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Abstract

Background: Several studies have correlated perinatal malnutrition with diseases in adulthood, giving support to the
programming hypothesis. In this study, the effects of maternal undernutrition during lactation on renal Na+-transporters
and on the local angiotensin II (Ang II) signaling cascade in rats were investigated.

Methodology/Principal Findings: Female rats received a hypoproteic diet (8% protein) throughout lactation. Control and
programmed offspring consumed a diet containing 20% protein after weaning. Programming caused a decrease in the
number of nephrons (35%), in the area of the Bowman’s capsule (30%) and the capillary tuft (30%), and increased collagen
deposition in the cortex and medulla (by 175% and 700%, respectively). In programmed rats the expression of
(Na++K+)ATPase in proximal tubules increased by 40%, but its activity was doubled owing to a threefold increase in affinity
for K+. Programming doubled the ouabain-insensitive Na+-ATPase activity with loss of its physiological response to Ang II,
increased the expression of AT1 and decreased the expression of AT2 receptors), and caused a pronounced inhibition (90%)
of protein kinase C activity with decrease in the expression of the a (24%) and e (13%) isoforms. Activity and expression of
cyclic AMP-dependent protein kinase decreased in the same proportion as the AT2 receptors (30%). In vivo studies at 60
days revealed an increased glomerular filtration rate (GFR) (70%), increased Na+ excretion (80%) and intense proteinuria
(increase of 400% in protein excretion). Programmed rats, which had normal arterial pressure at 60 days, became
hypertensive by 150 days.

Conclusions/Significance: Maternal protein restriction during lactation results in alterations in GFR, renal Na+ handling and
in components of the Ang II-linked regulatory pathway of renal Na+ reabsorption. At the molecular level, they provide a
framework for understanding how metabolic programming of renal mechanisms contributes to the onset of hypertension
in adulthood.
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Introduction

Undernutrition is a worldwide public health issue affecting more

than one billion people, particularly in underdeveloped countries,

where 25% of the undernourished population is children [1].

Therefore, several recent studies have sought to correlate

undernutrition in critical periods of development (gestation and/

or lactation) with various diseases in adulthood. Studies supporting

the programming hypothesis [2,3,4,5] have demonstrated that

adverse fetal or neonatal environments such as undernutrition

result in adaptative responses leading to structural and molecular

alterations in various organs and tissues. The persistence of these

modifications results in the development of several diseases in

adult life, particularly affecting the cardiovascular and renal

systems. These pathological situations are frequently associated

with hypertension [6].

The precise mechanism(s) involved in increased blood pressure

as a late consequence of metabolic programming is as yet unclear.

Most experimental data indicate that hypertension is multifactorial

and involves alterations in various organs including the kidney
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[7,8]. Kidneys play a major role in the long-term control of arterial

blood pressure by regulating Na+ intake/excretion [9]. It has been

reported that offspring from rats that are protein-restricted

throughout gestation present with marked oligonephroenia (a

decrease in the number of nephrons), which can lead to a

reduction in pressure natriuresis and consequent elevation of blood

pressure [10,11]. However, the reduced number of nephrons is not

the sole cause of hypertension in the protein restriction model of

programming [6,12]. The intrarenal molecular machinery may

also be altered, contributing to the programming of hypertension

[12].

Numerous experimental studies support the view that

impaired tubular Na+ reabsorption constitutes an important

renal modification in hypertensive subjects [13] and spontane-

ously hypertensive rats [14]. Therefore, inappropriate function-

ing of Na+ transporters as the result of metabolic programming

could be one of the intrinsic renal defects that contribute to

alterations in Na+ handling, leading to adult hypertension.

Using kidneys from the offspring of female rats that had been

malnourished during pregnancy, Bertram and coworkers [15]

observed an increase in mRNA expression of (Na++K+)ATPase

a1 and b1 subunits. In addition, transcriptional up-regulation

and protein expression of two specific Na+ transporters, located

in the thick ascending limb of Henle’s loop and the distal

convoluted tubule, were evident in offspring from female rats

exposed to a low-protein diet during gestation [16]. These

alterations could result in increased fluid reabsorption and

expansion of the intravascular compartment.

Increased tubular Na+ reabsorption resulting from altered

activity of Na+ transporters could be a key factor in the

development of hypertension during metabolic programming,

but there have been no studies concerning the influence of

protein restriction during lactation on the two ATP-dependent

active Na+ transporters, (Na++K+)ATPase and Na+-ATPase.

These pumps are present in various nephron segments and

particularly in the proximal tubule, a key structure responsible for

approximately 70% of Na+ reabsorption. (Na++K+)ATPase is

considered to be responsible for the majority of Na+ reabsorption,

and the ouabain-resistant Na+-ATPase is associated with the fine

tuning of this process [17,18]. Of particular interest are: (i)

angiotensin II (Ang II), one of the main regulators of blood

pressure and Na+ reabsorption [19], is a potent activator of the

Na+-ATPase [20]; (ii) all components of the signal cascade that

link Ang II receptors (AT1 and AT2 receptors) form a functional

complex with the neighboring Na+-ATPase in basolateral

membranes of kidney proximal tubule cells [20,21,22]; (iii)

Overactive renal Na+-ATPase is one of the main molecular

findings in obesity-associated hypertension [17] and in sponta-

neously hypertensive rats [23].

The aim of the present study was to examine whether

metabolic programming during lactation affects the (Na++-
K+)ATPase and Na+-ATPase activities of proximal tubule cells in

young adult offspring from mothers that have suffered protein

restriction during lactation. The results demonstrate that

metabolic programming by undernutrition throughout lactation

affects both Na+ transporters and key elements of the Ang II

signaling pathways. At 60 days of age early alterations in

glomerular morphometry, tissue collagen, glomerular filtration

rate (GFR), protein excretion and urinary Na+ (UNa) accompany

the modifications in Na+ pumping activity. These molecular,

structural and functional modifications, leading to inappropriate

Na+ handling in young adult rats, result in the development of

arterial hypertension at a later age (150 days).

Materials and Methods

Rat groups
Experimental procedures involving rats were approved by the

Committee for Ethics in Animal Experimentation of the Federal

University of Rio de Janeiro (protocol Nu IBCCF 104), and were

performed in accordance with the Committee’s guidelines.

Several series of successive breeding were performed as follows:

Three-month old female rats (approximately 250 g) were caged

with male rats in a 3:1 ratio (controlled temperature of 2363uC
and 12 h light–dark cycle). After mating, each female was placed

in an individual cage with free access to water and food until

parturition. They were randomly separated into a control group

(n = 4) with free access to water and a standard diet (20% protein),

and a protein-restricted group (undernourished mothers; n = 4)

with free access to water and a low-protein diet (8% protein)

throughout lactation (0–21 days after parturition). Litters were

adjusted to six males for each mother, generating two experimen-

tal groups: (i) control group (C, from control mothers); (ii)

programmed group (P, from undernourished mothers). However,

when the number of male pups was insufficient, female pups (no

more than two) were included to maintain a litter size of six, but

only male pups were studied after weaning; females were

humanely sacrificed by decapitation. Four series of breeding with

four rats (each group) provided sufficient offspring (a total of 16

pups in each group) to obtain the number of membranes required

for the biochemical/immunochemical determinations. All series

produced consistent results, with no differences being evident

within the same class of experiment. Two series with two control

and two undernourished females (eight pups in each group) were

used for histological analysis. One series of breeding with three

females produced litters (12 pups in each group) that were

randomly divided into groups for blood pressure measurements

and in vivo studies carried out in metabolic cages.

After weaning, the control and programmed groups were fed a

commercial standard diet (Labina; 20% protein). Evolution of

nutrition parameters was evaluated from weaning to 60 days of

age, when animals were sacrificed for a first series of biochemical

studies. Blood pressure was measured at this age and, in a parallel

group, at 120 and 150 days of age to investigate the

aforementioned possible late onset of hypertension.

Diets, food and caloric intake, and body mass evolution
The diets used during lactation were isoenergetic (Table 1), and

were prepared in-house according to the AIN-93G recommenda-

tion for rodent diets [24]. Food and caloric intake of the control

(normonourished) and undernourished female rats, and the

evolution of maternal body mass, were evaluated throughout

lactation as presented on the abscissa of Fig. 1. Control experiments

concerning maternal food intake (both diets) were carried out

using females of the same age that were not nursing pups. The

body mass, kidney mass and food intake of the offspring were

monitored from weaning until day 60 at the time intervals

presented on the abscissa of Fig. 2.

Number of nephrons, glomerular morphometry and
collagen density surface quantification

Four control rats and four programmed rats, aged 60 days, were

used to determine the number of nephrons as described in [25,26].

Briefly, one kidney from each animal was selected, weighed, sliced

and incubated in hydrochloric acid 18.5% (w/v) for 2 h at room

temperature. After gentle mechanical dissociation using a plastic

syringe as a piston, the homogenate was adjusted to 10 ml with

distilled water. Six 30 ml aliquots were obtained from each kidney
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homogenate and spread on glass slides over a surface of 4.5 cm2.

Two observers (double blind counting) counted glomeruli in every

aliquot using a light microscope and in each group the number

was 24. A total of 1324 nephrons were counted in the control rats

and 975 in programmed animals. Statistical controls for intra-

assay variability during counting within each group produced a P

value$0.1; inter-assay variability analysis of the method between

control and programmed rats produced a P value#0.01 (see

statistical analysis below and Fig. 3).

Three control and three programmed rats, aged 60 days, were

used for morphometric studies. One kidney from each animal were

mid-frontally sectioned into two pieces, fixed with formaldehyde

(10% w/v in 10 mM phosphate buffer pH 7.2) for three days,

dehydrated in rising concentrations of ethanol with successive

30 min immersion periods, and embedded in paraffin. Four cortical

sections, 4 mm thick and avoiding the juxtamedullar boundary,

were randomly chosen and stained with hematoxylin-eosin (HE),

and the surface areas of the glomerular components were

determined using the software Image-Pro Plus (Media Cybernetics)

connected to a light microscope. Five images (204861536 pixels)

were captured from each section and each of these was screened. A

total of 60 micrographs per group were screened; between 20222

glomeruli were quantified per kidney using a 2006 objective lens.

For statistical analysis the screening was carried out in triplicate.

To evaluate collagen density (% of the total surface in the

captured images), Picro Sirius red stained sections were obtained

as described for morphometric studies and elsewhere [27], with

the exception that micrographs were separately captured from

cortical and medullary regions. Twenty photomicrographs from

each section were evaluated using a 2006objective lens. The areas

were randomly chosen, although fields containing medium-sized

blood vessels were avoided.

Isolation of proximal tubule cell membranes
Rats from various litters were sacrificed by decapitation and the

kidneys were collected and maintained in cold isotonic buffer

containing 250 mM sucrose, 10 mM Hepes-Tris (pH 7.4), 2 mM

EDTA and 0.15 mg/ml trypsin inhibitor type II-S (Sigma-Aldrich).

The membranes were prepared according to [28] from the outer

cortex (cortex corticis) of the kidney, in which more than 90% of the

cell population corresponded to proximal tubules [29,30]. Briefly,

thin transverse slices of the cortex corticis (0.5 mm) were removed with

a Stadie-Riggs microtome and carefully dissected with scissors to

eliminate contamination from other tissues. The fragments were

homogenized in 4 ml per gram of the cold solution described above.

The homogenate was centrifuged at 7556 g for 15 min to remove

cell debris and nuclei, and the resulting supernatant was centrifuged

at 8,5006g for 20 min, followed by ultracentrifugation at 35,0006g

for 45 min. The final pellet was resuspended in 250 mM sucrose

and stored at 220uC. Protein content was determined using the

Folin phenol method [31]. Controls for enrichment with basolateral

membranes (3–4 fold with respect to the total homogenate) and for

minimal residual contamination with intracellular membranes and

cytosol were as in [28]. The preparation preserves apical

membranes. No attempt at further enrichment was made in this

case as the ATP-driven Na+ transporters are exclusively located in

basolateral membranes, and a low yield of purified basolateral

membranes was obtained using the Percoll gradient method with

the minimum number of animals recommended by the Committee

for Ethics in Animal Experimentation.

Measurement of ATPase activities
The (Na++K+)ATPase and the furosemide-sensitive (ouabain-

insensitive) Na+-ATPase activities were measured via Pi [32] or 32Pi

[18] released from unlabeled ATP or [c-32P]ATP, respectively.

Routine controls had identical values for ATPase activities

irrespective of which method was used. In (Na++K+)ATPase

assays, the membranes (0.05 mg/ml, final concentration) were

pre-incubated at 37uC for 10 min with 50 mM Bis-Tris-propane

(pH 7.4), 0.2 mM EDTA, 5 mM MgCl2 and 120 mM NaCl in the

absence or presence of 2 mM ouabain. The reaction was started

by adding 5 mM ATP and 24 mM KCl (final concentrations).

The reaction was stopped after 10 min by adding two vols of

0.1 M HCl-activated charcoal. Pi was measured spectrophoto-

metrically in an aliquot of the supernatant obtained after

centrifugation of the charcoal suspension at 15006 g for 5 min.

The (Na++K+)ATPase activity was calculated as the difference

between the Pi released in the absence and presence of ouabain.

The K+ and Na+ concentrations were changed in some

experiments and the concentrations used are presented on the

abscissa of the corresponding figure.

For the ouabain-insensitive Na+-ATPase assays, the membranes

(0.2 mg/ml final concentration) were pre-incubated with 2 mM

ouabain in the presence of 20 mM Hepes-Tris (pH 7.0), 10 mM

MgCl2 and 120 mM NaCl without or with 2 mM furosemide.

The hydrolysis reaction was started by adding [c-32P]ATP (5 mM,

specific activity ,2 MBq/mmol) and stopped after 10 min by

adding two vols 0.1 M HCl-activated charcoal. The ouabain-

insensitive Na+-ATPase activity was calculated from the difference

between levels of 32Pi released in the absence and presence of

furosemide. Released 32Pi was quantified using liquid scintillation

counting in an aliquot of the supernatant obtained after

centrifugation of the charcoal suspension (15006g for 5 min) [18].

Protein kinase activities
The activities of calphostin-sensitive protein kinase C (PKC) and

cAMP-dependent protein kinase (PKA) associated with the

isolated membranes were assessed by measuring the incorporation

of the c-phosphoryl group of [c-32P]ATP into histone in the

absence and presence of calphostin (PKC assays) or in the absence

and presence of the PKA specific inhibitor, the peptide PKAi(5–24)

[33] (PKA assays), as recently described [18].

Table 1. Composition of experimental diets.

Ingredient (g/kg) Control (C) Programmed (P)

Casein 200.0 80.0

L-cysteine 3.0 3.0

Corn starch 529.5 649.5

Sucrose 100.0 100.0

Cellulose 50.0 50.0

BHT1 0.014 0.014

Mineral mix2 35.0 35.0

Vitamin mix2 10.0 10.0

Choline bitartarate 2.5 2.5

Soybean oil3 70.0 70.0

Total energy in food (kJ/kg) 16,373 16,373

1BHT: Tert-butylhydroquinone.
2Vitamin and mineral mixtures were formulated according to the AIN-93G
recommendation for rodent diets. More details of the composition are given in
[23].

3Soybean oil, ml/kg.
doi:10.1371/journal.pone.0021232.t001
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SDS-PAGE and Western blotting of (Na++K+)ATPase, Ang
II receptors and membrane-associated protein kinases

The (Na++K+)ATPase a1-catalytic subunit was immunodetected

in isolated membranes using a goat polyclonal antibody against

this subunit (a1[N-15], Sigma-Aldrich) and an anti-goat secondary

antibody (Santa Cruz Biotechnology). AT1 and AT2 receptors, the

calphostin-sensitive a and e PKC isoforms and the a-catalytic

subunit of PKA were immunodetected in isolated membranes

using the corresponding polyclonal antibodies (Santa Cruz

Biotechnology), as previously described [18,34]; b-actin was

probed with a monoclonal antibody (Sigma-Aldrich) after Ang II

receptors had been immunoprecipitated [34]. The proteins were

separated in a 10% gel using SDS PAGE and transferred to

nitrocellulose membranes at 350 mA. Non-specific binding was

prevented by incubating the membranes with 5% non-fat milk in

Tris buffered saline (TBS, pH 7.6) for 1 h. The membranes were

probed with the corresponding primary antibodies (1:500

dilutions) for 1 h at room temperature with stirring, washed three

times with TBS containing 0.1% Tween 20 (TBST), incubated

with the secondary antibody, washed and visualized with ECLTM

(GE Healthcare). The gels were stained with Ponceau Red to

evaluate the levels of protein in each band to normalize levels of

expression by the protein load. Preliminary experimental controls

demonstrated that Ponceau red correlates better (r = 0.998) than

b-actin (r = 0.948) with the theoretical protein loading. However,

there was a very good correlation between the Ponceau Red

intensity and the b-actin signal, using the same membrane for

detection (r = 0.964). Therefore, Ponceau red or b-actin were used

to assess loading, as both provided the same results. The band

intensities were quantified using Scion Image software.

Figure 1. Maternal data: food and caloric intake, and body mass during lactation. (A) Mothers were given a control (open circles) or low-
protein (filled circles) diet from parturition until the end of lactation. Diet compositions are described in Table 1. Dashed line indicates the mean value
of chow ingestion by undernourished mothers during this period. Data are means 6 S.E.M. (n = 10 in each group). (B) Maternal caloric intake (control,
open circles; low-protein filled circles) during the indicated days of lactation calculated from: diet composition (Table 1), food intake (panel A), the
caloric value of proteins (16.746103 kJ/kg), carbohydrates (16.746103 kJ/kg) and fat (37.66 kJ/kg), and a soybean oil average density of 926 kg/m3

according to the manufacturer. Data are means 6 S.E.M. (n = 4 in each group). (C) Maternal body mass at the end of each week of lactation in control
(empty bars) and low-protein-fed rats (filled bars). (D) Food intake by female rats (open circles for control; filled circles for low-protein) that were not
nursing pups. Dashed line indicates the mean value of chow ingestion. In (A), (B) and (C): *statistically different from the corresponding control group
(P,0.05 or less depending on the lactation day).
doi:10.1371/journal.pone.0021232.g001
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Measurement of blood pressure
Measurements were carried out as in [35]. Briefly, rats were

anesthetized with an intraperitoneal injection of a mixture of

ketamine (100 mg/kg) and xylazine (50 mg/kg). A double catheter

(PE-50 into PE-10; Clay Adams) was inserted in the right femoral

artery and connected to a pressure transducer (TSD 104A, Biopac

Systems). Recording was carried out using the Biopac System MP

100 (precision 1 mmHg) and the software was provided by the

same manufacturer.

In vivo studies using metabolic cages
The glomerular filtration rate (GFR), urinary Na+ excretion

(UNa) and proteinuria were evaluated using metabolic cages

(Instrulab) in offspring aged 60 days. The animals were placed in

cages for 24 h in ambient conditions as described above. The GFR

was measured by determining creatinine clearance using a kit

(Analisa) for the spectrophotometric alkaline pycrate method. A

colorimetric kit (Human Diagnostics Worldwide) was used to

measure UNa, and proteinuria was determined using the Folin

reagent method [31].

Statistical analysis
The data are presented as means 6 S.E.M. Differences between

groups were analyzed using an unpaired Student’s t-test and one-

way ANOVA followed by a Tukey test, or two-way ANOVA

followed by a Bonferroni test, where required. The Mann-Whitney

U-test was used to assess differences in number of glomeruli

between the two groups and controls for intra- and inter-assay

variability. In all cases the differences were considered significant

when P,0.05. Where the results were expressed as a percentage of

the control group, the S.E.M. was calculated from the absolute

data and transformed to percentages, and statistical analysis using

parametric tests was carried out for absolute values. Furthermore,

the Mann-Whitney U-test was used to compare percentage values.

Results

Food intake of mothers during lactation and of progeny
after weaning

Mothers that received the balanced control diet gradually

increased their food intake from day five after parturition to

weaning, presumably to adjust to the nutritional challenges of

lactation (Fig. 1A). In contrast, food intake in undernourished

mothers remained essentially unchanged throughout this period,

with a mean value of 29 g/day (dashed line in Fig. 1A). Therefore,

a significant difference in food intake was evident from day 12 to

weaning. Both diets were isoenergetic (16373 kJ/kg). Therefore,

the profile of caloric intake follows the food consumption profile

(Fig. 1B). As a consequence of the constancy of the alimentary

profile, as the energetic demand increased during lactation,

mothers receiving the protein deficient diet exhibited a significant

decrease in their body mass at 14 and 21 days (Fig. 1C), i.e. this

was synchronous with the establishment of a difference in the

food/energy intake. Food intake by mothers subjected to the

Figure 2. Food intake of offspring, evolution of progeny body
mass after weaning, and relationship between body mass and
food intake. zz(A) The offspring of control (open circles) and
undernourished (filled circles) mothers were given a standard commer-
cial diet from weaning to sacrifice. Data are means 6 SEM (n = 14, control;
n = 18, programmed). (B) The trajectories of growth in control (open
circles) and programmed (filled circles) offspring were described by the
function BMt = BMasy (12e2kt), where BMt is body mass at each indicated
time t, BMasy corresponds to the asymptotic value of the function and k is
the first-order rate constant of growth. T1/2 was calculated by ln 2/k). Data

points correspond to means 6 SEM (n = 14, control; n = 18, pro-
grammed). The arrow indicates the significantly reduced body mass at
weaning. Inset: kidney index calculated as the ratio between kidney mass
and body mass (C: control; P: programmed). (C) Data points correspond
to the ratio between the food intake at the indicated days (during 24 h)
and body mass in control (open circles) and programmed (filled circles)
offspring. In (A), (B) and (C): *statistically different from the corresponding
control group (P,0.05 or less depending on the age).
doi:10.1371/journal.pone.0021232.g002
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normal and low-protein diet was similar when they were not

nursing pups (Fig. 1D). Differences in alimentary behavior

between control and undernourished mothers that were encoun-

tered from the 10th day of lactation (Fig. 1A) were no longer

evident, with lower food intake probably reflecting the lower

nutritional demand compared with breastfeeding mothers.

Programmed offspring had a significantly lower food intake

than the control group, and this alimentary profile persisted from

weaning until day 60 (5.560.2 vs. 8.260.2 at day five after

weaning; 20.460.2 vs. 25.660.3 at day 60; P,0.05) (Fig. 2A).

Growth trajectories in offspring and the relationship to
food intake

The growth curve of programmed rats demonstrated a

significant decrease in body mass from weaning to 60 days of

age (Fig. 2B). The rate constant of growth, k, decreased from

0.035760.0034 days21 in the control group to 0.020460.0014

days21 in programmed offspring. Therefore, the T1/2 of growth of

the programmed group extrapolated into adult life increased

(36.862.5 vs. 20.761.4 days in controls). The offspring food

intake/body mass ratio at different days of age (Fig. 2C) was lower

in the programmed group. Renal mass accompanied the decrease

in body mass, though the renal index (kidney mass/body mass)

remained unchanged (inset to Fig. 2B).

Number of nephrons, glomerular morphometry and
collagen deposition

Fig. 3 demonstrates that programming during lactation led to a

decreased number of nephrons in the offspring. Differences in the

total number of nephrons (Fig. 3A) were not due to decreased

kidney size alone: factoring for kidney mass did not abolish these

differences (Fig. 3B). Although the impact on renal molecular

machinery of the progeny is different depending on the period of

maternal undernutrion (see Discussion below), the results depicted

in Fig. 3 are comparable to those in a model of protein restriction

during pregnancy [26].

The reduced number of nephrons was accompanied by a

reduction of the total area of the Bowman’s capsule (Fig. 4A and

4C) and the surface area corresponding to the glomerular capillary

tuft (Fig. 4B and 4D). Intense diffuse collagen deposition was

present in the cortex and medulla of programmed animals (Fig. 5);

of particular interest was increased collagen density in glomeruli

(compare images pointed by arrows in Fig. 5A and 5B).

Glomerular filtration rate, Na+ excretion and proteinuria
A reduced number of glomeruli could result in hyperfiltration in

the remaining nephrons, with increased filtered Na+ load and

modifications in renal Na+ handling [12]. Therefore, in vivo studies

were carried out in metabolic cages with rats aged 60 days to

compare GFR and Na+ excretion (UNa) between the two offspring

groups. Table 2 demonstrates that these renal parameters were

significantly increased in the programmed group. Evaluation of

urinary excretion of total protein demonstrated an intense

proteinuria in the programmed group (Table 2).

(Na++K+)ATPase activity and expression of its a1-subunit
in proximal tubules from programmed rats

Maternal protein deficiency throughout lactation programmed

a significant increase in (Na++K+)ATPase activity (more than

100%) (Fig. 6A), with a 35% increase in the expression of the

housekeeping a1-subunit of the pump (Fig. 6B). The increases in

activity and protein expression were not similar, suggesting that

the ATPase could undergo molecular modifications. In fact, the

K0.5 for K+ during the catalytic cycle decreased from 1.7 mM to

0.5 mM (Fig. 7) whereas the affinity for Na+ was not significantly

altered (data not shown). With a membrane preparation lacking

the cytosolic components required for the modulation of

(Na++K+)ATPase in proximal tubules [36], there was no response

of (Na++K+)ATPase to Ang II in either group using a wide

concentration range (10214 to 1026 M; data not shown).

Influence of programming on the ouabain-insensitive
Na+-ATPase and on its response to Ang II

Na+-ATPase activity increased in the adult progeny of rats that

had been undernourished during lactation (Fig. 8), indicating that

the two modes of transepithelial Na+ transport were programmed

in their offspring. The Na+-ATPase of the programmed rats lost its

physiological response to Ang II (10214 M), and this lack of

response was sustained at higher concentrations (Fig. 9). However,

the Na+-ATPase of the programmed group behaved as if it were

Figure 3. Number of nephrons in control and programmed
offspring. After mechanical dissociation of the tubules, the number of
glomeruli was evaluated by counting under light microscopy as
described in the Materials and Methods. For the number of animals,
number of homogenate samples, number of independent observations,
total nephron count, intra- and inter-assay variability controls see
Materials and Methods. (C: control; P: programmed). Statistical
differences were assessed using the Mann-Whitney U-test. (A) Total
number of nephrons per kidney; median = 18664 for control; medi-
an = 14331 for programmed; U = 88, *P,0.001. (B) Number of nephrons
per g of kidney; median = 6436 for control; median = 5138 for
programmed; U = 170.5, *P,0.01).
doi:10.1371/journal.pone.0021232.g003
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constitutively activated by Ang II, as there was no difference

between the activities without Ang II and the control with Ang II

(columns marked with the same lowercase letters in Fig. 9).

Alterations in the expression of Ang II receptors in adult
progeny of malnourished mothers

Programming altered other components of the Ang II pathways

in renal membranes. AT1 receptor expression increased (Fig. 10A),

whereas AT2 receptor expression decreased (Fig. 10B) reciprocally.

Membrane-associated PKC: activity and expression
PKC is a key intermediate in the signaling cascade that links

AT1 receptors to the Na+-ATPase in kidney proximal tubule cells

[20]. The adult programmed offspring had a membrane-

associated PKC activity that was 15% of that in the control group

(Fig. 11A). However, immunodetection experiments demonstrated

decreases of 20% and 13% in expression of the calphostin-sensitive

a and e isoforms of PKC, respectively (Fig. 11B and 11C), but

these decreases were statistically significant.

Membrane-associated PKA: activity and expression
This kinase has been implicated as an antagonist of PKC in its

actions on the renal Na+-ATPase [37,38]. In contrast to the PKC

findings, the activity (Fig. 12A) and expression (Fig. 12B) of PKA in

the membranes of malnourished rats decreased to comparable levels.

Blood pressure in programmed rats
Programmed rats had normal arterial blood pressure at 60 and

120 days of age (data not shown). However, late onset

hypertension occurred in the programmed progeny. Fig. 13

demonstrates a significant increase in the systolic and diastolic

pressure of programmed rats aged 150 days.

Figure 4. Glomerular morphometry in control and programmed offspring. The areas of the Bowman’s capsule and of the capillary tuft in
the cross section of glomeruli were assessed as described in the Materials and Methods. For number of rats, number of screened tissue sections and
number of glomeruli counted, see Materials and Methods. Panels A and B show representative photomicrographs (2006) of HE-stained sagital kidney
sections of control and programmed rats, respectively. Arrows indicate glomerular structures. Panel C: quantification of the Bowman’s capsule area
expressed as a percentage of the control group. Results were statistically analyzed and then converted to percentage values (n = 3; *P,0.001). Panel
D: quantification of the capillary tuft area expressed as a percentage of the control group (n = 3; *P,0.001). On the abscissae of panels (C) and (D), the
capital letters C and P indicate the control and programmed groups, respectively.
doi:10.1371/journal.pone.0021232.g004
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Discussion

The present work focused on the influence of maternal protein

restriction during lactation on the ATP-dependent renal Na+

transporters in offspring. This narrow period of pup development

is considered one of the most important for the development of

metabolic programming [7,8], and nephrogenesis is completed

during this period [39,40]. Fig. 1 demonstrates that despite the

increased demand of lactation from an equal number of pups, the

alimentary rhythm of undernourished mothers entailed two

restrictions, low protein content of the diet and lower total food

intake with decreased available energy, which could cause

metabolic programming in the offspring. The abnormal alimen-

tary habit of undernourished mothers during lactation is probably

due to low protein-associated hyperleptinemia [41,42,43,44],

which could lead to satiety despite an increased energy demand

as lactation ensued. The accompanying hypoprolactinemia

contributed to the possible anorexigenic hormonal balance due

to the orexigenic actions of prolactin [45]. The reduced body mass

of the offspring at weaning (more than 40%; arrow in Fig. 2B) was

a result of the low-protein induced lactogenesis failure [44].

These maternal alimentary restrictions could contribute to the

imprinting of metabolic programming of the progeny as they

Figure 5. Collagen deposition in the cortical and medullary regions. Collagen surface density was quantified as described in the Materials
and Methods (n = 3 for each group). Panels A and B present representative Picro Sirius-stained sagital cortex sections of control and programmed rats,
respectively. Panel C: graphic representation of collagen surface density in the cortex. Arrows indicate pericapsular collagen deposits and, in the case
of panel B, a large-size glomerulus in the predominat population of glomeruli with decreased volume. Panels D and E present representative
medullary images from control and programmed rats, respectively. Panel F: graphic representation of collagen surface density in the medulla.
Statistical differences were assayed using the Mann-Whitney U-test. On the abscissae of panels (C) and (F), the capital letters C and P indicate the
control and programmed groups, respectively. In (C) median for control = 1.14; median for programmed = 3.44; U = 179; P,0.0001. In (F) median for
control = 1.05; median for programmed = 11.32; U = 49; P,0.0001).
doi:10.1371/journal.pone.0021232.g005

Table 2. Renal function parameters1.

Control (C) Programmed (P)

GFR, ml/min/100 g BM 254.1626.1 427.8616.2*

UNa, mmol/100 g BM/24 h 0.560.1 0.960.1*

Proteinuria, mg/100 g BM/24 h 2.660.4 11.560.6*

1GFR, Glomerular filtration rate; UNa, Urinary excretion of Na+; BM, body mass;
*P,0.001.
doi:10.1371/journal.pone.0021232.t002
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consistently consumed less of the normal diet despite it being

offered ad libitum (Fig. 2A). This decreased food intake led to a

reduced body mass throughout the growth period analyzed in the

present study (Fig. 2B). Since the offspring food intake/body mass

ratio after weaning remained permanently lower (Fig. 2C), it is

likely that the reduction in food intake was not due to lower body

Figure 6. Activity and expression of (Na++K+)ATPase in basolateral membranes of kidney proximal tubule cells. (A) (Na++K+)ATPase
activity was measured in membranes isolated from control (C) and programmed (P) offspring, as indicated on the abscissa. Data are means 6 S.E.M.
of six (control) and eight (programmed) determinations carried out in triplicate using different membrane (rat) preparations. *Statistically different
from C (P,0.01). (B) Expression of (Na++K+)ATPase. Upper panel: representative immunoblotting of a1 subunit. Lower panel: densitometric
quantification (means 6 S.E.M.) of five simultaneous determinations carried out with four different membrane preparations from each group (C and
P). The band intensity of the control group was taken as 100%. *Statistically different from the control group (P,0.05).
doi:10.1371/journal.pone.0021232.g006

Figure 7. Apparent affinity for K+ of renal (Na++K+)ATPase. The
(Na++K+)ATPase activity was assayed at the K+ concentrations presented
on the abscissa (starting with a contaminant concentration of 0.1 mM
K+ according to flame photometric determinations performed after
preparation of the solution was completed). The Na+ concentrations
ranged from 150 to 100 mM to keep the sum of Na+ plus K+

concentrations equal to 150 mM in all tubes. The hyperbolic function
v = Vmax6[K+]/(K0.5+[K+]) was adjusted to the experimental points
obtained with the use of membranes isolated from control (open
circles) and programmed (filled circles) offspring. Data are means 6
S.E.M. of at least seven determinations carried out in triplicate with four
different preparations from each group (C and P). The abbreviations of
the expression correspond to activity at each K+ concentration (v),
extrapolated maximal velocity (Vmax) and to the K+ concentration at
which v = Vmax/2 (K0.5).
doi:10.1371/journal.pone.0021232.g007

Figure 8. Ouabain-insensitive Na+-ATPase activity. The Na+-
ATPase activity was assayed in membranes isolated from control (C) and
programmed (P) offspring, as indicated on the abscissa. Data are means
6 S.E.M. of 11 determinations (both groups) carried out in triplicate
using four different membrane preparations from each group (C and P).
*Statistically different from the control group (P,0.001).
doi:10.1371/journal.pone.0021232.g008

Metabolic Programming of Renal Sodium Transport

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e21232



mass but because the rats were programmed to have this

alimentary behavior having had reduced energy availability from

their undernourished mothers (Fig. 1A and 1B). As discussed

above, in a similar model of maternal undernutrition [44], plasma

levels of the anorexigenic leptin were increased and levels of the

orexigenic prolactin were decreased. In addition to decreasing

maternal food intake, this hormone imbalance could have

imprinted an impaired dietary behavior on the progeny. Evidence

for this concerns elevated plasma levels of leptin in pups from

mothers that had been undernourished during lactation, as a result

of direct transmission via milk [46].

Acid maceration is not the gold-standard method for estimating

the number of nephrons. However, reproducibility of counting

using different kidneys and more than one independent observer,

together with comparable control values with data from other

laboratories [25,26], demonstrated a profound influence of

programming in terms of the number of nephrons in adult

kidneys. The reduced number of nephrons (Fig. 3) and the

structural glomerular alterations (Fig. 4) demonstrate that the

decreased kidney mass of programmed animals was not a simple

relationship to lower body mass (inset in Fig. 2B). The decreased

number of nephrons and decreased capillary area with consequent

hypofiltration could be associated with hyperfiltration in remnant

healthy nephrons, where the increased intracapillary pressure

would contribute to their late and progressive self-destruction

[47,48,49] with late onset hypertension [50]. The onset of

hypertension in older rats (aged 150 days) (Fig. 13) supports this

view.

An increase in the glomerular area would be expected when the

number of nephrons is decreased, and compensatory hyperfiltra-

tion occurs in some remnant glomeruli. It could be that intense

collagen deposition in the cortex of programmed animals (Fig. 5)

affects many glomerular structures (Fig. 5B), causing a global

reduction in the size of the Bowman’s capsule and glomerular

capillary tufts (Fig. 4), with preservation or an increase in the area

of others (likely to be hyperfiltrating glomeruli such as those

marked in Fig. 5B). It is unexpected that GFR increases by 70% in

60 day-old programmed rats (Table 2), despite reduced glomerular

areas as presented in Fig. 4. However, this could be explained by

exacerbated hyperfiltration in the preserved nephrons. The intense

proteinuria that accompanies the increase in GRF and UNa

(Table 2) reveals important and early damage in the filtration

barrier that could evolve into global impairment of renal function

in programmed rats. Therefore, kidneys from progeny that were

programmed during lactation suffer from early severe morpho-

logical, and consequently functional, alterations in glomerular

components, adding to the molecular alterations in proximal

tubules, as discussed below.

Programmed rats had an augmented Na+ transport capacity in

renal proximal tubule cells. Two alterations in the (Na++K+)AT-

Pase, which is considered responsible for the majority of Na+

reabsorption [17,51], appeared to contribute to the doubling of its

activity (Fig. 6A). Programming led to a significant increase in the

expression of the predominant a1-catalytic subunit of this pump in

renal tissue (Fig. 6B). Moreover, the molecular modification that

caused a more than threefold increase in K+ affinity during the

overall catalytic cycle (Fig. 7) could have contributed to

accelerated turnover of the enzyme as higher K+ levels in the

extracellular compartment increase the rate of the pacemaker step

of the pumping cycle, the breakdown of the phosphorylated

intermediate during the catalytic cycle [52]. Consequently, the

increased pumping activity of proximal tubule (Na++K+)ATPase

will increase the transepithelial transport capacity. The extremely

low K0.5 in the programmed group (0.5 mM) demonstrates that

the pump becomes completely saturated and fully activated at

physiological plasma K+ concentrations (5 mM). Undergoing

accelerated cycles of Na+ transport through molecular alterations

in the pump could compensate for the decreased activity of the

local tissue renin/angiotensin system (RAS) in early life that is

provoked by metabolic programming [53,54,55]. In addition to

the well-known influence on distal segments, Ang II has an

important stimulatory effect on transepithelial Na+ fluxes in

proximal tubules [19] including that mediated by the (Na++-
K+)ATPase [36]. Therefore, the constitutive up-regulation of

(Na++K+)ATPase could represent an adaptative response to a

depressed tissue RAS, as discussed above.

It is plausible that an increase in single-nephron GFR

contributes to up-regulated Na+-pumping activity in proximal

tubule cells, as demonstrated for Na+:K+:2Cl2 transport in the

thick ascending limb of pups exposed to prenatal low protein [56],

which could lead to Na+ retention and the onset of hypertension in

adult rats. However, the possibility of a compensatory natriuresis

at 60 days of age in rats programmed during lactation is evident

from the in vivo data presented in Table 2. In addition to the

increase in GFR due to an over compensatory hyperfiltration in a

population of glomeruli, the young adult programmed rats

presented an increased UNa (Table 2), possibly due to a

pressure-natriuresis process, as recently proposed for low-protein

prenatally programmed rats [57]. It is possible that Na+ retention,

as a result of permanent up-regulation of Na+ pumps, is a late

event in programmed rats when the onset of hypertension takes

place. For this reason, the evolution of Na+ handling during a later

stage is currently under study.

Maternal protein restriction during pregnancy is associated with

fetal exposure to high glucocorticoid levels [58], and this can

augment the Na+/H+ activity in luminal membranes [59,60].

Therefore, an increased Na+ supply to (Na++K+)ATPase could

Figure 9. Response of the ouabain-insensitive Na+-ATPase to
Ang II. Na+-ATPase activity from basolateral membranes of control
(open bars) and programmed (filled bars) offspring was assayed in the
absence or presence of Ang II at the concentrations presented on the
abscissa. Mean activity values and standard errors were calculated from
the absolute values and expressed as percentages (see Statistical
Analysis sub-section). Na+-ATPase activity of control with no Ang II was
taken as 100%. Different lower-case letters indicate statistical difference
(P,0.05; one-way ANOVA to evaluate Ang II effects within each group
and two-way ANOVA followed by Bonferroni test for the comparison of
Ang II effects between control and programmed groups). Determina-
tions were carried out in triplicate using different preparations (n = 5 for
each group at each Ang II concentration).
doi:10.1371/journal.pone.0021232.g009
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promote further stimulation of the pump and of transepithelial

Na+ transport. However, in the case of protein restriction during

lactation, maternal glucocorticoids are not modified with respect

to normonourished rats [44], and the possible participation of the

Na+/H+ exchanger in increased Na+ reabsorption remains an

open question.

The furosemide-sensitive and ouabain-resistant Na+-ATPase

activity is considered to be related to fine tuning of Na+

reabsorption in proximal tubules [17,51]. This pumping activity

has a different behavior and regulatory properties from (Na++-
K+)ATPase [61], was partially characterized and purified [62,63].

More recently [64], it was isolated, purified to homogeneity

(molecular mass 89 kDa) and characterized, and it demonstrated

the same biochemical behavior as that found in native membranes

of kidney cells. In addition, the cDNA that codes for this pump

was cloned, sequenced and silenced [64], giving support to the

view that it is an independent enzymatic entity [61,62,63]. Its

response to leptin and the proposed relationship of this ATP

hydrolytic activity with dietary-induced and obesity-associated

hypertension is of particular interest [17,65]. It is also important

that overactive renal ouabain-resistant Na+-ATPase resident in the

basolateral membrane of proximal tubule cells, has been

demonstrated in spontaneously hypertensive rats [23]. Program-

ming has consequences for proximal tubule Na+-ATPase activity,

which was also up-regulated (Fig. 8) and its physiological activation

by Ang II – at a femtomolar concentration matching that found in

plasma – was completely abolished (Fig. 9). The lack of effect of

1026 M Ang II on Na+-ATPase activity in the control and the

programmed groups deserves special consideration because the

peptide inhibits transepithelial transport of fluid at this dose in

microperfused proximal tubules [66]. This earlier observation

could reflect the fact that in intact cells Ang II modulates signaling

pathways [67] that influence (Na++K+)ATPase in a biphasic

manner [36].

The results depicted in Figs. 6, 7, 8, 9 demonstrate that

programming during lactation strongly imprints the molecular

machinery responsible for the majority of Na+ absorption and the

fine tuning of this process, leading to augmented recovery of the

filtered fluid, which can subsequently contribute to the onset of

hypertension [15]. It is interesting that placental undernutrition

promotes different modifications from those observed in the

present study of young adult rats. In this context a diminution of

(Na++K+)ATPase activity with no change in the affinity for K+,

and down-regulation of the ouabain-insensitive Na+-ATPase, are

evident [18]. Recent observations [58] demonstrate that maternal

protein restriction during gestation affects the expression of

(Na++K+)ATPase in a biphasic manner, with a decrease 12 days

after birth and a significant increase in offspring aged 120 days.

This supports the view that depending on the window of

Figure 10. Expression of Ang II receptors. Ang II receptors (AT1 and AT2) were immunodetected in proximal tubule cell membranes of control
(C) and programmed (P) offspring. (A) AT1 receptors. (B) AT2 receptors. In (A) and (B): upper panels show representative immunoblots after
immunoprecipitation with the corresponding antibodies (IP, immunoprecitate; S, supernatant); middle panels show immunodetection of b-actin
probed in the same membrane, which was used to asses protein loading in the gels; lower panels show densitometric quantification (means 6 S.E.M.)
of five immunodetections carried out with different membrane preparations. The band intensity of the respective control group was taken as 100%.
*Statistically different from the control group (P,0.05).
doi:10.1371/journal.pone.0021232.g010
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development, undernutrition may evoke different signals that

affect the same organs in different ways [8].

Up-regulation of AT1 receptors and down-regulation of AT2

receptors could represent the persistence into adulthood of an

adaptative response towards impaired RAS functioning in early

life [53,54,55]. Lower local Ang II production in early life could be

compensated by the programming-induced reciprocal alterations

in the populations of AT1 and AT2 receptors as demonstrated in

Fig. 10, which persisted into adult life. In contrast to the results

concerning active Na+ transporters, both intrauterine and

postnatal malnutrition promote the same patterns of Ang II

receptor expression [18,51]. It is interesting that maternal protein

Figure 11. Activity and expression of calphostin-sensitive protein kinase C (PKC) in membranes from proximal tubule cells of
control (C) and programmed (P) offspring. (A) PKC activity measured in six different membrane (rats) preparations. The results are means 6
S.E.M. *Statistically different from C (P,0.001). (B) and (C) Immunodetection of the calphostin-sensitive a and e isoforms of PKC, respectively. Upper
panels: representative immunoblottings. Lower panels: densitometric quantification (means 6 S.E.M.) of five immunodetections carried out with
different membrane preparations. The band intensity of the respective control group was taken as 100%. *Statistically different from the control
group (P,0.05).
doi:10.1371/journal.pone.0021232.g011

Figure 12. Activity and expression of cAMP-dependent protein kinase (PKA) in membranes from proximal tubule cells of control (C)
and programmed (P) offspring. (A) PKA activity measured in six different membrane (rats) preparations. The results are means 6 S.E.M.
*Statistically different from the control group (P,0.05). (B) Immunodetection of PKA a-catalytic subunit. Upper panel: representative
immunoblotting. Lower panel: densitometric quantification (means 6 S.E.M.) of five immunodetections carried out with different membrane
preparations. The band intensity of the respective control group was taken as 100%. *Statistically different from the control group (P,0.05).
doi:10.1371/journal.pone.0021232.g012

Metabolic Programming of Renal Sodium Transport

PLoS ONE | www.plosone.org 12 July 2011 | Volume 6 | Issue 7 | e21232



restriction during gestation leads to alterations in the expression of

RAS components, with down-regulation of AT1 and AT2

receptors [58,68], and possible loss of the inhibition of the

(Na++K+)ATPase by (high) Ang II [36]. These results give

additional support to the idea that, depending on the period of

development (and nephrogenesis; [8]), the impact of undernutri-

tion on renal molecular targets will be varied, although late

hypertension appears to be a final and common consequence

[6,12,16,53,54,55,58,68]. Treatment with losartan using gavage

from weaning to 90 days of age prevents increases in Na+-ATPase

activity and the onset of hypertension in a model of chronically

undernourished rats (8% protein) (data not shown). Furthermore,

losartan prevents a parallel increase in Na+-ATPase activity and

arterial pressure found in spontaneously hypertensive rats [23].

These data provide support for the view that an early imbalance of

Ang II receptors is involved in alterations to Na+-ATPase activity

and the development of hypertension in adult offspring.

Programming affected the downstream PKC component of the

signaling cascade that links AT1 receptors and the Na+-ATPase

[20,21]. Therefore, it is tempting to propose that the more than

tenfold decrease in PKC activity (Fig. 11A) results in the lack of

response of Na+-ATPase to Ang II (Fig. 9). PKC is located in the

plasma membrane in a quiescent state [69], and the observation that

there was only a moderate decrease in the levels (in contrast to

activity) of the membrane-associated a and e isoforms of the enzyme

(Fig. 11B and 11C) supports the view that decreased turnover of

primed PKC [69], rather than impaired targeting, is the result of

programming during lactation. The comparable decreases in activity

and expression of PKA in programmed rats (Fig. 12) indicates

another possible cause for the increase in Na+-ATPase activity and

possibly of the (Na++K+)ATPase. We have previously demonstrated

that Na+-ATPase is an effector for PKA in the basolateral membranes

of kidney proximal tubule cells, coupled to AT2 in a way that

antagonizes the effects mediated by AT1 receptors, leading to

inhibition of the pump [37], and PKA participates in an intracellular

signaling cascade that inactivates (Na++K+)ATPase [36]. Therefore,

global depression of the AT2 receptorRPKA pathway could be an

adaptive response to decreased local activity of RAS promoted by

undernutrition-induced metabolic programming [53,54,55].

The onset of late hypertension in the programmed group (Fig. 13)

supports the view that the augmented Na+ transport (Figs. 6, 7, 8, 9)

and the alterations of key components of its regulatory machinery

(Figs. 10, 11, 12), together with the decreased number of nephrons

and glomerular structural alterations (Figs. 3 and 4), are critical events

caused through undernutrition during lactation that lead to adult

hypertension and possible progression to renal disease. These events

could also help in the elucidation of molecular mechanisms

underlying the programming hypothesis (2, 3, 4, 5).

The observations presented in this work are novel in several

respects as they elucidate 2 for the first time, to the best of our

knowledge – the molecular targets of undernutrition during lactation

that promote alterations in Na+ handling in the proximal tubule cells

of adult offspring. The modifications described herein should aid in

the understanding of how important ensembles of programmed

events can contribute to the onset of hypertension in adult life [6,50].
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