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SATB1 collaborates with loss of p16 in cellular transformation
R Agrelo1,2, H Kishimoto2,3,4, M Novatchkova2, V Peraza1, M Paolino2, A Souabni2 and A Wutz2,4,5

Tumor progression is associated with invasiveness and metastatic potential. The special AT-rich binding protein 1 (SATB1) has been
identified as a key factor in the progression of breast cancer cells to a malignant phenotype and is associated with progression of
human tumors. In normal development, SATB1 coordinates gene expression of progenitor cells by functioning as a genome
organizer. In contrast to progenitor and tumor cells, SATB1 expression in nontransformed cells is not compatible with proliferation.
Here we show that SATB1 expression in mouse embryonic fibroblasts induces cell cycle arrest and senescence that is associated
with elevated p16 protein levels. Deletion of p16 overcomes the SATB1-induced senescence. We further provide evidence for an
interaction of SATB1 with the retinoblastoma (RB)/E2F pathway downstream of p16. A combined deletion of the RB proteins,
RB, p107 and p130 (triple-mutant; TM), prevents SATB1-induced G1 arrest, which is restored upon the reintroduction of RB
into SATB1-expressing TM fibroblasts. SATB1 interacts with the E2F/RB complex and regulates the cyclin E promoter in an
E2F-dependent manner. These findings demonstrate that p16 and the RB/E2F pathway are critical for SATB1-induced cell cycle
arrest. In the absence of p16, SATB1 causes anchorage-independent growth and invasive phenotype in fibroblasts. Our data
illustrate that p16 mutations collaborate with the oncogenic activity of SATB1. Consistent with our finding, a literature survey shows
that deletion of p16 is generally associated with SATB1 expressing human cell lines and tumors.
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INTRODUCTION
The special AT-rich binding protein 1 (SATB1) interacts with AT-rich
sequences and facilitates the organization of chromatin.1,2 SATB1 is
required for the coordinate regulation of gene expression in
T-lymphocyte development.3 Mutation of SATB1 in mice leads to
misregulation of a large number of T-cell-specific genes and causes
defects in the thymocyte development. In addition, roles in stem cell
proliferation and differentiation have been proposed.4,5 In T cells
SATB1 shows ring-like nuclear distribution surrounding hetero-
chromatic regions,6 whereby SATB1-bound sequences overlap the
base of chromatin loops.6,7 It is thought that SATB1 contributes to
the regulation of gene clusters by organization of chromatin
conformation.6 A topological function in gene regulation is
consistent with recent observations that SATB1 contributes to
chromosome-wide gene repression during X inactivation.8

SATB1 interacts with chromatin-modifying complexes and
regulates histone modifications and nucleosome positioning
over large regions.7,9 Furthermore, SATB1 itself is subject to
post-translational modifications that influence its activity.10–12

Phosphorylation-dependent interaction of SATB1 and PIAS1
directs SUMO-regulated caspase cleavage of SATB1.12 An
acetylation-dependent interaction with C-terminal-binding
protein 1 has also been implicated in the gene repression
mechanism of SATB1.11 In T helper type-2 cell development,
SATB1 interacts with b-catenin to activate cell type-specific target
genes in a WNT-dependent manner.13 Foxp3 has recently been
shown to repress SATB1 during the development of regulatory
T cells.14 Release of SATB1 repression causes a loss of regulatory

T-cell identity and induces an effector T-cell program.14 SATB1 is
further expressed in the basal cells of the epidermis where it is
regulated by p63.15 Mutation of SATB1 causes gene expression
changes in skin progenitor cells and impaired epidermal
morphology.15 These findings show that SATB1 regulates cell
type-specific gene expression in development.

SATB1 is associated with highly metastatic breast cancer.16

SATB1 expression in breast epithelial cell lines has been shown
to induce a tumor-like expression profile and a malignant
phenotype.16 This observation has led to the proposal that
SATB1 expression outside its normal developmental context
can reprogram cancer cells to a highly metastatic phenotype.
SATB1 expression is also associated with other human tumors
including rectal cancer and cutaneous malignant melanoma.17–21

Recently, the tumor suppressor FOXP3 has been shown to
function at least in part by repressing SATB1 in breast and
prostate epithelia.22 Conversely, interference with the chromatin
association of SATB1 by pharmacological inhibition has been
proposed as a potential therapeutic strategy. Initial result suggests
a potential for reducing invasive and metastatic characteristics of
certain human breast cancer cells.23 An independent prognostic
value of SATB1 expression for breast cancer is currently
debated.24–26 These findings suggest that SATB1 is a regulator
of tumor progression and metastatic potential. The effect of SATB1
expression in normal pretumorigenic cells has remained largely
unclear. Here, we study the ability of SATB1 to induce cellular
transformation and demonstrate the impact of key cell cycle-
related pathways.
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RESULTS
SATB1 expression induces senescence in MEFs
To understand the effects of SATB1 expression in cells better, we
have used mouse embryonic fibroblasts (MEFs) as a tractable
model for cellular transformation. We infected primary MEFs with
viral vectors for SATB1 expression (pBABE-GFP-SATB1) or a control
empty vector (pBABE-GFP-EV) and selected stable virus integra-
tions with puromycin. Numerous colonies emerged in control
but not in SATB1 virus-infected cultures. Only in one out of ten
experiments, three colonies were recovered that expressed
minute amounts of SATB1. As primary MEFs are limited to a
certain passage in culture, we continued with MEFs that were
immortalized but not transformed, using the 3T3 protocol. After
infection and puromycin selection for 7 days, highly expressing
clones were isolated using an internal ribosomal entry site-linked
green fluorescent protein (GFP) marker. MEFs expressing SATB1
grew markedly slower than controls (Figure 1a), stained positive
for b-galactosidase activity and had a flat morphology (Figures 1b
and c), indicating a large fraction of SATB1-expressing cells
displayed signs of senescence. Consistent with this, we observed a
large G1/G0 and a diminished S/G2 population (Figure 1d). These
findings suggested that cell cycle exit was the reason for our
unsuccessful attempts of SATB1 expression in MEFs.

Immortalization of MEFs correlates with acquired mutations
in growth control genes including the p53 or retinoblastoma
(RB) pathways.27,28 To characterize expression changes in SATB1-
infected immortalized MEFs, we performed western analysis
(Figure 1e). Whereas p53 and p27 protein levels were unchanged
from controls, a strong increase in p16 and the RB-family protein
p130 was clearly evident in SATB1-expressing cells. Increased p130
expression has previously been implicated in growth arrest.29,30

Furthermore, we observed a reduction of E2F1 and increase of
cyclin D2, which is also consistent with entry into senescence.31,32

Thus, SATB1 expression led to an increased expression of p16 and
changes in RB-family proteins whereas p53 was unchanged.

Genetic requirements for SATB1-induced senescence
p16 is a crucial factor for induction of senescence and
can be activated through oncogenic signals.31,33,34 We therefore
investigated whether a mutation of p16 could overcome the
SATB1-induced proliferation arrest. We infected p16-deficient
(p16� /� ) primary MEFs with SATB1 virus. In contrast to
wild-type MEFs, SATB1 expression did not cause growth
inhibition in p16� /� MEFs. Proliferation was comparable
between SATB1- and control virus-infected p16� /� MEFs
(Figure 2a), and no change in senescence markers (Figures 2b
and c) or cell cycle distribution (Figure 2d) was observed. Western
analysis showed only minor changes, following SATB1 expression
in p16� /� MEFs (Figure 2e). The observation that in the absence
of p16 SATB1 expression was tolerated is consistent with the idea
that SATB1 overexpression is not toxic, but triggers cell cycle arrest
in wild-type MEFs.

We next tested a potential involvement of the p53 pathway in
SATB1-induced senescence. For this we expressed SATB1 in MEFs
isolated from p53� /� mice. These MEFs are immortal and
do not enter crisis in culture. Infection of primary p53� /� MEFs
with SATB1 virus yielded SATB1-expressing colonies, albeit, at a
reduced rate compared with control virus-infected cultures
(Supplementary Figure 1, and data not shown). SATB1-expressing
p53� /� MEFs showed reduced proliferation (Supplementary
Figure 1a), increased b-galactosidase activity (Supplementary
Figures 1b and c) and a relative increase of G0/G1 and G2/M
populations at the expense of S-phase cells (Supplementary
Figure 1d). Western analysis detected increased expression of
p16 and p130 compared with empty vector-infected controls
(Supplementary Figure 1e). In addition, we noticed a decrease in
p27 and a reduction of E2F1 expression. These observations
indicate that deletion of p53 did not prevent SATB1-induced G1
arrest in MEFs to the same extent as deletion of p16.

A critical downstream target of p16 is the RB pathway. We
therefore investigated the effect of SATB1 expression in primary
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Figure 1. SATB1 induces senescence in MEFs. (a) Cumulative cell numbers of SATB1 virus (red) and empty vector-infected MEFs (black) are
plotted. (b) Percentage of senescent cells identified by b-galactosidase staining in SATB1-infected (red) compared with control-infected
cultures (black). (c) Representative images of SATB1 and control-infected MEFs. SATB1-expressing MEFs show a characteristic flat morphology
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MEFs isolated from RB� /� mice. Similar to our experiments in
wild-type MEFs, we did not obtain colonies after infection
with SATB1 expression virus and puromycin selection. SATB1
expression in immortalized RB� /� MEFs reduced growth
(Supplementary Figure 2a), increased senescence markers
(Supplementary Figures 2b and c) and led to an increase in G1
and decrease in S/G2 cells (Supplementary Figure 2d). Western
analysis showed a marked increase of p16, cyclin D2 and p130, as
well as a reduction in E2F1 and p27 (Supplementary Figure 2e).
The majority of these cells showed SATB1 expression
(Supplementary Figure 2f). These results suggested that loss of
RB was not sufficient to overcome an SATB1-induced cell cycle exit
(Supplementary Figure 2g).

To address whether other members of the RB family
compensate for the loss of RB, we investigated the effect of
SATB1 expression in MEFs isolated from RB� /� p107� /�
p130� /� triple-mutant (TM) mice. TM MEFs have the character-
istic of being immortal because of complete loss of the RB
pathway. SATB1-infected TM MEFs grew slower than control
empty vector-infected TM MEFs (Figure 3a). Cell cycle analysis
showed that SATB1 led to a large increase in G2/M cells
(Figure 3b). We did not detect changes in b-galactosidase activity
but a high fraction of apoptotic cells in SATB1-expressing cultures
using terminal deoxynucleotidyl transferase dUTP nick-end label-
ing analysis (Figures 3c and d). These observations are consistent
with a previously reported G2/M arrest of TM MEFs in response to
cytostatic signals.35 We further detected increased number of
g-H2AX foci indicative of DNA damage in SATB1-expressing TM
MEFs compared with control cells (Figures 3i and j), suggesting
that disruption of G1 cell cycle control has led to genomic
damage. Western analysis further showed that SATB1 expression
led to increased p16 and E2F1 protein levels independent of
RB-family proteins (Figure 3g).

In order to establish that these changes were indeed attributable
to loss of the RB pathway, we restored RB function using a viral
vector in SATB1-expressing TM MEFs. SATB1-expressing TM MEFs

infected with RB virus had a markedly higher fraction of senescent
cells compared with TM MEFs without SATB1 (Figure 3e). Impor-
tantly, the G2/M arrest in SATB1-expressing TM MEFs was rescued
after RB expression, and a pronounced G0/G1 population was
observed (Figure 3f). Expression of SATB1 and RB was observed by
immunofluorescence analysis and western analysis (Figure 3h).
Taken together, these observations demonstrate that restoration of
RB function was sufficient for SATB1-induced G0/G1 arrest and
senescence in TM MEFs, indicating a critical role for p16 and the RB
pathways in SATB1-induced cell cycle exit.

SATB1 interacts with RB/E2F1 complexes in gene regulation
To further investigate SATB1 expression and RB/E2F complexes,
we performed immunofluorescence analysis on a panel of human
cell lines that have previously been reported to express SATB1.
These included MRC-5 embryonic lung human fibroblasts, the
Jurkat acute T-cell leukemia cell line and the K562 erythroleukemia
cell line. In all these cells RB and other RB-family proteins were
expressed. In some of the cells characteristic nuclear patterns were
observed whereby significant overlap with SATB1 was evident
(Supplementary Figure 3a–e). To investigate a potential biochem-
ical interaction further, we expressed human influenza haemag-
glutinin(HA)--tagged RB (RB-HA) and 3� Flag-tagged SATB1 in
Hela cells and human embryonic kidney HEK-293T cells (Figures 4a
and b, and Supplementary Figure 3f). Both RB-HA and E2F1-HA
were immunoprecipitated by Flag-tagged SATB1 (Figures 4a and
b). The reciprocal interactions were also detected with HA-tagged
E2F1 and RB, showing that SATB1 can interact with RB/E2F1
complexes.

We further investigated a series of previously characterized RB
mutations that differ in their ability to form complexes with
E2F1.36 We observed an interaction between SATB1- and
RB-derived proteins that can bind to E2F1 (D685 and D657), but
not with RB mutants (D663 or D651) that form an unstable
complex with E2F1 (Figures 4c and d). Therefore, the interaction of
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SATB1 and RB appeared to depend on the formation of an
RB/E2F1 complex. Lastly, we investigated whether an interaction
between SATB1 and E2F1 could be observed independent of RB.
For this we used mouse embryonic stem cells in which the
interaction between E2F1 and RB is eliminated by constitutive
hyperphosphorylation of RB,37,38 and SATB1 is expressed.5,8

Immunoprecipitation with antisera to E2F1 co-precipitated
endogenous SATB1 in embryonic stem cell extracts (Figure 4e).
Conversely, E2F1 was co-immunoprecipitated by the SATB1
antiserum (Figure 4e). These data indicate that endogenous
SATB1 can interact with E2F1, independent of RB in mouse
embryonic stem cells. We were not able to detect an interaction
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between SATB1 and E2F1 in immunoprecipitates from
p16-deficient SATB1-expressing MEFs despite repeated attempts,
which is likely attributable to the lower amount of E2F1 and SATB1
protein in these cells.

To further investigate the relevance of an interaction between
SATB1 and E2F1 for gene expression, we examined the cyclin E
promoter that is a well-established E2F1 target. For this we used
constructs containing a luciferase reporter under the control of
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either the wild-type cyclin E promoter or a mutated control, in
which the E2F-binding sites were removed.39 Co-transfection of
SATB1 increased transcriptional activity of the wild-type cyclin E
promoter 10-fold in HeLa cells (Figure 4f). In contrast, SATB1 had
no effect when the E2F-binding sites were mutated (Figure 4f).
Activation of the cyclin E promoter was also found in SATB1-
expressing TM MEFs (Figure 4g). Importantly, SATB1 expression
resulted in a 3.5-fold reduction in transcriptional activity of the
wild-type cyclin E promoter in TM MEFs after restoration of RB
expression, but SATB1 had no effect on the cylcin E promoter
when the E2F sites were mutated (Figure 4g). These findings
suggest that SATB1 orchestrates gene expression changes in
combination with E2F on target genes.

SATB1 induces anchorage-independent growth and
transformation in p16� /� MEFs
We next investigated the phenotype of SATB1-expressing cells.
For this we performed in vitro assays for cellular transformation
using p16-deficient MEFs that either virally express SATB1 or
controls that were infected by empty vector. SATB1-expressing
p16� /� MEFs formed colonies in soft agar whereas no
colonies were detected in controls (Figure 5a). This observation
indicates that SATB1 expression induced the capacity of
anchorage-independent growth of p16� /� MEFs. To further
assess migratory properties, we measured directed migration into
an artificial ‘wound’ that was made in a confluent monolayer
culture. SATB1 expression significantly enhanced migration and

wound closure after 12 h in p16� /� MEFs (Figure 5b). Increased
cell motility is further consistent with the observation of actin
reorganization and an increase in focal adhesions in SATB1-
expressing cells (Figure 5c). For investigating invasiveness, we
performed BD Matrigel Invasion Chamber assays (BD Biosciences,
San Jose, CA, USA). These chambers consist of a membrane with
8-mm pores that is coated with a 30-mm layer of extracellular
matrix. SATB1 expression led to a fivefold increase in the number
of cells that migrate through this matrix layer, indicating that
SATB1 elicited invasive properties in this assay (Figure 5d). Taken
together, our results demonstrate that in the absence of p16
SATB1 leads to transformation and induces motility and invasive-
ness in MEFs, consistent with finding in human tumors.

DISCUSSION
Our study establishes an in vitro model for investigating the role of
SATB1 in tumorigenesis. We find that untransformed cells arrest
upon heterologous SATB1 expression. In contrast, p16-deficient
cells are reprogrammed by SATB1 expression to a motile and
invasive phenotype. This finding suggests that SATB1 can have
a differential effect on cell proliferation. Our observations of
anchorage-independent growth potential further support the idea
that SATB1 has transforming potential. This is consistent with the
observed role of SATB1 in tumor progression. Our study also
indicates that SATB1 interacts with E2F in regulating the cyclin E
promoter. This finding might explain some of the gene expression
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Figure 5. SATB1 expression leads to transformation in the absence of p16. (a) SATB1-expressing p16� /� MEFs form colonies in soft agar in
p16� /� MEFS. The number of colonies per well were counted and plotted. Error bars represent s.d. (n¼ 9; **Po0.01). (b) Wounding assay of
confluent cell layers of SATB1-expressing and control p16� /� MEFs. The number of cells that migrated into a delimited wound area after
12 h is plotted. Cells in three defined area per group per experiment were quantified in three independent experiments with three technical
replications (*Po0.05). (c) Representative image of phalloidin stained cells showing actin cytoskeleton reorganization in SATB1-expressing
p16� /� MEFs. Focal adhesion site is indicated by arrow. Scale bars represents 10 mm. (d) Quantification of Matrigel chamber migration
assay of SATB1-expressing and control p16� /� MEFs. Error bars represent s.d. (n¼ 9). Statistical significance was assessed by the Student’s
t-test; **Po0.01.
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changes and alterations of cellular phenotype associated with
SATB1 expression. Our results in TM MEFs suggest that SATB1 can
activate gene expression in the absence of RB but represses the
cyclin E promoter when RB expression is restored. In the absence
of RB-family proteins SATB1 induces a G2/M arrest and apoptosis.
We also find an increased number of g-H2AX foci associated with
the G2/M arrest of SATB1-expressing TM MEFs. This suggests that
SATB1 induces an uncontrolled entry into cell division, when the
G1 checkpoint is compromised, leading to genomic damage and
apoptosis.

p16 appears to be a major gatekeeper of transformation in our
study. We find upregulation of p16 upon SATB1 expression is
independent of the RB family of proteins and of p53 and, thus,
could be a direct consequence of SATB1 expression. In the
absence of p16 SATB1 and E2F might cooperate to promote
growth and invasiveness. This raises the question whether p16
mutations are more generally associated with SATB1 expression in
human cell lines. Human cell lines that express SATB1, including
K562 human erythroleukemia cells, Jurkat T cells, MRC-5 and WI-38
fibroblasts, show either very low expression of p16 or a loss of p16
due to a homozygous mutation. Re-expression of p16 in K562 and
Jurkat cells has been shown to induce a growth arrest.40

Importantly, the SATB1-expressing Hs-578T and MDA-MB-231
breast cancer cell lines carry homozygous deletions of p16,16 and
restoration of p16 expression in MDA-MB-231 breast cancer cells
leads to growth arrest.41 These findings show that p16 deletions
are frequently associated with SATB1 expression in human cells
and tumors. We have, thus far, not been able to identify a cell
line that expresses SATB1 and has intact p16 expression from the
literature. Thus, genetic loss of p16 might be a contributing factor
for transformation by SATB1.

An interesting result is that the deletion of p16 and of the RB
family of proteins does not lead to equivalent outcomes after
SATB1 expression. Residual activity of RB proteins in p16-deficient
MEFs or additional functions of p16 might explain the observed
differences.

A recent report has also observed a differential response of
several human breast cancer cell lines to SATB1 expression, further
supporting the idea that the genetic makeup of cells critically
determines SATB1 function.42 Our results suggest that the
intersection of SATB1 with the p16 and RB/E2F pathways is an
important aspect of the progression of SATB1-positive cancers.
Considering the p16 status of SATB1 positive tumors could have
potential implication for diagnosis and therapy.

MATERIALS AND METHODS
Cell culture and transfections
K562, WI-38, MRC-5, HEK-293T and Jurkat were obtained from American
Type Culture Collection (ATCC), Manassas, VA, USA, and cultured as
recommended. MEFs were cultured and immortalized as described
previously.8 p16� /� MEFS and matched controls were kindly provided
by Hartmut Beug (Institute of Molecular Pathology (IMP), Vienna). TM
(p105� /� p107� /� p130� /� ) MEFs, RB� /� MEFs and matched
controls were kindly provided by Roland Foisner (Max F Perutz
Laboratories (MFPL), Vienna, Austria) with permission from Tyler Jacks
(Massachusetts Institute of Technology, USA). p53� /� MEFs and
matched controls were derived from p53-deficient embryos.

Senescence and apoptosis analysis
b-gal staining was performed using the Senescence b-Galactosidase
Staining Kit (Number 9860, Cell Signaling Technology, Danvers, MA, USA).
Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was
performed using the in situ cell death detection kit (Roche Diagnostics,
Mannheim, Germany).

Detection of DNA damage by g-H2AX staining
Samples were stained with primary mouse monoclonal anti-g-H2AX
antibody H2A.X (phospho S139; ab2893, Abcam, Cambridge, UK), followed

by secondary Alexa-488-conjugated anti-mouse IgG (Molecular Probes,
Eugene, OR, USA). Nuclei were counterstained with DAPI (4,6-diamidino-2-
phenylindole-dihydrochroride). Three independent experiments (n1¼ 3),
with three replications per experiment (n2¼ 9) were performed. Three
hundred nuclei were counted per experiment. All P-values were
determined by the Student’s t-test.

Cloning and plasmids
Plasmids pSG5L HA RB (379-928), 496 pSG5L HA RB D651 (NAAIRS), 498
pSG5L HA RB D663 (NAAIRS), 500 pSG5L HA RB D685 (NAAIRS), 408 pSG5L
HA E2F1, pSG5L HA RB, 432 pSG5L HA RB D657 were as published.36 PSGL5
was used as control. SATB1 (IRAUp969H0715D cDNA Clone (Imagenes,
Berlin, Germany) was cloned into the pBabe-puro-internal ribosomal entry
site-enhanced GFP vector. GFP-RB-FL was previously published,43 and
pCMV10-3XFLAG-SATB1 was a gift from Sanjeev Galande (Indian Institute
of Science Education and Research, Pune, India).

Transfections, western blotting and immunoprecipitation
Total cell extracts were prepared with radioimmunoprecipitation assay
buffer.44 Nuclear cell extracts and western blots were performed as
described.44 Antibodies were used as follows: p16 1:300 (p16(C-20), rabbit
anti-p16, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), cyclin D2
(cyclin D2 (M20), rabbit anti-cyclin D2, Santa Cruz), cyclin D3 1:1000 (cyclin
D3 (C16), rabbit anti-cyclin D3, Santa Cruz), cyclin E 1:1000 (cyclin E (M20)
rabbit anti-cyclin E, Santa Cruz), p27 1:300 (p27 (C-19), rabbit anti-p27,
Santa Cruz), p53 1:500 (ab2433, rabbit anti-p53, Abcam), anti-SATB1
1:2000,2 E2F1 1:1000 (rabbit anti-E2F1 (H-137); Santa Cruz), RB 1:1000
(rabbit anti-RB (C-15), Santa Cruz), RB (phospho S608) antibody 1:1000
(ab60025, rabbit anti-RB (phospho S608; Abcam), p107 1:500 (rabbit anti-
p107 (C-18), Santa Cruz), p130 1:500 (rabbit anti-p130 (C-20), Santa Cruz).

For immunoprecipitation experiments HEK-293T cells were transfected
using Effectene (Qiagen, Hilden, Germany), with either PCMV10-3X Flag-
SATB1 and PSG5L HA RB or PCMV10-3X Flag-SATB1 and PCMV3-HA-E2F1.
Cells transfected with PCMV10-3XFLAG-SATB1 and PCMV3-HA were used
as a control. For analyzing RB mutants, transfections with PCMV10-3X Flag-
SATB1 and mutants described above36 were performed. Total cell extracts
were prepared using radioimmunoprecipitation assay buffer 72 h after
transfection. HA-immunoprecitations were performed using the
Mammalian HA Tag IP/Co-IP Kit (Pierce-Thermo Scientific, Rockford, IL,
USA). FLAG immunoprecipitation was performed using A/G beads (SC
2003, Santa Cruz). Precipitates were analyzed by western blot using
HA 1:1000 and FLAG 1:1000 antibodies (kindly provided by Jan Michael
Peters, IMP, Vienna). Embryonic stem whole cell extracts were
immunoprecipitated with A/G beads (SC 2003, Santa Cruz) using 1–2mg
SATB1 antibody (ab70004, rabbit anti-SATB1, Abcam) per 100–500 mg of
total protein and 1–2 mg E2F1 antibody (rabbit anti-E2F1 (H-137), Santa
Cruz) per 100–500mg of total protein. Western analysis was performed at
least three times for three independent experiments.

Virus production and infection of MEFs
The human SATB1 cDNA (Imagenes) was inserted into the pBabe-puro-GFP
vectors. Retrovirus production was performed as described.8 Briefly,
producer Plat-E cells45 were transfected using Effectene (Qiagen). Viral
supernatants were collected 48 h later and used for infection. MEFs were
infected for 48 and 24 h later, selected with puromycin until colonies
appeared. Colonies positive for GFP were picked using cloning cylinders
(Millipore, Billerica, MA, USA) and expanded. For kinetics studies, 104 cells
were plated in six-well plates in triplicates and cell numbers were
determined every 2 days using a CASY cell counter (Roche Diagnostics). For
restoring RB activity SATB1- or EV-infected TM MEFs were transfected with
GFP-RB-FL and selected for 3 weeks with G418. Three independent
experiments were performed in triplicate (n¼ 9) using MEFs at less than
eight passages, error bars represent s.d.

Cell cycle analysis
DNA content analysis was performed using propidium iodide/RNase buffer
(BD Biosciences, San Jose, CA, USA). Briefly, 2� 105 cells were harvested,
fixed with 70% ethanol for 20 min on ice, washed and resuspended in
500ml of propidium iodide/RNase buffer, followed by analysis on flow
cytometer (FACS calibur, BD Biosciences). Cell cycle profiles were analyzed
using the multicycle software (Phoenix Flow Systems, San Diego, CA, USA).
Presented results are representative of three independent experiments
performed in triplicate (n¼ 9).

Cell transformation by SATB1
R Agrelo et al

5498

Oncogene (2013) 5492 – 5500 & 2013 Macmillan Publishers Limited



Immunofluorescence analysis
WI-38, MRC-5, Hela cell lines and MEFS were grown on Roboz slides
(Cell Point Scientific, Gaithersburg, MD, USA). K562 and Jurkat cell line cells
were attached to adhesion slides (Marilienfeld, Lauda-Königshofen,
Germany). Immunostaining was performed as described.44 Briefly, cells
were fixed for 10 min in 4% paraformaldehyde in phosphate-buffered
saline (PBS), permeabilized for 5 min in 0.1% Na-citrate/0.5% Triton X-100
and blocked for 30 min in PBS containing 5% bovine serum albumin and
0.1% Tween-20. Antibodies and dilutions used for the analysis were E2F1
1:100 (rabbit anti-E2F1 (H-137), Santa Cruz), RB 1:200 (rabbit anti-RB (C-15),
Santa Cruz), underphosphorylated RB 1:300 (RB aa 514-610, mouse anti-
human underphosphorylated RB, BD Biosciences), RB (phospho S608)
antibody 1:200 (ab60025 rabbit anti-RB (phospho S608), Abcam), p107
1:100 (rabbit anti-p107(C-18), Santa Cruz), p130 1:100 (rabbit anti-p130
(C-20), Santa Cruz). SATB1 1:100 (ab49061 rabbit anti-SATB1, Abcam) and
SATB1 1:300 (611182, mouse anti-human SATB1, BD Biosciences).
Secondary antibodies were previously described.44 Vectashield (Vector
Laboratories, Burlingame, CA, USA) was used as imaging medium. DNA was
stained with DAPI (40,60-diamidino-2-phenylindole). Images were acquired
at room temperature using a fluorescence microscope (Axioplan, Zeiss,
Jena, Germany) equipped with a CCD camera (CoolSNAP fx, Photometrics,
Tucson, AZ, USA), and analyzed using the MetaMorph image analysis
software (Molecular Devices Corporation, Sunnyvale, CA, USA). Color levels
were adjusted in Photoshop 7.0 (Adobe). For deconvolution microscopy,
series of 0.2-mm z-sections were collected on a DeltaVision Spectris
Restoration Microscopy System (Applied Precision Inc., Issaquah, WA, USA)
using a 100� 1.4 NA planachromat objective, and subsequently
deconvolution was performed using the proprietary SoftWorx algorithm
(Applied Precision).

Colony-forming assay in soft agar
Cells (1.5� 105) were plated in 0.36% agar in Dulbecco’s modified Eagle
growth medium (soft agar medium) per 60-mm dish on top of a 0.72%
hard agar layer. Cultures were reefed by adding 3 ml soft agar medium
after 1 and 2 weeks. After 21 days colonies were counted using an inverted
microscope. Results represent three independent experiments that were
performed in triplicate (n¼ 9).

Wound healing assays
An artificial wound was generated with a 10-ml pipette tip on confluent
monolayers of p16� /� SATB1 and p16 � /� control empty vector MEFs
grown in six-well culture plates in serum-containing medium. Photographs
were taken at 0 h and 12 h, respectively. Analysis of wound closure was
calculated by counting the cells per mm2 of wound area at 12 h. Results
represent three independent experiments that were performed in
triplicate (n¼ 9).

Phalloidin staining
For analyzing actin filaments, cells were incubated with Texas Red-X
phalloidin (Molecular Probes), according to the manufacturer’s protocol.
Briefly, cells were fixed for 10 min in 4% paraformaldehyde in PBS
permeabilized in Na-citrate/0.5% Triton X-100, blocked for 30 min with 1%
bovine serum albumion in PBS and incubated with Texas Red-X phalloidin
(1:100) dilution for 30 min. 40 ,6-diamidino-2-phenylindole-dihydrochloride
was used to stain DNA.

Two-chamber migration and invasion assays
Cell invasion was determined by using the BD Biocoat Matrigel Invasion
Chamber (8mm pore size, BD Biosciences) invasion assay (membrane
coated with a layer of Matrigel extracellular matrix proteins), according to
the manufacturer’s instructions. Cells (2.5� 104) were seeded in serum-free
medium into the upper chamber, and 10% fetal calf serum was used
as a chemoattractant in the lower chamber. After 18 h, cells in the upper
chamber were carefully removed using cotton buds and cells at the
bottom of the membrane were fixed in 4% paraformaldehyde in PBS and
stained with crystal violet (0.2%). Quantification was performed by
counting the stained cells. Three independent experiments were
performed in triplicate (n¼ 9).

Luciferase assays
HeLa cells (105), TM-EV; TM-SATB1;TM-EV-RB or TM-SATB1-RB were
transiently transfected in six-well dishes using EFFECTENE reagent
(Qiagen), according to the manufacturer’s instructions and harvested
24 h after transfection. Two cyclin E promoter-driven luciferase constructs
(Addgene, Cambridge, MA, USA) were used, as published.39 For
transfection, 1mg of reporter plasmid was combined with 0.98 mgof
either the PCMV10-3XFLAG-SATB1 construct or the control PCMV10 empty
vector, and 20 ng of pRL-SV40 Renilla luciferase vector as an internal
reference. Luciferase activities were measured using the Dual-Luciferase
Reporter Assay System (Promega, Fitchburg, WI, USA), and results were
normalized to Renilla luciferase activity. The presented results correspond
to three independent experiments (n1¼ 3), with three replications per
experiment (n2¼ 9).
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