
be the set of points on the surface of the ground truth and the surface of the segmentation
prediction, surface Dice is defined as:

Sur f aceDice =
2|Sτ

overlap|
|Sgt|+ |Sp|

(3)

Even in an adequately accurate segmentation, negligibly small deviations from the
ground truth can occur on the surface. Furthermore, due to the difficulty of detecting and
delineating the exact contour of a lesion, ground truth annotations are also often imperfect
on the surface. Surface Dice has incorporated the tolerance τ to avoid penalizing these
small deviations in segmentations.

2.3.3. 95th Percentile Hausdorff Distance (HD)

The original (maximum) Hausdorff distance (HD) metric is defined as the maximum
of the shortest distances between two finite point sets. However, this definition is sensitive
to outliers. An alternative improved measure is therefore the 95 percentile HD, which uses
the 95th percentile of the distances instead of the maximum. In cases where the network
did not predict anything, the 95th percentile HD was not calculated.

2.3.4. Intraclass Correlation Coefficient (ICC)

We report the ICC (two-way mixed model for absolute agreement, single measure)
between the volume of the thrombus segmentation and the volume of the ground truth.
We interpret values less than 0.5 as poor, values between 0.5 and 0.75 as moderate, values
between 0.75 and 0.9 as good, and values higher than 0.9 as excellent reliability [29].

2.3.5. Number of Non-Overlapping Connected Components

We report the average number of connected components in the segmentation output
that do not overlap with the ground truth at all.

2.3.6. Bland–Altman Plot

The Bland–Altman analysis [30] investigates to what extent two quantitative measures
concur with each other. We created a Bland–Altman plot to investigate to what degree the
predicted segmentation volume agreed with the ground truth annotation volume, for the
best performing network. The vertical axis of the Bland–Altman plot shows the difference
between the two volumes. The horizontal axis shows the mean of the two volumes. The
mean of the values on the horizontal axis is therefore a volumetric measure of the extent to
which the predictions differ from the ground truth.

2.3.7. Missed Cases

We report the percentage of cases where the segmentation outputs show no overlap
with the ground truth (Dice = 0).

3. Results

The best performing network is the weighted-sum with a surface Dice of 0.78 (95% CI
0.73–0.83) and a Dice score of 0.62 (95% CI 0.58–0.66). Average precision and recall for the
weighted-sum network are 0.66 (95% CI 0.62–0.70) and 0.67 (95% CI 0.62–0.73), respectively.
Evaluation metrics for all networks are reported in Table 2. The average surface Dice of the
dual modality networks ranges from 0.69 (95% CI 0.63–0.76) to 0.78 (95% CI 0.73–0.83) for
add and weighted-sum, respectively. Excluding CTA from the U-Net model (and thus only
using NCCT) strongly reduces the surface Dice of U-Net from 0.75 (95% CI 0.69–0.80) to
0.51 (95% CI 0.43–0.58).

As a measure of model complexity, the number of trainable parameters is reported
in Table 2. Including a separate encoder for the CTA images, as done for the concatenate,
weighted-sum, and add networks, inevitably increases complexity. A more complex model
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can learn more complex patterns in the data, but it has a higher chance of over-fitting to
smaller datasets. Additionally, having less trainable parameters reduces the computational
costs of a model. The number of trainable parameters of add is 17.0%, weighted-sum 17.8%,
and concatenate 39.9%, more than dual modality U-Net.

Table 2. Comparing the properties and performance of different segmentation networks. Numbers
in the parenthesis show the 95% confidence interval. Best performance in each metric is emphasized
by bold text. Missed cases shows the percentage of cases with a Dice = 0 in the test set.

Model
Number of
Trainable

Parameters
Dice Surface Dice

Number of
Non-

Overlapping
Connected

Components

Volume ICC
95th

Percentile
HD

Missed
Cases

U-Net 82M 0.59
(0.55, 0.64)

0.75
(0.69, 0.80)

2.5
(1.5, 3.5)

0.70 10.46
(7.33, 13.58)

6%

Concatenate 115M 0.60
(0.55, 0.65)

0.76
(0.71, 0.82)

0.6
(0.3, 0.9)

0.68 5.89
(4.36, 7.42)

8%

Weighted-
sum 97M 0.62

(0.58, 0.66)
0.78

(0.73, 0.83)
0.7

(0.4, 0.9)
0.60 5.88

(4.54, 7.22)
4%

Add 96M 0.53
(0.48, 0.58)

0.69
(0.63, 0.76)

0.3
(0.1, 0.4)

0.49 5.67
(4.30, 7.04)

11%

U-Net with
no CTA input 82M 0.38

(0.32, 0.45)
0.51

(0.43, 0.58)
0.2

(0.1, 0.3)
0.41 7.75

(5.25, 10.26)
26%

Based on Dice, surface Dice, and the number of missed cases, the three dual modality
models all performed well, with weighted-sum achieving the highest Dice, surface Dice,
and the smallest number of missed cases. The average number of non-overlapping con-
nected components in add, weighted-sum, and concatenate is less than 1, but for U-Net,
this number is 2.5 (95% CI 1.5–3.5). Using only NCCT as a single modality input results in
the lowest number of non-overlapping components. Despite the high surface Dice score,
weighted-sum has a lower volume ICC than add and concatenate. The paired student t-test
was used to test the significance of the average Dice score difference among the weighted-
sum and U-Net (p-value = 0.023), concatenate (p-value = 0.12), add (p-value < 0.001), and
U-Net with no CTA input (p-value < 0.001).

Since weighted-sum has the best segmentation performance, we performed the ad-
ditional analyses based on the predictions of the weighted-sum model. One example of
the weighted-sum predictions with the surrounding anatomy is shown in Figure 5. Ad-
ditionally, in order to provide a visual representation of the segmentation prediction in a
3D bounding box, all the axial slices of the bounding box for two patients are depicted in
Appendix B.

The Bland–Altman plot of thrombus volumes based on the weighted-sum model
predictions is depicted in Figure 6. This plot shows that the automated segmentations
tend to overestimate the volume of small thrombi and underestimate the volume for larger
thrombi. The mean difference in thrombus volumes of the prediction and ground truth is
−29 mm3 (95% CI −267–208 mm3).
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Figure 5. The 3D visualization of the NCCT scan. The segmentation prediction of the weighted-sum
network is shown on a 2D slice of NCCT and CTA on top.

Figure 6. Bland–Altman plot for thrombus volume based on weighted-sum predictions. The mean
volume difference is shown as a horizontal line. The 95% of the differences between the ground truth
and the predictions fall within the limits of agreement that is also depicted on the plot.
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In order to provide further insight into the segmentation predictions of weighted-sum,
we report the average Dice and surface Dice for thrombi of different occlusion locations in
Table 3. We also include the number of cases of each occlusion location and the number
of missed cases for each location. M2 thrombi have the lowest spatial agreement with a
surface Dice of 0.66 (95% CI 0.37–0.95). The model performs similarly well for ICA-T and
M1 thrombi.

Table 3. Average Dice and surface Dice of weighted-sum per occlusion location. Numbers in the
parenthesis show 95% confidence interval. Number of thrombi for each occlusion location in the test
set is shown as ‘number of cases’ and the number of cases for each occlusion location with Dice = 0 is
shown as ‘missed cases’.

Metric ICA-T M1 M2

Dice 0.64 (0.57, 0.72) 0.63 (0.58, 0.68) 0.51 (0.29, 0.74)
Surface Dice 0.78 (0.69, 0.87) 0.79 (0.74, 0.85) 0.66 (0.37, 0.95)

missed cases
number of cases

0
22

3
70

1
8

The ablation study on the effectiveness of the dynamic bounding box algorithm and
post-processing was performed on the weighted-sum network. The results of omitting the
moving bounding box method, the flexible bounding box method, and post-processing
are shown in Table 4. This table shows that the dynamic bounding box methods do not
strongly affect Dice. However, the moving bounding box method decreases the number
of missed cases. The applied post-processing only minimally affects surface Dice, ICC,
and the number of missed cases, but it increases the average number of non-overlapping
components.

Table 4. Ablation study on the weighted-sum network. Numbers in the parenthesis show 95%
confidence interval.

Experiment Dice Surface Dice

Number of
Non-

Overlapping
Connected

Components

Volume ICC 95th Percentile
HD Missed Cases

No moving
bounding box

0.60
(0.55, 0.64)

0.75
(0.69, 0.80)

0.6
(0.4, 0.9)

0.67 5.58
(4.30, 6.85)

9%

No flexible
bounding box

0.61
(0.57, 0.66)

0.77
(0.73, 0.82)

0.33
(0.2, 0.4)

0.63 6.39
(4.30, 8.48)

4%

No
post-processing

0.62
(0.58, 0.66)

0.78
(0.73, 0.83)

0.9
(0.6, 1.3)

0.60 5.85
(4.51, 7.19)

4%

In 95% of the cases, the thrombus is (at least partially) included in the initial bounding
box (recall of 0.95). The entire thrombus was included in the initial bounding box with a
recall of 0.52. In the cases where thrombus was only partially included, on average, 78%
of the thrombus volume was inside the initial bounding box. For three out of the five
cases where the initial bounding box did not contain the thrombus at all, the weighted-sum
network did not make any predictions, and the predicted lesion volume in the remaining
two cases was negligibly small (less than 3 mm3). After applying the dynamic bounding
box algorithm for the weighted-sum network, recall was 0.98 and 0.76 for partial and
complete thrombus inclusion. The average percentage of thrombus volume that was inside
the final bounding box increased to 83%.

Two examples of weighted-sum thrombus segmentations in the test set with a high
agreement with the ground truth are shown in Figure 7. We observe that, in multiple cases,
the network is capable of segmenting the HAS even when the contrast difference of HAS
and the background is minimal. Additionally, in cases such as Figure 7B, the network is able
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to distinguish hyperdense areas that mimic the HAS based on information from the CTA.
Figure 8 shows two cases where the predictions of weighted-sum only partially agree with
the ground truth. Since the edges of the HAS are not always clearly distinguishable from
the background, in some cases, it is difficult to determine the true extent of the thrombus.

Figure 7. Weighted-sum thrombus segmentation results for two patients. The segmentation predic-
tion is depicted in red; (A) shows a difficult case in which the network is able to successfully segment
a small thrombus where the hyperdense artery sign is not easily distinguishable from the background;
(B) depicts a case where CTA shows that the thrombus is only partially present in the artery. Part of
the non-occluded artery also shows as a hyperdense region on NCCT. Therefore, information from
both NCCT and CTA is required to accurately annotate the thrombus. This figure shows that the
network is able to discard the area with the visible contrast on CTA from the segmentation.

Figure 8. A and B both show cases where weighted-sum predictions only partially agree with the
ground truth. In figures (b,c), the prediction and ground truth are shown in red, respectively. In
cases where the thrombus intensity decays gradually, it can be difficult to determine the extent of the
thrombus, manually and automatically.
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Some examples of weighted-sum predictions with high Dice (above 0.6) are shown in
Figure 9. Additionally, some cases with segmentation errors or lower Dice scores are shown
in Figure 10. In order to also provide visual context and enable a comparison between Dice
and surface Dice scores, we included these scores for the depicted 2D bounding boxes in
Figures 9 and 10.

Figure 9. Examples of cases with a Dice score higher than 0.6. The bounding box is used to limit the
scan area for each case. Since the bounding box is three-dimensional, only the axial slice with the
largest ground truth surface area is depicted. Different cases are represented in rows. The first three
columns show NCCT and the right most image column shows the CTA image. The boundaries of the
ground truth annotation (GT) and segmentation prediction (prediction) are shown in green and red,
respectively. Dice and surface Dice values for the displayed 2D slice are shown at the right side for
each row.
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Figure 10. Examples of cases with segmentation errors or a low Dice score. The bounding box is
used to limit the scan area. Since the bounding box is three-dimensional, only the axial slice with the
largest ground truth surface area is depicted. The boundaries of the ground truth annotation (GT)
and segmentation prediction (prediction) are shown in green and red, respectively. Dice and surface
Dice for the displayed 2D slice are shown at the right side for each row. The top-most row shows a
missed case (Dice = 0). The second row shows a case with a non-zero overall Dice score where the
network does not segment the thrombus in the presented axial slice.

4. Discussion

Our proposed automated thrombus segmentation method with the weighted-sum
network is able to segment occluding thrombi in CT images from acute ischemic stroke
patients with a high spatial overlap with the ground truth. Including CTA in addition to
NCCT strongly improved thrombus segmentation accuracy. Assigning a separate encoder
for each modality and combining the features using weighted-sum results in the best
segmentation performance. The introduced dynamic bounding box algorithm reduced the
number of missed thrombi, but did not significantly affect the Dice score.

Only a few studies have reported fully automated thrombus segmentation methods
on CT scans of patients with LVO stroke. Tolhuisen et al. [12] use patch-based CNNs over
the entire scan and report results on a test set containing 58 LVO cases and 45 stroke mimic
cases. Their method shows a moderate volume agreement ICC (0.49) but a poor agreement
ICC for thrombus density (0.14). The poor density agreement suggests that the overlap
between the segmentation results and the ground truth is suboptimal. Lucas et al. [16]
used cascaded CNNs and limited the search area to the MCA and ICA regions. They
used their initial segmentation results as input to a classifier network to detect the affected
hemisphere and used this information to further limit the search area to one hemisphere.
They reported an average Dice of 0.5. Notably, their method produced a large number
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of thrombus candidates with three to four connected components per patient on average.
Instead of limiting the search area to the MCA and ICA region for all cases, we propose first
detecting the thrombus location and then using the detection results to create a customized
limited search area per case as input for the segmentation network.

Our method achieves a high spatial agreement and a high ratio of detected thrombi
on a large test set. The networks were trained and tested on two separate multi-center,
multi-scanner datasets and, therefore, were not limited to a specific imaging protocol.
Furthermore, our method is fully automated and is therefore able to produce segmentation
results quickly and with minimal effort, which is of critical importance in the clinical
workflow of acute stroke patients.

Having two encoders results in better spatial overlap in the cases of concatenate and
weighted-sum, but not in add. Even though, in theory, in add, the network should be
able to weigh each feature in the convolutional layers of the encoder before adding them,
introducing the additional inductive bias of learning the weights separately results in a
more effective feature fusion. Additionally, we observe that, despite having fewer learnable
parameters, weighted-sum performs better than concatenate.

The dynamic bounding box algorithm methods both increase the search area for
difficult cases by extending the initial bounding box or by shifting it. As a result, adding
these methods reduces the number of missed cases. However, this algorithm does not have
a noticeable effect on the model’s ability to segment the full extent of the thrombus.

A limitation of our method is that it depends on a third-party software for thrombus
detection, but since the detection and segmentation steps are separate, StrokeViewer LVO
can be replaced by other thrombus detection methods with minimal effort after tuning the
initial bounding box hyperparameters.

Since the thrombus analysis pipeline relies on StrokeViewer for thrombus detection, the
sensitivity and specificity of thrombus detection is not addressed in this work. Specifically,
we only include cases with an LVO detected by StrokeViewer in our datasets. The sensitivity
and specificity of StrokeViewer was previously assessed by Luijten et al. [31]. StrokeViewer
showed a sensitivity ranging between 72% and 89%. It was able to detect LVOs with a
specificity of 78%. Moreover, the number of M2 occlusions was lower than ICA-T and M1
occlusions in our datasets and, therefore, our method is biased towards patients with ICA-T
and M1 occlusions.

Another limitation involves the exclusion of cases with no visible HAS from our test
set, which constituted only 4% of the patients (7 out of 176). Having NCCT scans with thick
slices, scans with a low-dose CT protocol, or thrombi with a low percentage of RBCs can
occasionally result in a complete lack of HAS. In these cases, if a CTA scan was available,
it was possible to determine the proximal side of the thrombus, but it may not have been
possible to reliably determine the location of the distal side of the thrombus or its exact
extent. We therefore chose to exclude these cases from our dataset due to the difficulty
of providing reliable ground truth annotations. Another limitation in our annotations is
caused by the difficulty of distinguishing real thrombi from other phenomena causing
hyper dense vessel regions on NCCT scans, such as stagnant blood or atherosclerosis.
Additionally, multiple occlusions or thrombi which partially block the artery, are difficult to
distinguish from inhomogeneous thrombi that are partially highly pervious. Furthermore,
in cases where the HAS has a low contrast with the background, it is difficult to reliably
annotate the exact extent of the thrombus.

A third limitation of our study is the difficulty in achieving a high Dice for small
object segmentation [32]. Even annotations that are considered accurate may disagree
with the ground truth slightly on the surface of the volume. Since for small objects the
surface to interior ratio is much higher than large objects, achieving a high Dice in small
object segmentation is more difficult. Therefore, even though Dice is a more conventional
method of measuring spatial overlap, surface Dice provides a better assessment of the
model’s segmentations. The large difference between the Dice (0.62) and surface Dice (0.78)
scores of our method indicates that Dice is negatively affected by negligible disagreements
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with the ground truth on the surface of the segmentation. In order to provide a means
for comparison, Dice scores among four observers who performed manual thrombus
annotations are reported in Appendix A.

The results of this study show that the current method is able to successfully segment
the thrombus with a good overlap with the ground truth. However, additional research is
needed to calculate thrombus imaging characteristics based on the automatic segmentations
and study their relationship with outcome to assess the clinical utility. Furthermore, the
current study should be considered as the proof of concept of the proposed method.
Performance can potentially be improved by experimenting with alternatives to U-Net and
incorporating methods, such as residual units, deep supervision, and dilated convolutions
in follow-up studies.

Previous studies have shown a relationship between thrombus imaging characteristics
calculated from sample-based annotations and stroke treatment [3,33–35] and functional
outcome [1–3]. Similarly, thrombus characteristics calculated from full thrombus annota-
tions are shown to be associated with treatment and functional outcomes [36,37], and were
used to predict early recanalization [4] and the number of passes required for successful re-
canalization with different mechanical thrombectomy devices [5]. The association between
thrombus characteristics and stroke outcome is further discussed in [38,39].

Our fully automated segmentation method can facilitate the quick, effortless, and
unbiased assessment of thrombus imaging markers in the acute setting of stroke. Conse-
quently, it can assist radiologists in making decisions about the optimal treatment strategy
or thrombectomy device for stroke patients. Furthermore, an automatic thrombus seg-
mentation method can be used to quickly and consistently annotate large clinical datasets,
thereby accelerating stroke research. Implementation of our method would be possible in
clinical practice and research in the short-term, in order to further evaluate its real-world
results on a large scale.

5. Conclusions

We present a CNN-based automated method to segment occluding thrombi in baseline
NCCT and CTA scans of patients with acute ischemic stroke due to a large vessel occlusion
of the anterior circulation. The automated segmentations show a significant overlap with
the manually annotated ground truth. Therefore, the proposed automated thrombus seg-
mentation method can be used for robust assessment of thrombus imaging characteristics,
which can be useful for both stroke research and potentially support stroke physicians in
selecting the optimal stroke treatment in clinical practice.
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Appendix A

Agreement between thrombus annotations of multiple observers is reported in this
appendix. Four experienced observers were included: observer 1 had 30 years of experience
in neuroradiology, observers 2 and 3 both had 7 years and observer 4 had 3 years of
annotating experience. All observers fully annotated the thrombus in 31 LVO patients. The
annotations were based on NCCT and CTA scans that were registered to an atlas brain.
Figure A1 shows the two-by-two Dice scores between these four observers. The mean
average two-by-two Dice is 0.47 (95% CI 0.33–0.61).

Figure A1. Two-by-two Dice scores between the four observers. The red marker shows the mean Dice.
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Appendix B

In order to provide a volumetric impression of the thrombus segmentation, the
slices including a thrombus segmentation in two different bounding boxes are depicted
(Figures A2 and A3). The displayed segmentations are generated by the weighted-sum network.

Figure A2. Slice-by-slice presentation of segmentation prediction and ground truth on NCCT in a
bounding box for one patient. Surface Dice of this prediction is 0.98 and Dice is 0.81. The contours of
the ground truth annotation and segmentation prediction are shown in green and red, respectively.
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Figure A3. Slice-by-slice presentation of segmentation prediction and ground truth on NCCT in a
bounding box for one patient with a high segmentation accuracy. Surface Dice of this prediction is
0.98 and Dice is 0.84. The contours of the ground truth annotation and segmentation prediction are
shown in green and red, respectively.
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