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Abstract

The ever accelerating pace of biomedical research results in corresponding acceleration

in the volume of biomedical literature created. Since new research builds upon existing

knowledge, the rate of increase in the available knowledge encoded in biomedical

literature makes the easy access to that implicit knowledge more vital over time. Toward

the goal of making implicit knowledge in the biomedical literature easily accessible

to biomedical researchers, we introduce a question answering system called Bio-

AnswerFinder. Bio-AnswerFinder uses a weighted-relaxed word mover’s distance based

similarity on word/phrase embeddings learned from PubMed abstracts to rank answers

after question focus entity type filtering. Our approach retrieves relevant documents

iteratively via enhanced keyword queries from a traditional search engine. To improve

document retrieval performance, we introduced a supervised long short term memory

neural network to select keywords from the question to facilitate iterative keyword

search. Our unsupervised baseline system achieves a mean reciprocal rank score of

0.46 and Precision@1 of 0.32 on 936 questions from BioASQ. The answer sentences are

further ranked by a fine-tuned bidirectional encoder representation from transformers

(BERT) classifier trained using 100 answer candidate sentences per question for 492

BioASQ questions. To test ranking performance, we report a blind test on 100 questions

that three independent annotators scored. These experts preferred BERT based reranking

with 7% improvement on MRR and 13% improvement on Precision@1 scores on average.

Database URL: https://github.com/SciCrunch/bio-answerfinder

Background

While traditional information retrieval (IR) techniques
employed by most search engines allow retrieval of doc-
uments deemed to be relevant to the keyword provided by

a user, question answering systems provide precise answers
to natural language questions. Natural language questions
together with precise answers allow more elaborate,
nuanced and direct inquiries into the ever expanding body
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of biomedical literature to guide biomedical knowledge
discovery. Biomedical question answering poses additional
challenges to already challenging question answering task
due to its domain-specific terminologies with a plethora
of ever increasing subdomain specific terminology and
language style variations.

From a question to the corresponding answer(s), a ques-
tion answering system mostly consists of three main pro-
cessing phases involving the processing of the question,
document processing that includes retrieval and selection
of relevant documents, which could potentially answer the
question and answer processing including answer matching,
ranking and selection (1).

One of the most important requirements for the
development of a question answering system is an expert
generated training/evaluation question answer dataset.
BioASQ, an EU-funded biomedical semantic indexing and
question answering challenge (2) provides accumulated
sets of biomedical question/gold standard answer data each
year since the inception of the challenge in 2013. BioASQ
datasets are cumulative. Every year, the test questions
together with gold standard of the previous year are added
to the QA corpus. BioASQ covers a large set of biomedicine
subdomains including medicine/clinical questions (such
as “Describe the mechanism of action of drisapersen” or
“What memory problems are reported in the ‘Gulf war
syndrome’?”), molecular biology and biochemistry (such
as “Which SWI/SNF protein complex subunit has been
demonstrated to interact with the FANCA gene product?”)
and bioinformatics (such as “Which is the execution time
(complexity) of the Smith-Waterman algorithm for the
alignment of two sequences”). Four types of questions
are provided by BioASQ; (1) “Yes/No” questions such as
“Is miR-21 related to carcinogenesis?”, (2) Single factoid
questions such as “which is the most common disease
attributed to the malfunction or absence of primary cilia?”,
(3) list factoid question such as “which human genes are
more commonly related to craniosynostosis?” and (4)
summary questions such as “what is the mechanism of
action of abiraterone?.” We obtained the BioASQ 2017
Task 5b question answering training/development dataset
for our system development and evaluation. For all the
four types of questions, we have selected a sentence as
our answer representation. All yes/no question answers in
the BioASQ dataset were implicit in the PubMed abstract
sentences. Most summary questions can be answered by a
single sentence. A sentence provides the context around the
factoid/list answer to interpret the validity of the answer.

In this paper, we describe a question–answering
system named Bio-AnswerFinder that presents biomedical
researchers with sentences from PubMed abstracts that
most likely provide the answer to their question that relies,

for answer ranking, mainly on the transfer of syntactic
and semantic information from unsupervised language
modeling instead of more traditional explicit knowledge
representation. The system uses query expansion and
weighted iterative keyword queries for relevant document
retrieval, a weighted version of relaxed word mover’s
distance (rWMD) (3) based similarity on GLoVE (4)
word/phrase embeddings that is learned in an unsupervised
manner from PubMed abstracts for answer sentence
ranking. Sentence level semantics are transferred from
language modeling by bidirectional encoder representations
from transformers (BERT) (5) based deep learning language
representation, which is fine-tuned for answer sentence
reranking. The BERT based rerankings are preferred
over the baseline weighted rWMD ranking by all three
annotators on blind-method comparisons.

Related work

Athenikos and Han (1) overview biomedical QA systems,
which are semantic-, inference-, or logic-based. BioASQ
challenges helped to push advances in biomedical ques-
tion answering systems further by providing a large set
of training data and testing data for the participants of
the challenges. Various question answering systems have
participated in the BioASQ challenges over the years, such
as BioAMA (6) and UNCC QA (7) from the latest challenge,
which had relied on named entity recognition for factoid
and list questions. UNCC QA received the highest ROGUE
scores for summary questions using lexical chains based
extractive summarization. For yes/no questions, BioAMA
used textual entailment via a hierarchical convolutional
neural network (NN).

Wiese et al. (8) introduced a neural system to detect
answer spans in the gold standard snippets provided by
BioASQ for question answering task (Task B) competition.
Their system was first pretrained on the SQUAD (9), a
100 000-factoid question answering dataset generated
from Wikipedia abstracts by crowdsourcing. Then, they
fine-tuned their system on BioASQ 5b factoid and list
subset achieving state of the art performance on the factoid
questions.

Relaxed word mover’s distance is used by Brokos et al.
(10) in a k-nearest neighbor setting to retrieve the most
similar PubMed abstracts to the question GLoVE vector. In
our system , we use a weighted version of the relaxed word
mover’s distance to rank sentences of abstracts returned by
our iterative question to keyword query enhancer, which
are further reranked by a BERT (5) based deep neural
network (DNN). BioAMA uses maximum marginal rel-
evance algorithm (11) for sentence selection, where we
use weighted-relaxed word mover’s distance (wRWMD)
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with word embeddings followed by sentence level language
modeling using a fine-tuned BERT classifier. Lee et al. (12)
further pretrained BERT with PubMed abstracts and/or
PubMed Central (PMC) open access full text articles to cre-
ate a domain adapted model called BioBERT and using the
gold standard passages provided in BioASQ 5b dataset for
factoid questions to detect contiguous words of the named
entity answering the question similar to BERT (5) question
answering test setting. Their system is also pretrained with
SQUAD (9) similar to the QA classifier by Wiese et al. (8).
Bio-AnswerFinder, however, is an end-to-end system that
does not depend on gold standard passages to find the
answer, which is not realistic for real-word applications.
Rather, it retrieves candidate abstracts from a traditional
search engine and uses BERT to rerank wRWMD ranked
sentences covering all four forms of question types. We
have compared BioBERT fine-tuned reranker with our non-
domain adapted BERT reranker and found that there was
no performance difference between them. We have also
implemented a simple exact answer extraction module for
factoid type questions to compare Bio-AnswerFinder to
other state of the art QA systems.

Materials and Methods

Our system follows the three main processing phases com-
mon to all question answering systems (1). An overview of
the introduced system is shown in Figure 1. The question
processing phase includes question parsing, detection of the
focus of the question, supervised long short term memory
(LSTM) (13) and DNN-based keyword selection, question
to keyword query conversion and query expansion. The
document processing phase includes an iterative most spe-
cific to most generic keyword search guided by the LSTM
network selected keywords to retrieve a focused mostly
relevant set of documents from an Elasticsearch index of
PubMed abstracts (RRID:SCR_004846). The answer pro-
cessing phase, based on the detected question type (focus,
definition question or other), involves focus entity type
or definition pattern based filtering of the sentences from
the retrieved abstracts. For focus and other non-definition
questions, the answer candidate sentences are then ranked
by a weighted version of the relaxed word mover’s distance
(3). The sentences are further reranked by a fine-tuned
BERT (5) classifier.

For the biomedical corpus, the full set of PubMed
abstracts from 2017 are ingested, transformed and indexed
to an Elasticsearch endpoint using our ETL system, Foundry
(14). The system uses the title and abstract text for each
abstract to find answers.

The subcomponents of the Bio-AnswerFinder are
detailed in the upcoming sections.

Preprocessing

To capture semantic and syntactic relationships among
words co-occurring in similar contexts in a vector space
representation amenable to IR, we use GloVE (4) as our
word embedding model. GloVE (4) is a vector space model
to represent words combining advantages of global matrix
factorization and local context window based word repre-
sentation (15) methods.

For the PubMed corpus, we have considered n-grams
of length one through four words. N-grams of length two
through four are selected by hypothesis testing to detect
phrases instead of n-grams co-occurring by chance. Phrase
detection was done on the 300 million word corpus of
abstracts extracted from the PMC open access full paper
distribution (August 2017). GloVE training is applied to the
combined set of single terms and phrases in the full set of
PubMed (August 2017) abstracts (2.5B words) to generate
100 dimensional embedding vectors for each word/phrase
occurring more than five times in the corpus resulting in a
vocabulary of ∼2.5 million unique words and phrases. Doc-
ument frequencies are precalculated for each word/phrase
to be used to weight terms in natural language query
processing by inverse document frequency (IDF).

Question processing

Natural language question analysis. Analysis of a question
to determine what it is asking for is an essential part of
question answering systems such as IBM Watson (16). The
analysis of questions in our system entails the following:

1) Question Parsing
Natural language questions are first tokenized and then

sentences (for multi-sentence) questions are detected fol-
lowing the part-of-speech (POS) tagging, lemmatization,
constituent and dependency parsing using the Stanford
CoreNLP (17) library. Contiguous noun phrases (NPs) in
the question are also detected using the constituent syntax
tree.

2) Question Type Detection
The type of a question determines the strategies to be

used to answer it. Definition questions are answered by
answer pattern matching (18). The entity type of the focus
word/phrase of a factoid question is used to filter out
answer candidates not having the correct entity type.

3) Detection of the Focus of a Question
To generate the appropriate keyword query to retrieve

relevant documents to find the answer to the question,
detection of the focus words/phrases of the question is very
important. The system first detects the wh word (what,
where, how etc.) in the question. The focus word/phrase
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Figure 1. Overview of the Bio-AnswerFinder.

is usually located either immediately after the wh word or
for copula/auxiliary verbs, after the verb. For prepositional
phrases using the prepositions ‘of’ and ‘in,’ the focus phrase
comes after the preposition and the NP coming before is
usually a modifier of the focus phrase.

From question to keyword query/ answer candidate
document retrieval. The first step in question sentence
to boolean keyword query conversion for traditional
search engines like Elasticsearch is detection of non-
copula/auxiliary verb(s) in the question. The verbs are
morphologically converted to their infinitive forms. For
all nouns and NPs their singular/plural forms are also
included in the candidate search keyword set. Noun phrases
are normalized by removing articles, pronouns, gerunds
and possessive characters from them. Slash words such as
‘drug/medication’ are tokenized into multiple candidate
search keywords. Coordinated list of terms/phrases are
detected and converted into a list of candidate phrase search
terms. For the detected verbs, NomLEX (19) is used to find
any nominalizations as additional search terms together
with its conjugated forms. The question analyzer subsystem
also tries to resolve any acronyms used in the question to

determine its expansion and adds the expansion to the
candidate search terms. Similarly, any acronyms for a NP
in the question are detected and added to the candidate
search terms.

Sub-phrases within NPs are detected using the vocab-
ulary of terms and n-grams generated from the corpus.
Starting from both ends of a NP, words are dropped from
the phrase and checked against the vocabulary to include
matching subphrases as additional candidate search terms.
Also each word in a question NP is also considered as
a candidate search term. The candidate search terms are
weighted by the IDF of each term/phrase in the vocabulary.

Document processing

Recognition of entities in a question and candidate answers.
The ability to detect classes of named entities in a question
and potential answers is necessary to generate equivalency
classes enabling generalization from a specific question to
extract its intent. The scope of answerable questions from
a corpus depends on the type and number of entities recog-
nized. The entities are the most domain specific part of any
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QA system. In Bio-AnswerFinder, we recognize nine entity
types; gene, protein, enzyme, disease, drug, molecular entity,
organism, anatomical entity and cellular component. All of
these entities are currently recognized by lookup. The gene
lookup table is generated from the HUGO database. The
disease names are extracted from the CDC Diseases & Con-
ditions website. The drug lookup table is generated from
DrugBank (RRID:SCR_002700) data in Scicrunch.org (20)
and the rest from Scicrunch biomedical ontologies.

Iterative Elasticsearch keyword queries to retrieve
Answer Candidate Documents. Inspired by the iterative
document retrieval approach of Pasca (18), we generate a
set of keyword search queries of decreasing complexity to
retrieve a set of relevant documents to locate the answer
supporting sentence in them. From the candidate search
term information, a sequence of keyword search queries
are generated against the PubMed abstracts Elasticsearch
index. The keyword query start as an AND query with
all candidates and expansions included and keywords are
excluded until some results are returned but the result
set is not very large (>1000) (indicating a too generic
query). The keyword query consists of NPs disjuncted
with their singular/plural form and acronyms and verbs
disjuncted together with their nominalizations, infinitives
and conjugations. Each disjunction group is then combined
with logical AND constructs together with subphrases
and individual words of NPs in the question to form
the keyword search query for Elasticsearch. All the
terms/phrases within each search construct are sorted by
their weights in descending order. The weight of a logical
disjunctional search construct is calculated by the following
formula from its constituent term and phrase weights;

wcons = 1
|ST|

[∑
i∈V

wi +
∑
i/∈V

min
j

wij

]

where |ST| is the number of search terms in a search
construct, V is the vocabulary set, i = 1, . . . , |ST|and j =
1, . . . , #of tokens in STi. The search terms are dropped
from each disjunctional search construct one at a time in
increasing weight order until any matching documents are
retrieved.

The iterative process is illustrated on the following
BioASQ question;

“Is alemtuzumab effective for remission induction
in patients diagnosed with T-cell prolymphocytic
leukemia?”

Here all the nouns, NPs and verb ‘diagnose’ are considered
for keyword query generation. Each term and phrase is
weighted by the formula given above and weights are

normalized. Figure 2 depicts the keyword query sent to
our Elasticsearch index with additional square brackets
to show search constructs considered as a unit. During
greedy iterative generalization of the keyword query, the
term with the lowest weight from each unit were dropped
one at a time until some abstracts are returned. The process
starts with the group having the least maximum weight
among its elements. The verb search construct(s) are always
considered first in the dropping process regardless of their
weights. Also any entities (drug, disease etc.) recognized are
treated specially. Since they usually indicate the focus of
the question, the dropping process tries to leave them in
the query and continue to drop terms from other search
constructs, which have more than one term and come
before those entities in the query. This is witnessed in
iterations 9 through 11 shown in Figure 2 for the drug
alemtuzumab. Once all search constructs are reduced to
a single term/phrase, then focus entities are considered for
dropping, as the last resort.

Answer processing

Candidate answer sentence ranking by weighted Relaxed
Word Mover’s Distance. To select the most likely sentences
in the retrieved candidate documents, we need a way to rank
them. This ranking can be done in a supervised manner
or by unsupervised means relying on similarity between
the question and candidate answer sentence. Kusner et al.
(3) cast the semantic similarity between documents as a
transportation problem, where the dissimilarity between
two documents is considered as the minimum distance that
the embedded word vectors of one document need to travel
to reach the embedded word vectors of the other document.
By analogy to the earth mover’s distance transportation
problem, they introduced word mover’s distance (WMD),
a constrained optimization problem.

Given several suppliers each with fixed amount goods
and several consumers each with limited capacity together
with the transportation cost between each supplier-
consumer pair, the transportation problem can be defined as
the cheapest way of distributing the goods to the consumers.
Applied to the semantic similarity between two documents
modeled with a set of word embeddings (using bag or words
assumption) d and d’, transportation cost c(i,j) between
word i from d and word j from d’ is the Euclidean distance
between word embedding vectors vi and vj. The amount
of goods available per supplier (word) of the document
i is its normalized document frequency di. Similarly, the
capacity per consumer (word) of the document j is also its
normalized document frequency di. Defining the fraction
of goods sent from word i of document d to the word j of
document d’ as Tij, the transportation problem for WMD
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Figure 2. Illustration of iterative weighted Elasticsearch keyword querying process on the question “Is alemtuzumab effective for remission induction

in patients diagnosed with T-cell prolymphocytic leukemia?”

can be stated by the following linear program;

min
T≥0

n∑
i,j=1

Tijc
(
i, j

)

subject to :
∑

j

Tij = di ∀i ∈ {1, . . . , n}

∑
i

Tij = dj ∀j ∈ {1, . . . , n}

where n is the size of the vocabulary. Relaxing the con-
strained optimization problem by dropping one of the
constraints results in a lower bound to the full optimization
problem with O(p2) complexity, where p is the number of
unique words in the documents compared. If the second
constraint is removed, the optimal solution is obtained if
for each word in d (question) all the normalized docu-
ment frequency is moved to the most similar word in the
document d’ (answer candidate). We found out experimen-
tally that IDF-based weighting of terms improves vanilla
relaxed WMD. Thus, the weighted relaxed WMD for a

question–answer sentence pair becomes

wRWMD
(
Q, A

) =
∑

i∈IQ
wi × max

j∈IA

cossim
(
vi, vj

)
∑

k∈Iq
wk

where IQ and IA are index sets for the unique terms/words
in question Q and candidate answer sentence A, respec-
tively. The semantic vector for word i is noted as vi and
each word i is weighted by wi(normalized IDF).

The candidate documents returned from the Elastic-
search index are first segmented into sentences using the
Stanford CoreNLP and wRWMD is calculated for each
answer candidate sentence. Sentences are then ordered by
descending similarity (1 – wRWMD) order.

Candidate answer filtering for question focus entity type
to answer factoid questions. If the focus of the question
matches any of the entity types recognized, then the answer
must contain at least one entity of the same type to be
considered an answer of the asked focus entity type. Our
system detects entities in the candidate answer sentences
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and corresponding question and filters out any sentences
not having any entity of the focus entity type.

Supervised answer candidate reranking. For supervised
reranking of the candidate answer sentences, we have used
a DNN-based language representation model named BERT
(5). BERT is based only on attention based feedforward
NN layers unlike the more common complex recurrent
and convolutional NN based encoder/decoder architectures
used for language transduction models allowing for bet-
ter parallelization and much shorter training times (21).
The pretrained BERT models and code were open sourced
by Google on GitHub (https://github.com/google-research/
bert). Pretrained BERT models are then combined with
additional classifier layers and fine tuned for different NLP
tasks achieving state of the art performance in each task (5).

We have cast answer candidate reranking as a sentence
pair classification task to decide if an answer candidate
sentence contains the answer for the question given a ques-
tion and answer candidate sentence pair. We have used the
BERTBASE pretrained model with 110M parameters. Using
maximum sequence length of 64 and batch size of 16, the
pretrained model fits the memory of our GPU (GTX 1060
6GB) and was fine tuned for three epochs in about an
hour. For training/testing data, we have used 592 questions
having an answer in the first 100 results returned by our
baseline unsupervised wRWMD based QA system. Since
we have annotated the results for the first occurrence of an
answer in the answer candidate list for each question, there
could be other potential answers below the first occurrence
making our training data noisy. The probabilities from the
binary classification task are then used to rerank the answer
candidates. The BERT and wRWMD based reranking was
then compared in a blinded evaluation study, where three
annotators presented with the first 10 ranked answer can-
didates for each method for each question in the test set.

Exact answer phrase extraction for factoid questions. In
BioASQ, the exact answer for a factoid question, in majority
of the cases, is either a single term or a phrase. The state of
the art supervised QA systems (8, 12) detect the start and
end positions of the exact answer in the BioASQ provided
gold standard snippets for factoid questions. About 30%
of the BioASQ factoid questions cannot be answered by
this extractive approach since the answer tokens are not
available in the snippets (12, 22).

To provide exact answers for factoid questions in Bio-
AnswerFinder, we introduced a simple method based on
the focus word detection subsystem. The first 10 answer
candidate sentences selected by the Bio-AnswerFinder were
considered for exact answer candidate selection. If the
detected focus term is one of the nine recognized named
entity types, all the unique entities of the recognized type in
the answer candidate sentences are returned in their first

occurrence order in these sentences as the exact answer
candidates.

For the focus terms that are not a recognized entity
type, all of the noun phrases are potential exact answer
candidates. Any determiners, demonstrative pronouns, pre-
determiners, comparative or superlative adjectives, cardinal
numbers and adverbs were stripped from the beginning
of the noun phrases extracted from CoreNLP parsed sen-
tences. For NPs of three to five tokens subphrases are also
included in the exact answer candidate list.

Using GloVE word/phrase embeddings, the cosine simi-
larity of each exact answer candidate NP to the focus term
GloVE vector was calculated for ranking purposes. Since
the focus term denotes the type of the answer for a factoid
question, we expect that it should be similar to the answer,
usually, by a subsumption relation. Word embeddings, how-
ever, encode other syntactic and semantic aspects of the
similarity besides subsumption. We tried to minimize the
effect of these additional aspects of the word embeddings
based similarity, by two ways of systematic filtering. First,
any non-informative named entity terms such as “protein,”
“gene,” “drug” or “disease” occurring in the candidate set
by themselves were removed from the list to minimize the
noise. Second, under the assumption that the question does
not contain its answer, any candidate NPs which were very
similar to any noun/NP (based on the GloVE vector cosine
similarity having ≥0.8) in the question were filtered out.
The cosine similarities of the candidate NPs were further
weighted by their TF-IDF score with the term frequencies
determined from the candidate sentences. These scores were
then used to rank non-entity focus term generated exact
answer candidates in decreasing score order.

Results and Discussion

Evaluation

To evaluate the performance of the introduced QA system,
we have used mean reciprocal rank (MRR) score and Preci-
sion@1, which are commonly used to evaluate QA system
performance (23, 2). MRR is calculated as

MRR = 1
N

N∑
i=1

1
rank

(
Qi

)

where N is the number of questions and rank
(
Qi

)
is the

rank order of the topmost correct answer for question
i. Precision@1 is defined as the ratio of the number of
questions answered by the first returned answer candidate
to the total number of questions.

Besides the question keyword and answer reranking
components, our system does not need any supervised

https://github.com/google-research/bert
https://github.com/google-research/bert
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training data. The answer reranking DNN relies on the
supervised data from manually selected answers from the
weighted RWMD ranked sentences. In order to both evalu-
ate the unsupervised (baseline) version of our system and
to generate training data for the reranking classifier, we
used the BioASQ question–answer training corpora 5b
which has 1799 questions, out of which 1114 questions–
answer pairs had exact answer and ideal answer sentences
from abstracts, which we can automatically align with
our PubMed abstracts Elasticsearch index generated using
our Foundry ETL system (12). Out of these 1114 ques-
tion–answer pairs, we selected 85% (936 unique question–
answer pairs) for performance analysis. Due to ongoing sci-
entific research, new papers/abstracts are constantly added
to the PubMed abstract corpus. A question can be answered
by new abstracts or different abstracts than the ones the
BioASQ curators have chosen at the time of annotation.
For this reason, performances of the participants in the
QA section of the BioASQ annual competition are also
manually inspected. Using the exact and ideal answer gold
standard BioASQ texts as a guideline, we have manually
selected the first occurrence of the answer in the first
200 sentences returned by our baseline system on the 936
questions. For list questions, a sentence containing at least
one answer item from the list is considered as a correct
answer. Out of 936 questions, 595 questions had been
answered (based on exact and ideal answer text provided)
by a sentence from an abstract not annotated by the BioASQ
curators. For our unsupervised baseline system, the MRR
on these 936 questions was 0.46 and the Precision@1
was 0.32.

Datasets for supervised classifiers

For the supervised keyword selection and answer candi-
date reranking, we used the 936 unique questions for the
evaluation of our unsupervised baseline question answering
system.

For supervised answer reranking we selected all the ques-
tions having an answer in the first 100 answer candidates
based on the baseline system evaluation resulting in 592
questions and answer candidate set pairs. The threshold 100
is selected to not have an overly unbalanced training dataset
(one correct, 99 incorrect). We have randomly hold out 100
questions out of this set as the testing set.

Supervised keyword selection

For the keyword selection classification task, we have tried
NN architectures with PubMed abstract corpus trained
GLoVE word embeddings encoded into a fixed length
representation that is fed into a dense layer of fixed length

sigmoid neurons. Each question is tokenized and for each
token the corresponding GLoVE word embedding vector is
looked up and concatenated into a fixed length sequence
(40 in our case based on max BioASQ tokens of 23) as the
NN input beyond which we truncate the remaining tokens.
Shorter sequences are zero padded. The number of output
neurons is also fixed to 40, one for each token indicating
whether that token is a keyword or not. As for the encoder
layer, we have tried a dense layer, a LSTM (13) layer and
an one-dimensional convolutional NN layer. As a second
NN architecture, we also tried a multi-input architecture
where beyond the GLoVE word embeddings POS tags are
encoded by a dense rectifier linear unit layer before being
concatenated to the word embedding encoder layer results
and connected to the sigmoid output layer. The intuition
behind the second architecture is based on the supposition
that nouns are best candidates for good keywords, thus POS
information might inform the keyword selection process.

The models are trained in an 8-fold cross-validation
setting, where one eighth of the training set is randomly
held out without replacement for performance testing
for each fold. The DNN models are implemented using
the Keras (https://keras.io) deep-learning framework. The
results (average precision, recall and F1 values together
with their standard deviations) are summarized in Table 1.
For each model, its complexity in terms of number of
trainable weights and dropout regularization probability
is also shown. The significance of performance differences
are assessed by two-tailed t-tests. The baseline LSTM
model significantly outperforms both baseline dense
model (P-value = 9.3e-07) and baseline convolutional NN
(P-value = 0.0001).

The performance improvements of the multi-input
dense-LSTM and LSTM–LSTM models over the baseline
LSTM model were not statistically significant.

Effect of keyword selector classifier on retrieval

To see the effect of keyword selection on the final QA sys-
tem, together with additional iterative document retrieval
approaches (24), we have selected 100 questions randomly
from the set of the most difficult questions, as determined
by the result analysis on the wRWMD only baseline system
as the test set. The full system is run first without the
inclusion of keywords selected (baseline) and then with the
keywords, selected by the classifier, ensured to be included
in the initial query submitted to the search engine. The
first 10 results returned for each test question is then
checked by a curator to determine the rank of the first
answer if any. The results shown in Table 2, indicates that
keyword selection increases both MRR and Precision@1.
Using keyword selection together with supervised keyword

https://keras.io
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Table 1. Keyword selection classifier model performances

Model Precision (SD) Recall (SD) F1 (SD)

Baseline dense model, dropout = 0.2, 161 680 parameters 84.4 (2.1) 77.3 (2.3) 80.7 (2.3)
Baseline LSTM model, dropout = 0.2, 86 600 parameters 89.7 (2.0) 88.7 (2.4) 89.2 (1.4)∗

Baseline ConvNet model, 44 120 parameters 84.8 (1.8) 82.8 (5.3) 83.6 (2.4)

Multi-input models
Dense–dense model, dropout = 0.2, 177 290 parameters 86.6 (2.7) 79.9 (3.2) 83.1 (2.6)
LSTM-dense model, dropout = 0.2, 102 210 parameters 89.5 (1.9) 89.6 (1.5) 89.5 (1.4)
LSTM–LSTM model, dropout = 0.2, 104 560 parameters 91.2 (1.3) 88.1 (2.2) 89.6 (1.4)

Asterisk indicates statistical significance.

Table 2. Effect of supervised keyword selection on the end-

to-end QA performance

Retrieval method MRR Precision@1

Baseline 0.18 0.13
Baseline + keyword inclusion 0.21 0.15

ranking for greedy iterative query term dropping further
improved overall QA performance more than doubling the
MRR to 0.39 and almost doubling the Precision@1 score
to 0.32 on this most challenging subset of the BioASQ 5b
dataset (24).

Blind evaluation of answer ranking methods

Weighed RWMD and BERT ranked results were assessed
by three curators (experts from related scientific fields)
independently and blindly as to the method. Each curator
was presented with a question, and a set of 10 answer
candidates per ranking method, though it was hidden from
the curator which method was being presented (results are
summarized in Table 3). The curators were instructed to
choose the first correct answer to the question, if any correct
answer was available. Also available to curators were the
gold standard answer(s) and the snippets from BioASQ 5b
dataset.

All curators agreed on the same answer for 55 out of
100 questions with wRWMD and 53 with BERT ranked
method. These cases were not examined further, however,
we considered the cases where at least one curator dis-
agreed with the others by examining the sentences with an
additional fourth curator to determine the causes of the
disagreement.

The most common type of disagreement was paraphras-
ing, i.e. where both answers selected are correct but the
phrasing is different and may be preferred by one curator
or another.

The curator disagreement varied based on the type of
question as shown in Table 4. The factoid questions had

the least amount of disagreement and highest performance,
while the summary type questions having the largest
disagreement. Summary questions are best answered by
a multiple sentence explanation. It is usually not possible to
summarize all the aspects of the required answer in a single
sentence. Thus, the curators needed to select the sentence
that had the most important aspect of the answer which is
highly subjective.

To examine the effect of domain adaptation to
reranking, we have obtained BioBERT v1.1 model
further pretrained with PubMed abstracts from GitHub
(https://github.com/naver/biobert-pretrained/releases/tag/
v1.1-pubmed; RRID:SCR_017547) and used it to fine-tune
a second reranker similar to our BERT fine-tuned reranker.
The effect for BioBERT domain adaptation to reranking
is examined by using the BioBERT fine-tuned reranker
classifier to classify the first 100 results from wRWMD for
the same 100 test questions as in the BERTBASE case. Then,
these 100 wRWMD sentences per test question were sorted
by the decreasing BioBERT reranker score for reranking.
Afterward, the 10 sentences with highest BioBERT reranker
score for each question were checked by one curator against
the gold standard and curated results from BERTBASE fine-
tuned reranker. Using the answers from the three curators
and the BioASQ gold standard answers on the 100 test
questions, we have calculated the MRR and Precision@1
scores for both rerankers. Using majority vote among
curator answers together with BioASQ gold standard
answer double checking, BERT reranker had MRR of
0.727 and Precision@1 of 0.62 and BioBERT reranker had
virtually identical MRR of 0.723 and Precision@1 of 0.62.

Out of 100 questions BERT and BioBERT rerankers
agree on 61 questions. The most common agreement was
at the first rank (on 50 questions) followed by no answer
(on seven questions). On the remaining 39 questions, BERT
reranker had better ranking over the BioBERT reranker
for 20 questions and BioBERT reranker had better ranking
over the BERT reranker on the remaining 19 questions.
Out of the 50 first rank agreement questions, BioBERT
and BERT rerankers selected different paraphrasing in 34

https://github.com/naver/biobert-pretrained/releases/tag/v1.1-pubmed
https://github.com/naver/biobert-pretrained/releases/tag/v1.1-pubmed
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Table 3. Answer selection blinded method performance evaluations

Weighted rWMD BERT reranked

Curators MRR Precision@1 MRR Precision@1

Curator 1 0.747 0.61 0.813 0.71
Curator 2 0.619 0.49 0.657 0.56
Curator 3 0.743 0.60 0.781 0.66

Table 4. Answer selection performance based on question type

Question type (size) Annotator 1
(MRR)

Annotator 1
(Prec@1)

Annotator 2
(MRR)

Annotator 2
(Prec@1)

Annotator 3
(MRR)

Annotator 3
(Prec@1)

BERT reranking
Summary (14) 0.895 0.86 0.495 0.43 0.661 0.57
Yesno (23) 0.737 0.70 0.688 0.57 0.779 0.65
Factoid (35) 0.867 0.77 0.819 0.74 0.884 0.80
List (28) 0.725 0.57 0.510 0.39 0.715 0.54

wRWMD ranking
Summary (14) 0.723 0.57 0.560 0.43 0.812 0.71
Yesno (23) 0.809 0.65 0.708 0.61 0.741 0.57
Factoid (35) 0.790 0.69 0.705 0.57 0.799 0.69
List (28) 0.654 0.50 0.469 0.32 0.639 0.46

questions. Even though the ranking was the same for both
methods, in significant number of cases the paraphrasing
selected by BioBERT was qualitatively better than BERT
ranking.

For the question “Which is the most abundant mem-
brane protein on Earth?,” as an example, BERT reranker
selected the sentence “Degradation of the most abundant
membrane protein on earth, the light-harvesting complex
of Photosystem II (LHC II), is highly regulated under var-
ious environmental conditions, e.g. light stress, to prevent
photochemical damage to the reaction center.” While the
BioBERT reranker selected the more direct answer sentence
“LHCII is the most abundant membrane protein on earth.”.

Seeing virtually no difference between BERT and
BioBERT for reranking task could be explained by the
following observations; BERT was trained on Wikipedia
data which already contains a substantial amount of
information about biomedical topics. It was trained to
learn word part (by using WordPiece tokenization (25))
level embeddings instead of more traditional word based
embeddings facilitating representation of embeddings for
the out-of-vocabulary words by combination of word part
embeddings minimizing the need for domain adaptation
to provide domain specific vocabulary information. The
contextualized representations learned by BERT were
recently shown to embed dependency syntax parse tree
information (26). This rich syntax information, together
with the domain-specific GloVE word vectors-based

wRWMD ranking, which provides the input to the BERT
reranking, might be enough for the reranking task. The
wRWMD being a strong baseline even before BERT
reranking provides evidence to this. Also BERT rerankings
had strong Precision@1 values indicating that substantial
amount of questions is answered by the first returned
sentence, which cannot be further improved.

Bio-AnswerFinder is designed and implemented with
the goal of being the next generation literature search
interface for the Scicrunch.org platform (https://scicrunch.
org), which primarily serves the biomedical research com-
munity. In their quest for knowledge discovery, biomed-
ical researchers require evidence about the exact answer
returned. We have decided to present sentences supporting
the answer instead of the exact answer(s) extracted from
ranked sentences as our output to provide the context for
the exact answer. None of the question answering systems
has perfect precision and recall and without this guarantee
the returned answer needs to be verified by the user by
evaluating the supporting evidence.

Comparison to other QA systems

While Bio-AnswerFinder is an end-to-end (from the ques-
tion to the answer sentence) system, the best perform-
ing biomedical QA systems use a narrower definition of
question answering namely finding the spans of tokens
answering the question in the set of gold standard snippets.

Scicrunch.org
https://scicrunch.org
https://scicrunch.org
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Having gold standard snippets to find answers is not
realistic for a production QA system to be used by biomedi-
cal researchers. Also extractive supervised question answer-
ing as used by Wiese et al. (6) and BioBERT (12), limits
the question type to be answered to factoid questions.
To compare Bio-AnswerFinder with these QA systems,
we used a simple, unsupervised noun phrase extraction
and ranking approach based on the question focus word
type and similarity as described in section “Exact answer
phrase extraction for factoid questions.” We applied this
approach to the first 10 sentences returned by the Bio-
AnswerFinder with BERT reranker for the test set curated
by the curators. Also, to get a lower bound on the MRR
performance, we used the challenging test set from our
document retrieval approach comparison study (24). Using
the keyword importance classifier based retrieval approach
(24) as the retrieval system in the Bio-AnswerFinder, the
exact answer candidates are extracted from the first ten
answer sentences per factoid test question.

The exact answer MRR results together with the
sentence level curator results are shown in Table 5. Bio-
AnswerFinder showed performance close to the second
best system (8) at the exact answer level. Taking into
account that exact answer extraction was unsupervised
while all other approaches were supervised and no gold
standard snippets were used unlike the other systems, this is
encouraging. Also, at the sentence level, Bio-AnswerFinder
outperformed the state of the art (12) even for the
challenging test set. The performance difference at the exact
answer versus at the sentence level for Bio-AnswerFinder
can be partially explained by the shortcomings of the
simple unsupervised approach used not being able to
filter all irrelevant phrases. Also, exact answer phrase
selection is a more difficult task than the sentence selection,
since the search space for exact answer phrases is much
larger than the search space for sentences where each
sentence usually yielding ∼5 to 10 unique candidate
phrases to be considered. However, sentence level answer
representation together with definition question processing
capabilities of Bio-AnswerFinder allowed answering wider
range of factoid questions which are not amendable for
extractive question answering since the answer does occur
in paraphrased or sentence format. About 30% of the
BioASQ factoid questions fall into this category (12, 22).
Thus, sentence level answer representation allowed wider
range of factoid questions to be answered while also
providing supporting context for the answer.

Conclusion

In this article, we introduced a question answering sys-
tem to aid biomedical researchers in their knowledge dis-

Table 5. Factoid question exact answer comparison with

other QA systems

QA system MRR for factoid questions

BioAMA (6) 0.195
Wiese et al. (8) (average of five
batches)

0.405

BioBERT (12) 0.483
Bio-AnswerFinder (challenging
set (24))

0.239 (0.508 at the sentence
level)

Bio-AnswerFinder (average of
three curators)

0.381 (0.857 at the sentence
level)

covery efforts. The system relies on language modeling
for words/phrases and whole sentences (in case of BERT)
learned in an unsupervised manner from large corpora
for implicit semantic information used in answer selection.
Using an iterative document retrieval process, enhanced
by DNN-based keyword selection, relevant documents to
find answer(s) for the question are retrieved. The candidate
documents retrieved for non-definition questions for which
the focus of the question is detected are filtered by a focus
type filter. Blind tests by three curators provided evidence
that BERT based reranking of the weighted relaxed WMD
ranked answer candidate sentences further improved the
performance of the system especially for the Precision@1.
Current work is focused on integrating the system into the
SciCrunch (20) framework as the next generation biomed-
ical search engine after more tests on biomedical question
answering and system optimizations.
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