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Computing molecular excited 
states on a D‑Wave quantum 
annealer
Alexander Teplukhin1, Brian K. Kendrick1, Susan M. Mniszewski2, Yu Zhang1, 
Ashutosh Kumar1, Christian F. A. Negre1, Petr M. Anisimov3, Sergei Tretiak1* & 
Pavel A. Dub4*

The possibility of using quantum computers for electronic structure calculations has opened up 
a promising avenue for computational chemistry. Towards this direction, numerous algorithmic 
advances have been made in the last five years. The potential of quantum annealers, which are the 
prototypes of adiabatic quantum computers, is yet to be fully explored. In this work, we demonstrate 
the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular 
systems. These simulations play an important role in a number of areas, such as photovoltaics, 
semiconductor technology and nanoscience. The excited states are treated using two methods, time-
dependent Hartree–Fock (TDHF) and time-dependent density-functional theory (TDDFT), both within 
a commonly used Tamm–Dancoff approximation (TDA). The resulting TDA eigenvalue equations are 
solved on a D-Wave quantum annealer using the Quantum Annealer Eigensolver (QAE), developed 
previously. The method is shown to reproduce a typical basis set convergence on the example H

2
 

molecule and is also applied to several other molecular species. Characteristic properties such as 
transition dipole moments and oscillator strengths are computed as well. Three potential energy 
profiles for excited states are computed for NH

3
 as a function of the molecular geometry. Similar to 

previous studies, the accuracy of the method is dependent on the accuracy of the intermediate meta-
heuristic software called qbsolv.

The calculation of electronic states of a molecule has been a routine procedure for theoretical and computational 
chemistry for decades. While the ground electronic state on its own is undoubtedly the foundation of many 
chemical theories and methods to describe a large number of physical phenomena, there is a significant amount 
of chemistry and physics problems where inclusion of excited electronic states is mandatory. These span tech-
nological applications, for instance, photovoltaics, lighting and photocatalysis, and such materials as semicon-
ductors, molecular chromophores, carbon nanotubes, to name a few. A simple example of a phenomenon that 
requires an excited states description is the absorption of sunlight by pigments in photosynthesis. As a result, by 
absorbing a photon, the pigment molecule undergoes a transition from the ground to one of the excited states. 
Understanding these kinds of processes has given rise to a number of modern technologies such as photovolta-
ics, where sunlight is converted into electric current through specifically-designed semiconducting materials1,2. 
Another related example of an excited-state process is the response of a molecule to an external electromagnetic 
field. Here, several excited electronic states might become involved in a complex time-dependent dynamics.

One common way to evaluate excited states in electronic structure calculations is time-dependent formula-
tions, such as time-dependent Hartree–Fock (TDHF) and time-dependent density-functional theory (TDDFT) 
methodologies. TDHF and TDDFT build the excited state description on the ground state self-consistent field 
(SCF) method and differ in representation of the underlying Hamiltonian and the type of orbitals used (Har-
tree–Fock or Kohn–Sham). Frequency domain solution of the time-dependent Schrödinger equation in either of 
these formulations leads to the random-phase approximation (RPA) non-Hermitian eigenvalue problem3–6, which 
can be further simplified to a Hermitian eigenvalue problem by means of the commonly-used Tamm–Dancoff 
approximation (TDA) in TDDFT7–9. This is formally equivalent to the configuration interaction with single 
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substitutions (CIS), a term frequently used in the wave function theories. At this point, the only pragmatic 
concern is to find an efficient eigensolver for the RPA or CIS matrix.

In parallel to the advances in electronic structure theory, quantum computers, that promise exponentially 
faster calculations, become more mature every year. The question that has emerged is how to map existing chem-
istry problems, such as excited state calculations, to this new type of computing hardware. Whereas a solution has 
already been found for the gate-based quantum computers in the form of the Variational Quantum Eigensolver 
(VQE)10–12, there has not been much progress in the direction of quantum annealers, D-Wave quantum annealers 
specifically. In the past, two methods13,14 were proposed to solve general configuration interaction (CI) problems 
on quantum annealers, both starting from the second-quantized formulation of the electronic problem.

Previously, we developed the Quantum Annealer Eigensolver (QAE), which is capable of computing a few 
eigenvalues and eigenvectors of a given real symmetric or complex Hermitian matrix on a D-Wave quantum 
annealer (non-Hermitian matrices are supported in a limited way). The QAE was successfully applied to vibra-
tional, scattering and electronic structure problems15–18, and was recently improved and applied to lattice gauge 
theory19. The last study18 on electronic structure covered a significant number of molecules and all matrices 
were general CI matrices.

While the ability to solve an eigenproblem on the D-Wave is an important conceptual advance, this does not, 
however, necessarily mean that application of this machinery to an arbitrary subject-matter topic guarantees 
success. Subsequently, investigation of algorithmic performance for specific physical models holds an important 
value for the research community. In this work, we extend an annealer-based electronic structure calculations to 
the time-dependent TDDFT and TDHF formulations and target excited states specifically. As a result, in contrast 
to what one might have expected, we find that the QAE performance is vastly different for the two formulations.

Further, this work continues to expand the QAE applicability and demonstrates that many problems can be 
converted to a QUBO and run on different kinds of QUBO solvers, such as simulated annealing (SA), qbsolv 
(discussed further), digital annealers, quantum annealers, etc. Traditionally, all the chemistry problems men-
tioned earlier require different codes and/or algorithms.

In “Results” section, we briefly review the methodology and setup, and demonstrate the convergence of 
excitation energy with basis set for the hydrogen molecule. Calculations of excitation energies for a number of 
small molecules are then presented followed by evaluation of other properties of interest such as transition dipole 
moments and oscillator strengths. We conclude “Results” section with the excitation energies of NH3 molecule 
reported as a function of the nuclear geometry (umbrella inversion). “Discussion” section elaborates on the 
accuracy of the results obtained and outlines the limitations of the proposed method. The electronic structure 
code, the QAE algorithm and D-Wave quantum annealer are described in “Materials and methods” section.

Results
Method overview and setup.  The method is based on using a standard electronic structure code, such 
as PySCF20,21, where the eigensolver is replaced with the QAE15–17. The QAE generates quadratic unconstrained 
binary optimization (QUBO) problems, solvable by a D-Wave quantum annealer. To solve a large QUBO prob-
lem, the qbsolv software22 is used to iteratively minimize the QUBO function by decomposing it into smaller 
pieces, called subQUBOs, that fit on a quantum annealer. Since the qbsolv is a heuristic QUBO solver, the 
resulting solution to the QUBO problem is non-exact, which makes the whole procedure approximate as a 
consequence. All eigenvalue problems in this study are real-valued TDA eigenvalue problems, either TDHF or 
TDDFT type. The chosen exchange–correlation energy functional in the TDDFT calculations is B3LYP23–25. In 
what follows, we present the results for the TDDFT case only. The TDHF results are reported in the Supplemen-
tary Materials.

Excitation energy convergence with basis set.  Figure  1 shows the convergence of the excitation 
energy with basis set. In this study, the first three excitation energies of the hydrogen molecule were computed 
using 9 basis sets, from the smallest STO-3G with the TDA matrix size of 1 × 1 (for which the solution is trivial) 
to the largest aug-cc-pVQZ with the TDA matrix size of 91 × 91. Similar to previous work16, we use K = 10 
binary variables to represent one eigenvector element, which translates to a QUBO problem of size that ranges 
from 10 to 910 variables. The respective excitations to the singlet states ( S1 , S2 and S3 ) and the triplet states ( T1 , 
T2 and T3 ) are treated as two independent calculations. As can be seen in Fig. 1, the PySCF calculation that uti-
lizes the QAE and D-Wave 2000Q quantum annealer closely agrees with the result of the reference calculation, 
which was done using the unmodified PySCF code on a classical computer. The unmodified PySCF relies on the 
efficient Davidson algorithm to compute eigenvalues and eigenvectors.

The largest deviation of 1 eV is observed for the T3 excited state in the cc-pVDZ basis set. Such fluctuations 
are fortuitous and typically are caused by the heuristic nature of qbsolv16. Specifically for the QAE, which com-
putes the eigenpairs sequentially, the qbsolv error propagates and accumulates from small eigenvalues to large 
eigenvalues. As a result, the third excitation energy tends to be less accurate than the first and second excitation 
energies. All plotted energy errors are given relative to the rightmost reference calculation in the figure, i.e, in 
aug-cc-pVQZ basis. The internuclear distance between the two hydrogens were taken from the NIST database26, 
individually for each basis set.

Excitation energy of different molecular species.  The excitation energies of different molecular spe-
cies are given in Tables 1 and 2 for singlet and triplet states, respectively. The calculations include species with 
up to eight atoms, however, it should be possible to target even larger systems with the present method. The 
electronic structure theory is TDDFT where B3LYP functional is coupled with 6–31G basis set. The equilibrium 
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geometries were taken from the NIST database26. The resultant TDA matrix sizes are given in the second column 
of the table and we use K = 10 logical qubits to discretize eigenvector coefficients.

Similar to the basis set convergence study, we compare the calculations using the QAE and the D-Wave 2000Q 
to a reference calculation using the unmodified PySCF on a classical computer. The errors given in the last three 
columns of the tables tend to be very small for small molecules and tend to increase for larger molecules. This is 
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Figure 1.   Convergence of TDDFT excitation energies for the H2 molecule with respect to basis set. Singlet (a) 
and triplet (b) calculations are shown separately. The first three excitation energies are computed using PySCF 
with the QAE and D-Wave 2000Q (dashed red, green and blue curves) and using the unmodified PySCF (thin 
black curves). The energy error is given relative to the aug-cc-pVQZ reference calculation.

Table 1.   Singlet TDDFT excitation energies (eV). ∗Reference calculation on CPU using unmodified PySCF. †
PySCF was modified to use the QAE and D-Wave 2000Q. ‡Difference between the two types of calculation.

Molecule Mat. size

Reference
∗ QAE (D-Wave)† Error‡

S1 S2 S3 S1 S2 S3 S1 S2 S3

H2 3 15.157 28.645 43.090 15.157 28.645 42.975 0.000 0.000 − 0.115

H+

3
5 20.446 20.446 32.241 20.446 20.446 32.241 0.000 0.000 0.000

HF 30 9.857 9.857 15.405 9.860 9.862 15.420 0.003 0.005 0.015

BeH2 30 6.420 6.420 8.422 6.420 6.421 8.422 0.000 0.001 0.000

H2O 40 7.896 9.649 10.044 7.900 9.664 10.051 0.004 0.015 0.007

NH3 50 7.140 9.186 9.186 7.147 9.194 9.196 0.006 0.008 0.010

H2S 72 6.617 7.221 9.939 6.618 7.235 9.940 0.001 0.014 0.001

HOCl 143 3.472 4.708 6.321 3.482 4.731 6.345 0.010 0.024 0.024

C2H6 189 10.989 10.989 11.571 10.996 10.998 11.601 0.006 0.009 0.030

CH2Cl2 378 6.483 6.706 6.854 6.496 6.723 6.864 0.014 0.017 0.009
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expected because, in general, heuristic approaches work quite well for small problems and give an approximate 
result for large problems. Nevertheless, all errors are well below an accuracy of 0.2–0.3 eV, tentatively character-
izing performance of B3LYP model for real life molecular systems27,28. The largest deviation (0.24 eV) is observed 
for the T2 energy for CH2Cl2 , which we will examine in more detail in the “Discussion” section. Due to the 
heuristic nature of qbsolv, the errors are not deterministic and fluctuate from run to run.

One might notice that the third excitation energy of the hydrogen molecule for both singlets and triplets is 
non-monotonic with the excitation number. For instance, the error for the S3 state is large and negative while 
the matrix size is small, 3 × 3. From our experience, this seems to be a special case for the QAE. We find that the 
largest eigenvalue, computed using the QAE, always has an additional error, besides the accumulated error from 
smaller eigenvalues. This might be related to the fact that, at this point in the calculation, all eigenpairs except 
the last one were shifted outside of the dynamic range of the initial matrix and the last eigenpair sits “isolated”. 
Since we target three eigenvalues in the present study, the hydrogen case with its 3 × 3 matrix is the only case 
where the last (largest) eigenpair of the matrix needs to be calculated. In all other cases, the matrices are larger 
than 3 × 3 and the last eigenvalue is never computed. All errors are reasonable for those matrices.

Since QAE computes both eigenvalues (excitation energies) and eigenvectors (wave function expansion coef-
ficients), it becomes possible to compute different properties of electronic transitions. For example, Table 3 shows 
the computed transition dipole moments (TDMs) in atomic units for singlet states. These dipole moments are 
then used to compute the respective oscillator strengths, Table 4, which characterize the ability of absorption 
or emission of electromagnetic radiation in transitions between energy levels of a molecule. As can be seen, the 
PySCF code aided with the QAE and D-Wave 2000Q is capable of reproducing these properties quite accurately, 
at least for the molecular species studied. The triplet state TDMs and oscillator strength have not been computed, 
simply because those are strictly vanishing in the absence of spin-orbit coupling. Alpha and beta spin contribu-
tions cancel each other out for triplet states.

Excitation energy as a function of molecular geometry.  It is often necessary to know how the excited 
state energies or excitation energies vary with molecular geometry. Such data is the determining component in 

Table 2.   Triplet TDDFT excitation energies (eV). ∗Reference calculation on CPU using unmodified PySCF. †
PySCF was modified to use the QAE and D-Wave 2000Q. ‡Difference between the two types of calculation.

Molecule Mat. size

Reference
∗ QAE (D-Wave)† Error‡

T1 T2 T3 T1 T2 T3 T1 T2 T3

H2 3 10.978 23.129 36.199 10.978 23.129 36.131 0.000 0.000 −  0.068

H+

3
5 15.532 15.532 28.900 15.532 15.532 28.900 0.000 0.000 0.000

HF 30 9.104 9.104 12.250 9.106 9.110 12.255 0.001 0.005 0.006

BeH2 30 5.872 5.872 6.566 5.872 5.873 6.566 0.000 0.001 0.000

H2O 40 7.101 8.555 9.510 7.101 8.565 9.510 0.000 0.010 0.000

NH3 50 6.278 8.600 8.600 6.280 8.601 8.602 0.002 0.001 0.003

H2S 72 6.058 6.312 8.047 6.058 6.312 8.078 0.000 0.000 0.030

HOCl 143 2.356 3.516 5.358 2.372 3.546 5.469 0.016 0.030 0.111

C2H6 189 10.350 10.350 10.844 10.388 10.491 10.911 0.038 0.141 0.068

CH2Cl2 378 5.840 5.853 6.174 5.860 6.098 6.329 0.020 0.245 0.155

Table 3.   Singlet TDDFT transition dipole moments (au). ∗Reference calculation on CPU using unmodified 
PySCF. †PySCF was modified to use the QAE and D-Wave 2000Q. ‡Difference between the two types of 
calculation.

Molecule Mat. size

Reference
∗ QAE (D-Wave)† Error‡

S1 S2 S3 S1 S2 S3 S1 S2 S3

H2 3 1.974 0.000 0.133 1.974 0.000 0.207 0.000 0.000 0.073

H+

3
5 1.453 1.453 0.000 1.453 1.453 0.000 0.000 0.000 0.000

HF 30 0.038 0.038 1.030 0.038 0.037 1.027 0.000 −  0.001 −  0.004

BeH2 30 0.000 0.000 2.447 0.000 0.000 2.447 0.000 0.000 0.000

H2O 40 0.062 0.374 0.000 0.063 0.352 0.000 0.001 −  0.023 0.000

NH3 50 0.058 0.051 0.051 0.057 0.054 0.061 0.000 0.003 0.010

H2S 72 0.000 0.016 0.752 0.000 0.015 0.749 0.000 −  0.001 −  0.002

HOCl 143 0.004 0.037 0.024 0.003 0.029 0.031 −  0.001 −  0.009 0.006

C2H6 189 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CH2Cl2 378 0.009 0.221 0.000 0.011 0.236 0.000 0.002 0.015 0.000
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molecular dynamics studies that involve multiple electronic states. The method presented in this paper can be 
used out-of-the-box to compute excited state potential energy profiles29. Figure 2 shows the first three excita-
tion energies of ammonia ( NH3 ) as a function of the improper H-N-H-H dihedral angle. The geometry change 
represents the famous “umbrella” inversion of NH3 . The QAE+D-Wave computed excitation energies agree very 
well with the reference calculation on a classical computer, for both singlets and triplets. Importantly, the QAE 

Table 4.   Singlet TDDFT oscillator strengths (unitless). ∗Reference calculation on CPU using unmodified 
PySCF. †PySCF was modified to use the QAE and D-Wave 2000Q. ‡Difference between the two types of 
calculations.

Molecule Mat. size

Reference
∗ QAE (D-Wave)† Error‡

S1 S2 S3 S1 S2 S3 S1 S2 S3

H2 3 0.733 0.000 0.141 0.733 0.000 0.218 0.000 0.000 0.077

H+

3
5 0.728 0.728 0.000 0.728 0.728 0.000 0.000 0.000 0.000

HF 30 0.009 0.009 0.389 0.009 0.009 0.388 0.000 0.000 −  0.001

BeH2 30 0.000 0.000 0.505 0.000 0.000 0.505 0.000 0.000 0.000

H2O 40 0.012 0.089 0.000 0.012 0.083 0.000 0.000 −  0.005 0.000

NH3 50 0.010 0.011 0.011 0.010 0.012 0.014 0.000 0.001 0.002

H2S 72 0.000 0.003 0.183 0.000 0.003 0.182 0.000 0.000 −  0.001

HOCl 143 0.000 0.004 0.004 0.000 0.003 0.005 0.000 −  0.001 0.001

C2H6 189 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CH2Cl2 378 0.002 0.036 0.000 0.002 0.039 0.000 0.000 0.003 0.000
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Figure 2.   TDDFT excitation energies for the umbrella inversion of ammonia ( NH3 ). Singlet (a) and triplet 
(b) calculations are shown separately. The first three excitation energies are computed using the QAE and 
D-Wave 2000Q quantum annealer (dashed red, green and blue curves). The reference calculation is shown for 
comparison (thin black curves). The angle is the improper H-N-H-H dihedral angle.
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was capable of handling the almost degenerate pair of the second and third excited states along the whole angle 
range shown and all three resultant energy curves are very smooth.

CIS calculations.  All the TDDFT-TDA calculations presented in this study were also repeated with the 
TDHF-TDA (CIS) theory and are given in the Supplementary Material, Part 1. Supplemental Figures S1 and S2 
demonstrate the basis set convergence for the hydrogen molecule and excitation energies for ammonia inver-
sion, respectively. The excitation energies, TDMs and oscillator strengths of different molecular species are given 
in Supplemental Tables S1–S4.

Overall, we find that the method works for the CIS calculations too. However, the QAE (D-Wave) errors tend 
to be larger than those in the TDDFT calculations, sometimes by one to two orders of magnitude. For example, 
the S3 and T3 excitation energy errors for the last three molecules in Supplemental Tables S1 and S2 are about 2–3 
eV for the CIS case, which is an order of magnitude larger than the QAE errors in TDDFT calculations shown 
earlier, although the TDA matrix size is the same for both TDDFT and TDHF. Typically, a large error implies that 
the QAE has converged to the wrong excited state, which can be checked with a wave function overlap analysis, 
see “Discussion”. Also, the less accurate CIS result implies that the QAE (and potentially qbsolv and an annealer) 
is sensitive to the problem representation and the TDDFT B3LYP formalism seems to be more favorable for the 
QAE. The fluctuations in the third excitation energy of ammonia in Fig. S2 also indicate that the QAE struggles 
with closely degenerate states in the CIS case.

Purely classical solution of QUBOs.  While the main focus of the paper is to implement the time-
dependant SCF methods on a D-Wave quantum annealer, all of the presented calculations were also done in a 
purely classical mode, for debugging purposes primarily. In this mode, we still use PySCF, QAE and qbsolv, but 
all subQUBO problems are minimized classically on a CPU using the Tabu search. The latter is an efficient local 
search technique that discourages the search from coming back to previously-visited solutions30. The qbsolv uses 
this method by default. All of the results from the classical calculations are given in Part 2 of the Supplementary 
Material. There is not much difference between using a quantum annealer or Tabu search for subQUBOs, and 
we include the classical results for completeness only. Additionally, we find that the completely classical solution 
of QUBOs is much faster than the use of the D-Wave annealer for this task. In other words, there is no quantum 
advantage. The TDDFT calculations still appear to be much more accurate than CIS calculations.

Lastly, to demonstrate that all of the results are not unique and may fluctuate from run to run due to the 
heuristic nature of qbsolv, we performed 10 identical QAE calculations for the C2H6 molecule in the smallest 
STO-3G basis set (TDA matrix size 63x63). Tables S13 and S14 in the Part 3 of the Supplementary Materials 
show that the excitation energies change between runs. Averaging over all 10 runs gives the QAE errors 0.004, 
0.130 and 0.173 eV for the first three singlets and 0.022, 0.340 and 1.325 eV for the first three triplets. These are 
purely classical calculations, where subQUBOs were minimized classically on the CPU.

Discussion
Although the TDDFT energy errors reported in Tables 1 and 2 appear to be quite acceptable compared to a typi-
cal accuracy of TDDFT methods, there is at least one case which might require an additional investigation. This 
case is the triplet state calculation for the CH2Cl2 molecule. While the QAE error of the first excitation energy 
T1 is quite accurate, i.e., 0.02 eV, the errors of the second and third excitation energies are an order of magnitude 
larger, although still near the acceptable TDDFT accuracy of 0.2 eV.

To investigate this sudden increase in the QAE error, we examined the computed eigenvectors, i.e., wave 
function expansion coefficients (Kohn–Sham wavefunction in the case of DFT). To quantify the degree of simi-
larity between the eigenvectors computed using the QAE on the D-Wave and eigenvectors from the reference 
calculation, we calculated the overlaps, see Table 5. In the table, the first five excitation energies from the reference 
calculation and the first three QAE excitation energies are given in the first two rows. The third row shows the 
overlaps between the QAE and reference eigenvectors for T1 , T2 and T3 . It should be noted that, technically, the 
maximum overlap for the TDDFT wave functions is 0.5, because there are two types of electrons in the theory, 
alpha (spin up) and beta (spin down) electrons31. In the present analysis, we multiply all overlaps by the factor of 
2 for convenience, so that the maximum (ideal) overlap is one. One can see that the QAE T1 state has converged 
correctly, since the overlap 0.997 is very close to one. In contrast, the QAE T2 state shows much less similarity 
with the reference T2 eigenvector, whereas QAE T3 is completely incorrect and has zero overlap with the reference 
T3 . In order to determine what states the QAE has converged to, we calculated the overlaps between the QAE 
T2 state and all five states from the reference calculation and then did the same for T3 , see the fourth and fifth 

Table 5.   Overlap analysis for triplet states of CH2Cl2. ∗See text for the description of overlaps.

T1 T2 T3 T4 T5

Ref. energy (eV) 5.840 5.853 6.174 6.312 7.280

QAE energy (eV) 5.860 6.098 6.329 – –

Overlaps∗ 0.997 0.641 0.000 – –

QAE T2 overlap∗ 0.043 0.641 0.370 0.001 0.001

QAE T3 overlap∗ 0.000 0.001 0.000 0.999 0.015
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rows in the table. We find that the QAE T2 state bears some similarity with both T2 and T3 from the reference 
calculation, the overlap values being 0.641 and 0.370, respectively, whereas the QAE T3 state ended up being 
the T4 state, with the overlap of 0.999. The QAE excitation energies also confirm this observation: the QAE T2 
energy of 6.098 eV is between the T2 and T3 reference energies, 5.853 eV and 6.174 eV, respectively, whereas the 
QAE T3 energy of 6.329 eV is very close to the T4 reference energy of 6.312 eV. The overlap analysis shows that 
the QAE + qbsolv method may not be able to resolve some of the states, especially when closely degenerate states 
are present in a particular molecular system. This is not too surprising, because degeneracy may occasionally 
raise a problem for classical iterative eigensolvers as well.

As it was mentioned earlier, the TDDFT errors are smaller than the CIS errors. The relative TDDFT errors are 
all within 3.5%, whereas CIS relative errors may reach 63% (e.g., the T3 state of the HOCl molecule). The latter 
is typically a result of the convergence to an incorrect (higher-lying) state as explained previously. To get some 
insight, we plotted the distribution of the excitation matrix elements for TDDFT and CIS, Figs. S7 and S8 in the 
Supplementary Materials, for HOCl and CH2Cl2 , respectively. The two theories give very similar distributions 
and it is difficult to say what is the main reason behind the TDDFT vs CIS error difference. However, the largest 
matrix elements of TDDFT tend to be smaller than those of CIS, which implies a narrower dynamic range and 
a slightly higher sensitivity to small values in the matrix, leading to more accurate eigenvalues for the TDDFT.

There are several ways to improve the method and many of them have been discussed previously15–17,32,33. 
For example, by replacing the open-source qbsolv22 with the Qatalyst QUBO solver (previously known as Mukai 
QUBO solver) one can reduce the QAE errors by one to two orders of magnitude18. In the present work, we have 
already improved the choice of the shift in the QAE that is used to compute several eigenvalues, see “Materials 
and methods” section.

Another important aspect is the initial guess for the QAE. Choosing a better guess might help decrease the 
QAE errors and reduce the chance for missing states in the case of degeneracies. For classical iterative eigensolv-
ers, it was shown that the quality of the initial guess for the excitation vector transition density matrix is critical 
for improved convergence and stability31. Unfortunately, it is not possible to specify the initial guess for the QAE 
right now, simply because the underlying qbsolv does not support user-specified inputs and generates guesses 
randomly. Besides the initial guess, the method can also be enhanced by using of subspace iterative techniques, 
such as the Davidson algorithm. With the subspace construction, the matrices that need to be solved for eigen-
values are expected to be smaller, which may improve the accuracy of the whole procedure as a consequence.

Conclusion
In this work, the time-dependent electronic structure methods for calculating electronically excited states have 
been implemented on modern D-Wave quantum annealers by replacing the eigensolver. The approach relies 
on using the Quantum Annealer Eigensolver (QAE) to convert the time-dependent Hartree–Fock (TDHF) and 
time-dependent density-functional theory (TDDFT) eigenvalue problems to quadratic unconstrained binary 
optimization (QUBO) problems, solvable by D-Wave quantum annealers. The auxiliary software qbsolv22 is 
used to solve large QUBO problems, that do not fit on D-Wave quantum annealers. We show that the proposed 
method is capable of reproducing the results of classical (reference) calculations, which include the basis set 
convergence of excitation energies of the hydrogen molecule, the excitation energies of different molecular species 
up to eight atoms and excited state potential energy surfaces for the example of umbrella inversion of ammonia. 
All QAE excitation energy errors are less than or about 0.2 eV for the TDDFT calculations, which is an accept-
able accuracy of the TDDFT method in general. In contrast, we find that the TDHF(CIS) + QAE errors tend to 
be one to two orders of magnitude larger than TDDFT+QAE errors. In future work, a more robust treatment 
of degenerate states is needed which should include an option to specify the initial guess for both the QAE and 
the qbsolv. Thus, we hope the results of this work will encourage researchers to develop qbsolv or similar solvers 
with the possibility to specify the initial guess in lieu of a random one.

As mentioned earlier, the current approach is not exact, primarily due to the fact that the qbsolv is not an exact 
QUBO solver. Also, there is no quantum advantage, because the calculations involving the QPU are an order of 
magnitude slower than the classical solution of QUBO problems on the CPU and orders of magnitude slower 
than the classical diagonalization on the CPU. The QAE still scales exponentially with the number of degrees of 
freedom, as it was developed specifically for annealers with σz operators only and is matrix based. We refer the 
reader to Section “Algorithm Scaling” in the vibrational QAE paper15, where we performed the analysis of the 
QAE computational times as a function of the number of qubits and problem dimensionality.

However, one might have an advantage regarding the scaling in the future when adiabatic quantum comput-
ers become available. The full support of all σ operators, products of them and improved connectivity will allow 
efficient one-to-one mappings between molecular orbitals and qubits, similar to gate-based quantum computers. 
More direct and potentially more accurate techniques could then be utilized to estimate the energy gaps of the 
target (electronic) Hamiltonians34,35. In the meantime, we need to develop the software base and explore perfor-
mance of existing algorithms/hardware to cases of interest even though we cannot achieve quantum advantage 
at the present time.

Materials and methods
Electronic structure code.  The electronic structure code of choice is PySCF20,21, because it is written in 
Python (same as the D-Wave client software) and is relatively easy to modify. As such, we added a switch to 
choose either the Davidson eigensolver, used by default in PySCF, or the QAE. Since the QAE is a matrix-based 
algorithm, i.e. it takes a matrix on input, a bootstrapping code was added to the electronic structure code where 
a TDA matrix is explicitly constructed using the PySCF’s matrix-vector function and the standard basis (also 
called natural basis), where all vector coordinates are zero, except one that equals 1. Both eigensolvers compute 
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a few smallest eigenvalues, or excitation energies, and associated eigenvectors, which are later used in the cal-
culation of transition dipole moments and oscillator strengths. All reference calculations are performed with 
an unmodified PySCF with the default Davidson eigensolver. The details about TDA implementations can be 
found elsewhere7–9. The efficient classical algorithms for both RPA and TDA are analyzed and benchmarked in 
the relevant literature31.

Quantum Annealer Eigensolver.  A few lowest eigenvalues and eigenvectors of a TDA matrix are com-
puted using the Quantum Annealer Eigensolver (QAE)15–17. The QAE represents an eigenvalue problem with 
a number of quadratic unconstrained binary optimization (QUBO) problems, which are solved on a D-Wave 
quantum annealer. The QUBO problem is a problem of minimizing a quadratic polynomial E(x) over binary 
variables xi . The polynomial is given by

where Q is a matrix of coefficients and the vector x is a binary string. The xopt which minimizes E(x) is the solu-
tion to the QUBO.

To find the smallest eigenvalue, the QAE searches for the minimum of the Rayleigh–Ritz quotient (RRQ)

where A is a given matrix and v is an arbitrary vector. For the normalized v , the quotient is RA(v) = v∗Av and 
the matrix A can be mapped to the QUBO matrix Q by representing elements of v using binary variables x . An 
additional term responsible for the vector normalization v∗v is added to the QUBO, giving the final objective 
function

The strength of the second term, i.e., vector normalization penalty � , balances two components, the energy 
and the norm, and is not known a priori. In the QAE, the penalty � is found iteratively which necessitates solu-
tion of multiple QUBO problems.

To obtain several eigenpairs, the previously calculated ones are simply shifted higher in the eigenspectrum 
and the procedure is repeated. A few of the smallest eigenvalues of the TDA matrix are the sought-for excitation 
energies. Since the resulting QUBO problems are an order of magnitude larger than the fully-connected graph of 
qubits on a D-Wave quantum annealer, qbsolv22 is utilized to decompose the problem into smaller subQUBOs. 
The convergence of the eigenvalues with respect to the number of qubits used to represent an eigenvector ele-
ment was thoroughly studied in the previous paper for different matrix sizes16. Thus, the number of qubits used 
in the present work is the same, K = 10 . Since an eigenvector element is represented as a linear combination of 
K qubits, the expectation values of quantum-mechanical operators, such as the Hamiltonian or dipole moment 
operator, converge quadratically with K. The reader is encouraged to familiarize themselves with more details 
about the QAE algorithm in the “Materials and methods” section of a recent QAE paper16.

The only change to the QAE algorithm in the present work is the implementation of the Gershgorin circle 
theorem to obtain the upper bound on the difference between the largest and the smallest eigenvalues of a matrix. 
The dynamic range estimate is then used to shift previously computed eigenpairs higher in the eigenspectrum 
in order to compute the next eigenpairs. We believe that the new shift is more universal and accurate than the 
manually-scaled difference between the maximum and minimum elements of a given matrix, used previously.

D‑Wave quantum annealer.  LANL’s D-Wave 2000Q was used in all hardware-mode calculations. The 
reader is referred to “Materials and methods” section of a recent QAE paper16 for details about using this particu-
lar system. The only procedural change in this work is that the minor-embedding is now computed in advance 
and is reused for the minimization of all subQUBOs. This change reduced the total computational time signifi-
cantly.

Data availability
The data used to support the findings of this study are included within the article.
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