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In the context of neuro-orthopedic pathologies affecting walking and thus patients’ quality

of life, understanding the mechanisms of gait deviations and identifying the causal motor

impairments is of primary importance. Beside other approaches, neuromusculoskeletal

simulations may be used to provide insight into this matter. To the best of our knowledge,

no computational framework exists in the literature that allows for predictive simulations

featuring muscle co-contractions, and the introduction of various types of perturbations

during both healthy and pathological gait types. The aim of this preliminary study was

to adapt a recently proposed EMG-marker tracking optimization process to a lower limb

musculoskeletal model during equinus gait, a multiphase problem with contact forces.

The resulting optimization method tracking EMG, ground reactions forces, and marker

trajectories allowed an accurate reproduction of joint kinematics (average error of 5.4

± 3.3mm for pelvis translations, and 1.9 ± 1.3◦ for pelvis rotation and joint angles)

and ensured good temporal agreement in muscle activity (the concordance between

estimated and measured excitations was 76.8 ± 5.3 %) in a relatively fast process (3.88

± 1.04 h). We have also highlighted that the tracking of ground reaction forces was

possible and accurate (average error of 17.3± 5.5N), even without the use of a complex

foot-ground contact model.

Keywords: musculoskeletal modeling, direct multiple shooting, co-contraction, musculo-tendon forces,

neuromusculoskeletal simulations

INTRODUCTION

Walking is often considered to be the most important activity in daily living (Chiou et al., 1985).
The ability to move without pain, fatigue, or major gait deviation is closely related to quality
of life (Cuomo et al., 2007; van Schie, 2008). Many neuro-orthopedic pathologies (e.g., cerebral
palsy, stroke) induce impairments (i.e., paresis, muscle overactivity, soft tissue contractures,
and bone deformities) that compromise normal movement. Consequently, the goal of many
therapeutic interventions is to minimize gait deviations in patients. In order to improve these
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interventions, understanding the possible mechanisms of these
gait deviations, and being able to identify the causal motor
impairments is of primary importance (Davids et al., 2004;
Gough and Shortland, 2008; Wren et al., 2011). Currently, the
relationship between motor impairments and gait deviations
is unclear (Bonnefoy-Mazure et al., 2016), and there is a
lack scientific evidence for these relationships due to the
inherent complexity of the human neuromusculoskeletal system
during dynamic tasks such as walking (Armand et al., 2017).
Compared to existing approaches (e.g., pathologic models,
experimental procedures with human subjects, robots with
human-like gait), in silico neuromusculoskeletal simulations of
normal and pathological gait could provide additional insight
into gait deviations (Armand et al., 2017). The advantage of
neuromuscular simulations as a method is that large numbers
of simulations may be performed relatively quickly, and without
the ethical issues involved with performing invasive and lengthy
experiments in vulnerable patient groups such as those with
neuromuscular deficits.

To date, simulations reported in the literature are often limited
to the analysis of the consequences of isolated impairments
on gait such as muscle weakness (van der Krogt et al.,
2009; Thompson et al., 2013) or muscle spasticity (Jansen
et al., 2014). Most of these studies only report possible
muscular compensations (adaptations) that occur due to
muscular redundancy–results are achieved by tracking the
normal gait kinematics and then applying a perturbation to
the model. Very few studies have been based on a numerical
framework allowing kinematic adaptations in response to more
varied perturbations. Within the TLEMsafe project (https://
www.tlemsafe.eu), Fluit et al. (2014b) combined an optimized
inverse model and a ground reaction force predictive model
to simulate lower limb kinematics after the removal of the
rectus femoris and the vastus lateralis from the model. Santos
et al. (2017) also proposed a numerical framework based
on direct collocation and an optimal control package to
simulate lower limb kinematics after the introduction of a
weakening of the triceps surae and the tibialis anterior, or
after increasing the ankle joint stiffness. These two approaches
represent a first step toward the simulation of pathological
gait. However, neither were able to reproduce muscle co-
contractions. While this capacity was not necessarily needed in
these studies, this feature is essential to establish a pathological
gait simulator that would be able to reproduce physiological gait
adaptations biofidelically.

From a methodological point of view, inverse dynamics-
based approaches (such as static optimization) are commonly
used due to their computational efficiency (Erdemir et al.,
2007), but are not appropriate for predictive simulations.
Moreover, static optimizationmethod underestimates or neglects
antagonist co-contractions unless hybrid approaches are used
(Brookham et al., 2011; Son et al., 2012). On the other hand,
forward dynamics-based approaches are often criticized for being
time-consuming–several studies report convergence times in
the hundreds of hours range (Anderson and Pandy, 2001).
Despite this disadvantage, these methods have the potential to
predict new movements, such as an adaptation in response

to a perturbation. For example, state-of-the-art algorithms
used in conjunction with existing musculoskeletal models–like
direct collocation (Santos et al., 2017) and direct multiple
shooting (Bélaise et al., 2018a,b)—can be used to solve forward
dynamics problems in a timely manner. Recently, Bélaise et al.
(2018a,b) introduced an EMG-marker tracking optimization
method to predict musculo-tendon forces in a co-contraction
case. Based on simulated datasets of upper limb movements,
the authors showed the importance of tracking both marker
trajectories and EMG, in particular to reproduce muscle co-
contractions. To the best of our knowledge, such an approach
has never been applied on experimental gait records with
muscle co-contractions.

The objective of our project is to establish a computational
framework appropriate for predictive simulations of healthy
and pathological gait, that is able to reproduce muscle co-
contractions, and that allows for the introduction of various kind
of perturbations on the model (e.g., therapy-related, surgery-
related, pathology-related perturbations). This preliminary study
represents a first step toward this project by adapting the
computational framework proposed by Bélaise et al. (2018a,b) to
a lower limb musculoskeletal model during gait. This framework
has been tested for this purpose on a type of pathological gait
known as equinus gait.

METHODS

Lower Limb Musculoskeletal Model
A generic three-dimensional musculoskeletal model of the lower
limb [Lower Extremity Model, OpenSim (Delp et al., 1990)]
was adapted for our study (Figure 1). This model consists of
five rigid segments: the pelvis, right thigh, patella, shank, and
foot. Twenty-six markers were associated with these segments
by virtual palpation to reproduce the experimental marker
locations (Table 1; see section Dataset). To simplify the dynamic
optimizations to a two-dimensional motion in this preliminary
study, the original degrees of freedom (DoF) were reduced
to three DoFs for the pelvis-ground joint (vertical translation,
translation in the direction of walking, pelvis tilt) and one
DoF (flexion-extension modeled as a hinge joint) at the hip,
knee, and ankle joints. Joints were actuated by the muscle
torques resulting from 17 muscle lines of action (Table 2),
and the pelvis DoFs were actuated by three generalized forces
applied on the pelvis. The path, optimal length, maximal
isometric force, tendon slack length, and pennation angle of each
muscle lines of action were derived from the original model
(Delp et al., 1990).

Segment lengths were scaled to the dataset used in this
study (see section Dataset) using OpenSim 3.3 (Delp et al.,
2007) by minimizing the distance between experimental and
model markers placed on bony landmarks (Table 1). All
components of the model that depend on bone lengths (e.g.,
muscle attachment points, optimal fiber length), segment
masses, and inertial parameters were also scaled. The resulting
scaled model was transferred to the bioRBD musculoskeletal
modeling package (https://github.com/pyomeca/biorbd)
based on the Rigid Body Dynamic Library (Felis, 2017).
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FIGURE 1 | Anterior (A), lateral (B), and posterior (C) views of the right

lower-limb musculoskeletal model derived from OpenSim [Lower Extremity

Model, OpenSim (Delp et al., 1990)] and adapted to the bioRBD

musculoskeletal modeling package (https://github.com/pyomeca/biorbd). Red

lines and pink dots represents the 17 Hill-type muscle lines of action and the

26 markers related to this model, respectively.

This model was defined by 29 states (six generalized joint
positions and their six related velocities, 17 muscle activations)
and 20 controls corresponding to the 17 muscle neural
excitations plus three generalized forces driving the three
pelvis DoFs.

Equations of Motion and
Activation Dynamics
The generalized accelerations q̈ of the rigid multibody system
were computed using a forward dynamics approach for given
generalized joint positions q, joint velocities q̇, and generalized
forces τ:

q̈ = M
(

q
)−1

(

τ

(

q, q̇, a, e
)

+ C
(

q
)T
R− N

(

q, q̇
)

q̇− G
(

q
)

)

s.t. C
(

q
)

q̈+ Ċ
(

q
)

q̇ = 0 and C
(

q
)

q̇ = 0

where M is the inertia matrix, C is the external contact Jacobian
matrix, R is the Lagrange multipliers vector corresponding to
the ground reaction forces (GRF), N is the non-linear effects
(Coriolis and centrifugal forces) vector, and G is the gravity
effects vector. It was assumed that contact points have a null
acceleration and velocity throughout the entire contact phase. In
line with equinus gait, one fixed contact point was defined on
the forefoot for the entire contact phase (see section Dynamic
Optimizations). Generalized forces were divided into τ1 =

[τ11 τ12 τ13]
T driving the three pelvis DoFs, and τ2 = ∂Lmt

∂q Fmt

corresponding to the net joint torques due to themusculo-tendon

TABLE 1 | List of the 26 markers used in this study.

Abbreviations Palpation details Related

segments

L_IAS Left anterior-superior iliac spine Pelvis

L_IPS Left posterior-superior iliac spine Pelvis

R_IPS Right posterior-superior iliac spine Pelvis

R_IAS Right anterior-superior iliac spine Pelvis

R_FTC Right greater trochanter Thigh

R_Thigh_Top Superior marker of the thigh cluster Thigh

R_Thigh_Down Inferior marker of the thigh cluster Thigh

R_Thigh_Front Anterior marker of the thigh cluster Thigh

R_Thigh_Back Posterior marker of the thigh cluster Thigh

R_FLE Right lateral femoral epicondyle Thigh

R_FME Right medial femoral epicondyle Thigh

R_FAX Right fibula head Shank

R_TTC Right tibial tuberosity Shank

R_Shank_Top Superior marker of the shank cluster Shank

R_Shank_Down Inferior marker of the shank cluster Shank

R_Shank_Front Anterior marker of the shank cluster Shank

R_Shank_Tibia Additional marker of the shank cluster on the tibia Shank

R_FAL Right lateral tibial malleolus Shank

R_TAM Right medial tibial malleolus Shank

R_FCC Right posterior calcaneus Foot

R_FM1 Right 1st distal metatarsal head Foot

R_FMP1 Right 1st proximal metatarsal head Foot

R_FM2 Right 2nd distal metatarsal head Foot

R_FMP2 Right 2nd proximal metatarsal head Foot

R_FM5 Right 5th distal metatarsal head coordinates Foot

R_FMP5 Right 5th proximal metatarsal head coordinates Foot

Palpation details used to place experimental reflective cutaneousmarkers (as well as virtual

markers by virtual palpation) and the related segment are also mentioned.

forces Fmt, where
∂Lmt
∂q is the generalized muscular lever arms

matrix and Lmt the vector of muscle line of action lengths.
Fmt were computed from muscle activations a using a Hill-
type muscle model with a generic force-length-velocity relation
f (Zajac, 1989):

Fmt

(

q, q̇, a
)

= af
(

F0mt, lm, vm
)

,

where F0mt is the maximal isometric forces vector, lm is the
muscle fiber lengths vector, and vm is the muscle fiber velocities
vector. Again, musculo-tendon forces were divided into Fmt1

(with related activations a1 and excitations e1), corresponding
to the muscles for which electromyographic (EMG) records were
available, and Fmt2 (with related activations a2 and excitations e2)
where EMG measurements were unavailable. Muscle activation
dynamics was implemented as a set of first-order differential
equations (Buchanan et al., 2004):

ȧ
(

t, e (t) , a(t)
)

=







(e(t)− a(t))
tact(0.5+1.5 a(t))

, e (t) > a(t)
e(t)− a(t)
tdeact

(

0.5+ 1.5 a(t)
)

, e (t) ≤ a(t)
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where e(t) is the muscle neural excitations at time t. Time
constants tact and tdeact (for activation and deactivation) were set
at 10 and 40ms, respectively (Thelen et al., 2003).

Dynamic Optimizations
As proposed in Bélaise et al. (2018a), controls and state variables
were simultaneously optimized using an EMG-marker tracking
optimization process. Because the model has a reduced muscular
redundancy and because a generic model was used as opposed
to a subject-specific model, the optimal maximal isometric forces
were also identified during this process.

The optimization consisted of the minimization of the
differences between predicted Mp and measured Mm marker
trajectories in the sagittal plane, and between predicted e1p
and measured e1m (EMG envelop) muscle neural excitations
(corresponding to the muscles for which EMG records are
available). This tracking optimization was extended to the
minimization of the differences between predicted Rp and
measured Rm GRF in the sagittal plane. This tracking was
necessary to impose physiologic generalized forces to the pelvis
(τ1), i.e., generalized forces that compensate for the missing
upper part of the body and contralateral lower limb.

To predict the activity of the muscles for which tracking
was not possible (i.e., muscles for which EMG records were
not available), the objective function J was written to find the

TABLE 2 | List of the 17 Hill-type muscle lines of action included in the model.

Abbreviations Muscle lines of

action

Details Joints

crossed

Available

EMG

R_GLUT_MAX1 Gluteus

maximus (1)

Anterior

fibers

Hip X

R_GLUT_MAX2 Gluteus

maximus (2)

Lateral

fibers

Hip

R_GLUT_MAX3 Gluteus

maximus (3)

Posterior

fibers

Hip

R_GLUT_MED1 Gluteus medius (1) Anterior

fibers

Hip

R_GLUT_MED2 Gluteus medius (2) Lateral

fibers

Hip X

R_GLUT_MED3 Gluteus medius (3) Posterior

fibers

Hip

R_SEMIMEM Semimembranosus / Hip, knee

R_SEMITEN Semitendinosus / Hip, knee X

R_BI_FEM_LH Biceps femoris Long head Hip, knee X

R_RECTUS_FEM Rectus femoris / Hip, knee X

R_VAS_MED Vastus medialis / Knee X

R_VAS_INT Vastus intermedius / Knee

R_VAS_LAT Vastus lateralis / Knee

R_GAS_MED Gastrocnemius

medialis

/ Knee,

ankle

X

R_GAS_LAT Gastrocnemius

lateralis

/ Knee,

ankle

R_SOLEUS Soleus / Ankle X

R_TIB_ANT Tibialis anterior / Ankle X

The muscles abbreviations, the joint(s) they cross and the related electromyographic

(EMG) signals (when available) are also mentioned.

least squared muscle activations a2 that produced the prescribed
marker trajectories, muscle neural excitations, and GRF (during
stance phase only):

J =

Ni
∑

1

(

wM

∥

∥Mp −Mm

∥

∥

2
+ we

∥

∥e1p − e1m
∥

∥

2
+ wR

∥

∥Rp − Rm

∥

∥

2
)

+wL

∫ Ti

0
a2 (t)2dt

where wR

∥

∥Rp − Rm

∥

∥

2
= 0 when i = 2, i.e., the swing phase.

where wM, we, wR, and wL are weighting factors adjusted to the
relative importance of each term, Ti is the duration of the current
stage (see section Simulations) and Ni is the related number of
time frames.

This objective function was minimized under three sets of
constraints. First, boundary conditions were applied on the state
and the control variables. In this study, the range of motion
of each DoF and related velocities were set to physiologic
values (Table 3), while activations and excitations were bounded
between 0 and 1. Second, the velocity of the contact point was
constrained to be null at the first frame and its acceleration to
be null at each time frame (see section Equations of Motion
and Activation Dynamics). Third, periodicity was ensured by
constraining the first and last time point of the cycle to have
similar values in terms of hip, knee, ankle joint angles, and
velocities, pelvis velocities, muscle excitations, and GRF.

TABLE 3 | Boundaries constraints applied during the optimization process to

each degree of freedom and related velocities.

Abbreviations Variables Min. Max.

PELVIS_TRANS_X Pelvis ant. (+)/post. (–)

translation (m)

−10.00 10.00

PELVIS_TRANS_Y Pelvis sup. (+)/inf. (–)

translation (m)

−0.50 1.50

PELVIS_ROT_Z Pelvis ant. (–)/post. (+)

tilt (◦)

−45.00 45.00

R_HIP_ROT_Z Hip flex. (+)/ext. (–) (◦) −20.00 60.00

R_KNEE_ROT_Z Knee flex. (–)/ext. (+) (◦) −90.00 5.00

R_ANKLE_ROT_Z Ankle dorsi.

(+)/plantarflex. (–) (◦)

−50.00 20.00

PELVIS_TRANS_VX Pelvis ant. (+)/post. (–)

linear velocity (m.s−1)

0.50 1.50

PELVIS_TRANS_VY Pelvis sup. (+)/inf. (–)

linear velocity (m.s−1)

−0.50 0.50

PELVIS_ROT_VZ Pelvis ant. (–)/post. (+)

tilt angular velocity

(◦.s−1)

−100 100

R_HIP_ROT_VZ Hip flex. (+)/ext. (–)

angular velocity (◦.s−1)

−300 300

R_KNEE_ROT_VZ Knee flex. (–)/ext. (+)

angular velocity (◦.s−1)

−300 300

R_ANKLE_ROT_VZ Ankle dorsi.

(+)/plantarflex. (–)

angular vel. (◦.s−1)

−300 300
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Simulations
Each dynamic optimization was solved using a direct multiple
shooting algorithm with MUSCOD-II (Leineweber et al., 2003).
Three phases were defined in the gait step: (1) the stance phase
(with an external contact between foot and ground), (2) the
swing phase (no external contact), and (3) the first frame of the
next stance phase following the impact between the foot and the
ground. These stages were divided into 25, 25, and 1 multiple
shooting intervals, respectively. For the sake of simplicity, the
first stage started just after the collision impact between the foot
and the ground. The duration of each stage was fixed to the
measured value.

The initial guess was set to the measured values for the joint
positions and velocities, 1% for all activations and excitations,
and 0 for the controls corresponding to the generalized forces
related to the pelvis DoFs. Weighting factors were set to wM =

30 (except for the foot markers for which wM = 50 to ensure
the correct position of the contact point), we = 1, wR = 0.05,
and wL = 1. These weighting factors were adjusted empirically to
set values around 1, in order to ensure optimization convergence
and produce simulation results close to the experimentally
measured data.

Dataset
The previously defined method was evaluated on a dataset of
emulated equinus gait. All data were recorded on a healthy
volunteer (male, 35 years old, 165 cm, 66 kg) without any neuro-
orthopedic conditions. This participant gave written informed
consent prior to his inclusion and the protocol was conformed
to the Declaration of Helsinki and approved by the National
Research Ethics Committee of Luxembourg (201805/01).

The 3D trajectories of 26 reflective cutaneous markers
(bilateral iliac anterior and posterior spines, right leg great
trochanter, medial and lateral femoral epicondyles, peroneal
head, tibial tuberosity, medial and lateral malleoli, 1st, 2nd,
and 5th proximal and distal metatarsal heads, calcaneum,
completed by a four-marker cluster on the thigh and on
the shank) (Figure 1) were recorded using a 10-camera
optoelectronic system (OQUS-4, Qualisys AB, Sweden) sampled
at 200Hz.Markers were placed by anatomical palpation (Table 1)
following the recommendation of van Sint Jan (2007) by an
experienced user. GRF and moments were recorded using
two side-by-side force plates (OR6-5, AMTI, USA) sampled
at 2,000Hz. The EMG activity of nine right leg muscles
(tibialis anterior, soleus, gastrocnemius medialis, vastus medialis,
rectus femoris, semitendinosus, biceps femoris long head,
gluteus medius, gluteus maximus) was collected with a wireless
electromyographic system (DTS clinic, Noraxon, USA) sampled
at 2,000Hz. The EMG surface electrodes were placed following
the recommended standard of the Surface EMG for a Non-
Invasive Assessment of Muscles (SENIAM) project (Hermens
et al., 2000).

All data were imported under Matlab (R2018a, The
MathWorks, USA) using the ezc3d package (https://github.
com/pyomeca/ezc3d). Marker trajectories were interpolated
when necessary using a cubic spline and smoothed by a 4th
order low-pass Butterworth filter with a cutoff frequency of

6Hz. Generalized kinematics (q, q̇, q̈) were computed using an
extended Kalman filter (Fohanno et al., 2014) following the
segmental coordinate systems defined in the original generic
three-dimensional lower limb musculoskeletal model [Lower
Extremity Model, OpenSim (Delp et al., 1990)]. GRF were
smoothed by a 4th order low-pass Butterworth filter with a
cut-off frequency of 15Hz. Raw EMG signals were band pass
filtered (4th order) between 30 and 300Hz, rectified, and EMG
envelops were obtained by a 4th order low-pass Butterworth
filter with a cut-off frequency of 25Hz. EMG envelops were then
normalized to their respective maximal voluntary activation
(Gaudet et al., 2018).

The participant was asked to mimic an equinus gait by
producing voluntarily controlled co-contractions of the muscles
crossing the ankle joint to restrain ankle dorsiflexion. Eight
trials were recorded and the related right steps were analyzed in
this study.

Analysis
In order to evaluate the capacity of the model to reproduce
the measured gait pattern and muscle excitations under the
mechanical properties and constraints imposed to the model,
a set of goodness-of-fit parameters were employed. Root mean
square error (RMSE) and coefficient of determination (R2)
were computed to assess the differences in intensity and shape,
respectively, between measured and estimated excitations, joint
angles and GRF.

Only estimated muscle excitations corresponding to the
measured EMG envelops (Table 2) are presented in this analysis.
The coefficient of determination (CC) (Giroux et al., 2013) was
computed for the muscles for which EMG data was recorded.
This method uses active/inactive state concordance between the
estimated muscle excitations and normalized EMG envelopes to
compute a coefficient of concordance defined as the percentage
of concordance elements.

RESULTS

The convergence time of the eight optimizations using
MUSCOD-II was 3.88 ± 1.04 h on an Intel R© CoreTM i5-3570
CPU @3.4 GHz. Estimated and measured muscle excitations,
musculo-tendon forces, joint angles, and GRF are reported in
Figures 2–5, respectively. Goodness-of-fit parameters (RMSE, R2

and CC) are reported in Table 4.
Considering the tracked muscle excitations (i.e., muscles for

which EMG records are available, see Table 2), the temporal
muscle activity of the model was in good overall agreement
with the experimental measurements, with an average CC of
76.8 ± 5.3%. RMSE values were generally low with an average
value of 0.2 ± 0.1 (values were adimensioned between 0 and 1).
However, RMSE was found to be higher for the gastrocnemius
medialis (0.3 ± 0.1) and the tibialis anterior (0.4 ± 0.1). For all
muscles, the correlation remained low with an average R2 at 0.02
± 0.52. Regarding all other model muscles, for which EMG was
not tracked, the optimized muscle excitations were higher than
those estimated for muscles for which EMG was tracked. This
is the case for R_GLUT_MAX2 and R_GLUT_MAX3 compared
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FIGURE 2 | Mean and standard deviation of normalized measured (EMG envelops) and estimated muscle excitations during gait cycle (EMG envelops have been

adimensioned (adim) by maximal voluntary contraction). Abbreviations of muscle names are given in Table 2. For illustration purpose, EMG envelops of gluteus

maximus, gluteus medius, semitendinosus, and vastus medialis are reported on plots R_GLUT_MAX1/R_GLUT_MAX2/R_GLUT_MAX3,

R_GLUT_MED1/R_GLUT_MED2/R_GLUT_MED3, R_SEMIMEM/R_SEMITEN, and R_VAS_MED/R_VAS_INT/R_VAS_LAT, respectively.

Frontiers in Neurorobotics | www.frontiersin.org 6 July 2019 | Volume 13 | Article 48

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Moissenet et al. Muscle Forces Estimation: Equinus Gait

FIGURE 3 | Mean and standard deviation of estimated musculo-tendon forces during gait cycle. Abbreviations of muscle names are given in Table 2.
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FIGURE 4 | Mean and standard deviation of measured and estimated pelvic position/orientation and joint angles during gait cycle. Abbreviations of each degree of

freedom are given in Table 3.

FIGURE 5 | Mean and standard deviation of measured and estimated vertical (R_GRF_V) and anterior/posterior (R_GRF_AP) ground reaction forces during gait cycle.

to R_GLUT_MAX1, R_GLUT_MED1, and R_GLUT_MED3
compared to R_GLUT_MED2, R_SEMIMEM compared to
R_SEMITEN, R_VAS_INT, and R_VAS_LAT compared to
R_VAS_MED, and for R_GAS_LAT compared to R_GAS_MED.
The same results are observed on the estimated musculo-tendon
forces. These forces are ranged between 0 and 2,000N, with the
highest peak forces obtained for R_SEMITEN, R_VAST_INT,
R_VAST_LAT, and R_SOLEUS.

With regard to the pelvis position/orientation and joint angles,
the model estimations were generally in agreement with the
experimental measurements. Average RMSE were 5.4 ± 3.3mm
for the pelvic translations, and 1.9 ± 1.3◦ for pelvic rotations

and joint angles. However, RMSE was found to be higher for the
ankle joint (4.0 ± 0.9◦). Considering all degrees of freedom, the
correlation remained very high with an average R2 at 0.94± 0.09.

For the GRF, the model estimations were found to be in
agreement with the experimental measurements (the average
RMSE is 17.3± 5.5N). For these forces, the correlation remained
high with an average R2 at 0.97± 0.03.

DISCUSSION

The main objective of this study was to adapt an EMG marker
tracking optimization process to solve a forward dynamics
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TABLE 4 | Root mean square error (RMSE), coefficient of determination (R2) computed to assess the differences in intensity and shape, respectively, between measured

and estimated excitations (adimensioned), pelvis position/orientation, joint angles, vertical ground reaction force (R_GRF_V), and anterior/posterior ground reaction force

(R_GRF_AP).

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

CC (%) 80.95 CC (%) 73.02 CC (%) 76.19 CC (%) 85.71 CC (%) 68.25 CC (%) 74.60 CC (%) 76.19 CC (%) 79.37

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

R_GLUT_MAX1 0.02 0.07 0.03 0.37 0.02 −0.11 0.02 0.64 0.05 0.55 0.03 0.13 0.01 0.50 0.03 0.44

R_GLUT_MED2 0.03 0.12 0.04 0.02 0.03 −0.09 0.03 −0.17 0.05 −2.93 0.02 −0.76 0.01 −1.13 0.03 0.21

R_SEMITEN 0.07 0.23 0.14 −0.22 0.06 0.59 0.05 0.24 0.06 0.57 0.07 0.24 0.05 0.64 0.09 0.08

R_BI_FEM_LH 0.06 0.02 0.08 0.10 0.11 0.38 0.07 0.22 0.17 0.17 0.14 0.10 0.06 0.47 0.08 0.27

R_RECTUS_FEM 0.13 0.02 0.20 −0.01 0.18 −0.06 0.15 −0.01 0.23 0.00 0.13 0.03 0.12 −0.09 0.15 0.09

R_VAS_MED 0.10 0.36 0.12 0.40 0.13 0.51 0.13 0.18 0.28 0.26 0.14 0.17 0.11 0.50 0.15 0.45

R_GAS_MED 0.16 −0.70 0.28 −0.28 0.28 −0.73 0.27 −0.72 0.34 −0.52 0.27 −0.52 0.22 −0.55 0.26 −1.07

R_SOLEUS 0.12 −0.17 0.13 −0.17 0.13 0.14 0.07 0.51 0.14 0.25 0.12 0.30 0.07 0.16 0.08 0.48

R_TIB_ANT 0.25 0.24 0.46 −0.02 0.38 0.05 0.46 0.10 0.51 −0.03 0.48 −0.04 0.44 0.07 0.45 −0.01

PELVIS_TRANS_X (mm) 8.67 1.00 7.72 1.00 7.65 1.00 10.22 1.00 8.57 1.00 8.84 1.00 8.58 1.00 8.36 1.00

PELVIS_TRANS_Y (mm) 1.75 0.98 2.17 0.98 2.47 0.98 2.14 0.99 3.18 0.96 2.11 0.98 1.75 0.99 2.57 0.97

PELVIS_ROT_Z (◦) 0.60 0.98 1.35 0.84 0.66 0.94 1.19 0.88 0.89 0.94 0.75 0.93 0.94 0.92 0.89 0.95

R_HIP_ROT_Z (◦) 1.16 0.99 2.09 0.96 1.02 0.99 2.12 0.97 1.57 0.99 1.28 0.99 1.48 0.98 1.15 0.99

R_KNEE_ROT_Z (◦) 0.65 0.99 1.13 0.98 1.09 0.97 1.50 0.97 1.53 0.98 1.45 0.98 1.43 0.97 1.84 0.97

R_ANKLE_ROT_Z (◦) 2.54 0.86 3.62 0.79 4.43 0.71 3.46 0.76 5.48 0.66 4.15 0.73 3.33 0.79 4.75 0.74

R_GRF_AP (N) 11.92 0.97 10.95 0.98 11.02 0.95 13.16 0.94 13.43 0.94 13.18 0.93 12.23 0.92 14.03 0.94

R_GRF_V (N) 27.73 0.99 21.85 1.00 19.56 1.00 20.62 1.00 21.57 1.00 26.18 0.99 19.25 1.00 19.79 1.00

The analysis of muscle excitations is completed by the coefficient of concordance (CC). The results are reported for each gait cycle. Abbreviations of each muscle names and degree

of freedom are given in Tables 1, 2, respectively. Bold values correspond to higher RMSE values and lower R2 values.

problem on a 3Dmusculoskeletal model of the lower limb during
equinus gait. To the best of our knowledge, the use of a direct
multiple shooting algorithm on a musculoskeletal model with
the tracking of measured EMG, marker trajectories, and GRF has
never been performed to date. As already shown by Bélaise et al.
(2018a,b), this approach allows for an accurate reproduction of
joint kinematics and ensures temporal fidelity in muscle activity
with improved computational time compared to traditional
forward dynamic approaches. We have also highlighted that the
tracking of GRF could be performed accurately, even without the
use of a complex foot/ground contact model.

Limitations
A primary limitation of this preliminary study is that it was
based on a small number trials for a single task, performed by
a single participant. As such, limited conclusions can be drawn
from this paper.

A second limitation is that only one contact point was defined
at the forefoot and it was only constrained to null velocity and
acceleration during the whole contact phase.While this approach
was in line with an equinus gait and was able to accurately
reproduce the tracked GRF, this definition cannot be applied
during normal gait trials, during which several contact points
should be defined (Fluit et al., 2014a). Elastic contact elements
(Peng et al., 2018), artificial muscle-like actuators (Fluit et al.,
2014a) or distance and velocity-dependent force models (Jung
et al., 2016) should be adapted to the present model to extend
its use to normal gait.

The proposed musculoskeletal model also only consisted
of the pelvis and the right lower limb. A forward dynamic
approach wasmade possible by replacing the forces andmoments
produced by the opposite lower limb and the upper part of the
body by a set of generalized forces acting on the pelvis. With such
an approach, the individual contribution of the opposite lower
limb and the upper part of the body to the muscle activity and
joint contact forces of the right lower limb cannot be evaluated
individually. It would thus be an important next step to complete
the missing body segments of the present musculoskeletal model
in order to obtain a full body musculoskeletal model. Several
full body musculoskeletal models (Rajagopal et al., 2016; Bassani
et al., 2017) have been proposed in the literature and could be
transferred to the bioRBD musculoskeletal modeling package.
These segments could be actuated by joint torques instead
of muscles.

In addition to this, while we used a 3Dmusculoskeletal model,
DoFs were reduced to only allow a two-dimensional motion
in the sagittal plane. It is however, established that walking is
a locomotion task that is performed in sagittal, coronal, and
transversal planes (Perry and Burnfield, 2010). In particular,
patients often develop compensatory movements in the coronal
plane when pathological impairments result in reduced foot
clearance capacity in the sagittal plane (Chantraine et al., 2016).
Despite this simplification, the accuracy of kinematic tracking
observed in the present results suggest that there is potential for
the EMG marker tracking optimization process to perform 3D
gait motion simulations.
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Finally, most of the parameters of the Hill-type muscle
model were kept with generic property definitions in this study.
Only optimal maximal isometric forces were identified during
dynamic optimizations, while muscle optimal lengths, tendon
slack lengths, and maximal isometric forces are usually identified
in similar studies (Sartori et al., 2014; Pizzolato et al., 2015). This
may explain the high excitations observed in muscles contained
in a group, for which tracking of excitation was applied to other
muscles. The introduction of further muscle parameters could be
implemented in future studies, and would only be expected to
impact the convergence time of the simulations.

Muscle Activity
The present study support the results of Bélaise et al. (2018a,b),
which demonstrated that EMG tracking could be an efficient way
to reproduce measured muscle excitations in simulations. While
some amplitude differences appeared for certain trackedmuscles,
the temporal activity was generally reproduced with good fidelity.
This outcome is crucial to ensure the ability of the model to
producemuscle co-contractions. Similar approaches have already
been proposed in the literature–EMG-driven musculoskeletal
models have also been used to accurately reproduce muscle
excitation patterns observed on EMG records (Shao et al., 2009;
Sartori et al., 2012). However, these models are constrained
to have as many muscle lines of action as EMG available in
the dataset. To overcome this limitation, some authors have
proposed hybrid approaches that combine EMG-driven and
static optimization methods (Lloyd and Besier, 2003; Moissenet
et al., 2014; Sartori et al., 2014). The drawback with this strategy
is that by minimizing the difference between the motor joint
moments computed by EMG-driven and inverse dynamics,
kinematics may not be accurately reproduced. In that sense,
the EMG-marker tracking algorithm proposed by Bélaise et al.
(2018a,b) is a novelty. As this method tracks joint kinematics
based on marker trajectories rather than joint moments as in a
forward dynamic approach, the error diffusion is minimized and
the simulation outputs reproduce the experimental kinematics
more faithfully.

In our trials of emulated equinus gait, co-contractions of the
ankle dorsiflexors, and plantarflexors can be observed during
early stance to stabilize the joint in this specific posture. It is
interesting to observe that, while the gastrocnemius medialis
and the soleus (muscles for which EMG records were tracked)
were contracted during this phase, the gastrocnemius lateralis
(a muscle for which EMG records were not measured) was not
in our simulations. Although use of EMG is somewhat limited
to available hardware, muscle locations and the signal quality,
measurement should be prioritized toward muscles presumed to
be active during the task being investigated. In our case, focusing
on a greater number of muscles crossing the ankle joint would
have brought more relevant information to the model. A similar
recommendation has already been proposed by Sartori et al.
(2014); these authors suggested to prioritize EMG use onmuscles
“that reflect the patient’s non-physiological muscular behavior.”

Although the EMG-GRF-marker tracking algorithm was able
to reproduce physiological muscle activity, two points must be
considered. First, we observed that when EMG was not tracked,
the optimized muscle excitations and musculo-tendon forces

were higher than the ones estimated when muscle EMG was
tracked. As pointed out in the limitations of the study, this
over-estimation is perhaps related to the use of generic muscle
model parameters. For example, if the parameters applied to
a muscle group would tend to limit its capacity to produce
a motor joint moment, a higher muscle excitation would be
required to reproduce the experimental measurements. This
effect is further exacerbated if the excitation of a muscle in
this group is constrained to a low level in accordance with
the experimental EMG tracking, as the excitation of the other
muscles of the group will have to compensate for this reduced
excitation in the other muscle. Second, due to equinus (results
in increased plantarflexion), the capacity of the triceps surae
to produce a plantarflexion moment is reduced (Delp et al.,
1990), in particular during the push-off phase. Thus, hip flexor
recruitment may be increased in this gait pattern to pull the
leg forward (Romkes and Schweizer, 2015). However, in our
model the primary hip flexors, i.e., the iliopsoas muscles, were
not included. van der Krogt et al. (2012) showed that an
increased activation of the rectus femoris may be developed
to compensate for a weakness of the primary hip flexors. In
our case, the absence of the iliopsoas muscles (equivalent to
a complete reduction of strength in these muscles) may have
induced the increased rectus femoris excitations observed during
the simulations compared to the experimental measurements.
Because the rectus femoris is a bi-articular muscle (i.e., hip
flexor, knee extensor), an increased excitation of this muscle
used to assist in hip flexion would simultaneously act to reduce
knee flexion, which would have require compensation from knee
flexors in order to maintain experimental kinematics (van der
Krogt et al., 2012). This could explain the non-physiological
activity of the triceps surae (ankle plantarflexors) during pre-
swing and early swing observed in our simulations, and the
increased tibialis anterior activity (ankle dorsiflexor) used to
balance ankle flexion due to the increased activity of ankle
plantarflexors. All these observations support the need for a
more comprehensive, full bodymusculoskeletal model, as already
discussed in section Limitations.

Kinematics and Ground Reaction Forces
Unlike inverse dynamics-based optimization approaches (i.e.,
static optimization), where measured kinematics and calculated
joint torques are the input constraints to the optimization
problem, in a forward dynamics approach it is essential to
assess the accuracy of reproduced kinematics. This is generally
assessed by tracking experimental kinematics (Erdemir et al.,
2007; Chèze et al., 2015). In the present study, marker trajectories
were tracked rather than joint kinematics, as proposed by Bélaise
et al. (2018a,b). This tracking was able to produce accurate
marker trajectories as highlighted in Bélaise et al. (2018a) with
a tracking residual of 0.31 ± 0.32 cm during elbow flexion. This
approach, used in the present study gave accurate kinematics with
a maximum RMSE obtained at the ankle joint <5◦, a threshold
recognized as critical for clinical interpretation (McGinley et al.,
2009). The main errors appeared at the end of the stance phase
in most of the DoFs. This issue may be associated with the
non-physiological activity of the triceps surae and the rectus
femoris during this phase, as discussed in sectionMuscle Activity.
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Our simulations tended to reduce the plantarflexion induced by
the emulated equinus gait. By increasing ankle dorsiflexion, the
triceps surae moment arm was increased (Delp et al., 1990) and a
minimal ankle plantarflexion moment was kept.

Interestingly, GRF were estimated accurately without an
advanced foot-ground contact model definition. The use of
simple generalized forces applied on the pelvis, designed to
compensate for the absence of the opposite lower limb and the
upper part of the body in our model, acted as efficient reserve
actuators (Modenese et al., 2013) to provide the forces required
to track experimental GRF. This approach may thus present a
valid means by which to manage external forces and moments in
the dynamic equation when the interactions between the upper
limb and/or the contralateral lower limb with the ipsilateral
lower limb are not known. Otherwise, as already discussed in
section Limitations, a full body musculoskeletal model would
be recommended.

Clinical Perspectives
The simulation of equinus gait represents an important clinical
issue in the context of toe walking, a common gait deviation
observed in many pathologies such as cerebral palsy, myopathy,
and neuropathy (Armand et al., 2007). Numerical simulations
may present a useful tool in this context of identifying potential
biomechanical causes of this deviation, such as: pre-tibial
muscle weakness, inadequate ankle dorsiflexors activity, ankle
plantarflexors contracture, and/or spasticity, excessive voluntary
ankle plantarflexion in compensation for quadriceps weakness,
knee flexor contracture caused by overactivity of the hamstring,
combined spasticity of the hamstring and ankle plantarflexors,
and leg length discrepancy (Armand et al., 2007; Perry and
Burnfield, 2010). In more general terms, there is a need for a
numerical framework allowing for the introduction of pathology
(Santos et al., 2017), treatment, or surgical intervention-related
(Fox et al., 2009) perturbations in a model, and the analysis
of their impact on the structures of the musculoskeletal
system during daily living activities. However, before clinical
applications, models have to be evaluated and validated (Hicks
et al., 2015). It will thus be necessary that we assess the capacity
of our approach to produce physiological musculo-tendon forces
and joint contact forces. Validation datasets, such as the ones
made available by Bergmann et al. (2016) and Fregly et al. (2012),
should thus be tested on our numerical framework in the future.

CONCLUSION

In conclusion, we have improved the recent EMG-marker
tracking optimization method to a multiphase cyclic movement
with GRF. This numerical framework was successfully tested on
a dataset of equinus gait for which our approach was able to
estimate lower-limb kinematics, GRF and muscle activity with
reasonable accuracy.
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