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Abstract
Visual attention has many effects on neural responses, producing complex changes in firing

rates, as well as modifying the structure and size of receptive fields, both in topological and

feature space. Several existing models of attention suggest that these effects arise from

selective modulation of neural inputs. However, anatomical and physiological observations

suggest that attentional modulation targets higher levels of the visual system (such as V4 or

MT) rather than input areas (such as V1). Here we propose a simple mechanism that

explains how a top-down attentional modulation, falling on higher visual areas, can produce

the observed effects of attention on neural responses. Our model requires only the exis-

tence of modulatory feedback connections between areas, and short-range lateral inhibition

within each area. Feedback connections redistribute the top-down modulation to lower

areas, which in turn alters the inputs of other higher-area cells, including those that did not

receive the initial modulation. This produces firing rate modulations and receptive field

shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce

competitive effects that are automatically scaled to receptive field size in any given area.

Our model reproduces the observed attentional effects on response rates (response gain,

input gain, biased competition automatically scaled to receptive field size) and receptive

field structure (shifts and resizing of receptive fields both spatially and in complex feature

space), without modifying model parameters. Our model also makes the novel prediction

that attentional effects on response curves should shift from response gain to contrast gain

as the spatial focus of attention drifts away from the studied cell.

Author Summary

Exerting visual attention results in profound changes in the activity of neurons in visual
areas of the brain. Attention increases the firing of some neurons, decreases that of others,
moves and resizes the receptive fields of individual neurons, and changes their preferred
features according to what is being attended. How are these complex, subtle effects
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generated? While several models explain various subsets of these effects, a consistent
explanation compatible with anatomical and physiological observations remains elusive.
Here we show that the apparently complex and multifaceted effects of attention on neural
responses can be explained as the automatic consequence of a top-down modulation, fall-
ing on higher visual areas (as suggested by anatomical observations), and interacting with
short-range inhibition and feedback connections between areas. Our model only assumes
the existence of well-known features of brain organization (reciprocal inter-area connec-
tions, mutual inhibition between neighboring neurons) to explain a wide range of atten-
tional effects, including apparently finely-tuned effects (complex shifts in feature
preferences, automatic scaling of competitive effects to receptive field size, resizing or
shifting of receptive fields, etc). Our model also makes novel, testable predictions about
the effect of certain attentional manipulations on neural responses.

Introduction
Attention modulates the responses of visual neurons in diverse ways [1–4]. Some studies sug-
gest that spatial attention produces a response-gain effect on neural responses (overall multipli-
cation of the response curve as a function of contrast, with maximal effect at highest contrast),
while others suggest a contrast gain (leftward shift of the response curve, with little effect at
highest contrasts) [5,6]; yet other studies report ambiguous results [7]. Attention also biases
the competition between different stimuli occurring within the receptive field (RF) of a given
cell, in such a way that the actual response is more similar to that elicited by the selected stimu-
lus in isolation [8]. Interestingly, the spatial range of these competitive effects seems restricted
to the size of the RF, across several visual areas with very different typical RF sizes [9–11]
(importantly, note that this within-RF suppression is distinct from outside-RF, “surround”
suppression, not just positionally, but also in tuning, strength and presumably mechanism; see
Discussion).

Attention can also be directed towards a specific feature dimension, rather than a specific
position. Such feature-based attention increases the response of neurons selective to the
attended feature, while reducing the responses of neurons selective to non-attended features—
the so-called “feature-similarity gain principle” [12].

In addition to these effects on firing rates, attention also modifies the structure and size of
receptive fields, both in topological and featural space. Spatial attention shifts RF position
towards the focus of attention [13,14]. Intriguingly, focusing attention within the RF tends to
shrink the RF (in addition to shifting its center), while attending to the same stimulus located
just outside the RF tends to expand the RF towards the focus of attention [15]. Similarly, fea-
ture-based attention can also shift receptive fields in feature space: the featural receptive field of
individual neurons is subtly altered to better match the features of the attended stimulus
[16,17]. Note that this is quite different from the previously mentioned sharpening of tuning
curves due to a feature-similarity gain effect: feature-similarity gain makes certain neurons fire
more (or less) for all stimuli, while the subtle shift of RFs in feature space makes all neurons
respond more to certain stimuli and less to others, in such a way that neurons seem to be more
tuned to the complex attended stimulus.

Several authors have suggested that these attentional effects are compatible with a multipli-
cative modulation being selectively applied to specific inputs of the recorded neurons, interact-
ing with appropriately scaled divisive lateral inhibition [4,18–23]. A particularly detailed
example is Reynolds and Heeger’s so-called “normalization model” of attention [4], which
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shows both contrast-gain and response-gain effects, as well as biased competition and feature-
similarity gain. While Reynolds and Heeger do not mention RF alterations, other authors have
shown that the same general principle can explain RF shifts [19,21].

However, experimental studies consistently report that attentional effects occur earlier and
more strongly in higher (downstream) areas, and later and more weakly in lower (input) areas
of visual cortex—a so-called “backwards progression of attentional effects” [24]. Attentional
modulation of single-cell responses [9,24,25] and human imaging responses [26] increases in
magnitude at higher levels of the visual hierarchy, from V1 to V4 (though attentional effects
are still measurable and significant in V1 [27,28]). Meanwhile, the onset of attentional modula-
tion on single-cell responses occurs progressively later in V4, V2, then V1 [24].

Furthermore, areas that are thought to control attention (especially Frontal Eye Fields—
FEF, and Lateral Intraparietal cortex—LIP) [2,29] seem to target higher areas of the visual sys-
tem, rather than input areas such as V1. FEF has strong, “feedforward-like” projection towards
V4, but not V1 [30]; FEF synchronizes with V4 during attentional tasks, with FEF leading V4
[31], and microstimulation of FEF produces effects in V4 (spatially localized increases and
decreases in responses) that are congruent with those of attention [32]. Similarly, LIP is
strongly connected to V4 and MT, but not V1. LIP synchronizes with the Middle Temporal
(MT) area of dorsal visual cortex during attention, with LIP leading [33]. LIP-to-dorsal visual
cortex modulation was also observed in human fMRI data [34].

In addition, the input-multiplication hypothesis does not explain why competitive effects
are scaled to RF size (this is simply assumed in the normalization model) or why RF scaling
should shift from shrinking to expansion as attentional focus moves outside the RF. Further-
more, it is not specified how attentional modulation would know which inputs must be modu-
lated to produce the correct RF shift in the studied cell—a very simple problem for spatial
attention, but a more daunting one for the subtle featural effects observed in complex-selectiv-
ity V4 cells [17].

Some models implement attention as a top-down modulation of higher-level areas, as sug-
gested by anatomy and physiology [35,36]. As expected, in such models, attentional effects are
stronger and earlier in higher areas, and smaller and later in lower areas. However, top-down
modulation leads to the erroneous prediction that RFs should shift away from the focus of
attention, both in topological and feature space [37]; this is because the modulated cells would
inhibit their neighbours, with greater inhibition when the stimulus comes closer to the focus of
attention (and thus excites more the modulated cells). While RF shifts can be produced by
invoking appropriately-tuned lateral connections and attentional surround inhibition [37], this
leads to a prediction of RF expansion rather than shrink when attention falls directly on the RF.
It is also not clear how lateral connections can explain the very long range of RF attraction
effects, which extend beyond V4 RFs [15].

Here we propose a simple mechanistic model of attentional modulation, which explains
how a top-down modulatory signal, falling upon the upper areas of the visual hierarchy, can
produce all the previously mentioned effects of attention on neural responses (Fig 1). Our
model only requires the existence of modulatory feedback connections between areas, and
short-range mutual inhibition within each area. Briefly, we suggest that the observed effects of
attention arise spontaneously from the effect of feedback connections between higher and
lower areas, interacting with short-range divisive mutual inhibition between neighbouring cells
within each area. Feedback connections (with weight proportional to the feedforward connec-
tion between any two cells, but modulatory rather than driving) redistribute the top-down
modulation to lower areas; this in turn alters the inputs of other higher-area cells, including
those that did not receive the initial modulation. This produces the effects of attention on neu-
ral responses, including receptive field expansion towards the focus of attention (Fig 2A).
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Simultaneously, short-range lateral inhibition between neighbouring cells produce competitive
effects that are automatically scaled to RF size in any given area; because under short-range lat-
eral inhibition, a stimulus can only inhibit a given cell A if it activates a nearby cell B, which
(because it is nearby) is very likely to have an RF highly similar in position and size to that of A
(Fig 2B).

Our model explains all effects of visual attention described above, on response rates and RF
structure, both in topological and fine feature space. In addition, the model makes a novel pre-
diction: attentional effects on response curves should turn from response gain to contrast gain
as the focus of attention shifts away from the center of the studied cell’s RF.

Results

Attentional effects on firing rates
We first investigated the response of a top-layer cell to two stimuli (one preferred and one anti-
preferred) falling within the receptive field—that is, a “biased competition” experiment [8].
The stimulus consists of two semi-rectified Gabor functions, one vertically oriented and one
horizontally oriented, on opposite sides and at equal distances from the center of the studied
cell’s RF. Fig 3 shows the response of the studied cell to either stimulus in isolation, to both sti-
muli together in the absence of attention, and to both stimuli with spatial attention focusing on
one or the other stimulus. As expected, response to both stimuli was intermediate between the
responses to either stimulus in isolation, and attention partially restored response to the
attended stimulus—either increasing or reducing the cell’s response to an unchanged visual
input. The amount of attentional modulation in either direction was approximately +/- 30%,
compatible with experimental observations [9,20].

As expected, attentional modulation was stronger in the top layer than in the bottom layer:
maximum attentional modulation (right under the attentional focus) was 51% for the top
layer, versus 7% in the bottom layer. Note that the latter figure confirms the weak effect of
attention on V1 firing rates.

Fig 1. Model sketch. Each layer is composed of orientation selective cells (8 per location; only 2 shown for clarity). The bottom layer processes
image inputs. The top layer receives excitatory connections from the bottom layer, inversely proportional to distance and difference in preferred orientation
(red lines). The top layer sends feedback connections to the bottom layer, with weights proportional to those of feedforward connections, but modulatory
(multiplicative) rather than driving (additive). In addition, all cells receive divisive short-range inhibition from their neighbour, decaying quickly with distance
(blue lines). For clarity, we only show connections to and from one single top-layer cell; other cells have similar connectivity.

doi:10.1371/journal.pcbi.1004770.g001
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To better characterize the different dynamics of attentional modulation in either layer, we
ran a simple experiment with a single semi-rectified Gabor function, measuring the activation
of bottom-layer and top-layer cell selective to the stimulus’ orientation, both with and without
focusing spatial attention on the stimulus (Fig 4). Our model computes cell activations itera-
tively, computing first the bottom-layer activations, then the top-layer activations, then iterat-
ing after applying feedback from the top to the bottom layer, until activations equilibrate (see
Materials and Methods). As expected, attentional modulation occurs first in the top layer. Fur-
thermore, attentional effects are much stronger in the top layer than in the bottom layer, in
accordance with experimental results [9,24]. Note that, since neural activations are computed
instantaneously at each pass, we can only document gross dynamics at the scale of entire layers;
our model cannot capture more fine-grained dynamics at single-cell level, such as noise corre-
lations (see Discussion).

We then studied the responses of a top-layer cell in a feature-based attention scenario. The
visual input was a single semi-rectified Gabor function, centered at the center of the cell’s RF,
taking successively 8 different orientations from 0 to 157.5 degrees inclusive. Attention was
always allocated to the stimulus orientation. This emulates the experiment performed by Mar-
tinez-Trujillo and Treue [12]. Our model reproduces the observed result of a sharpened tuning
curve, in which attention enhances response when the stimulus is preferred and reduces it

Fig 2. Explanation of model mechanisms. Attentional modulation on top-layer cells extends the RF of other top-layer cells, and short-range inhibition
automatically scales competition to RF size. Top panel (A): Attention expands RFs. Without attention, cell B1 is too far from T2 to excite it significantly, and
thus falls outside T2’s RF (Left). In the presence of attention (Right), the top-downmodulation is propagated through feedback connections to B1, making it
respond more strongly to a given stimulus. As a result, B1 can now reliably excite T2, and thus is now part of its RF. Bottom panel (B): Short-range inhibition
scales competition to RF size. A non-preferred stimulus in N1’s RF excites cells close to N1, which in turn inhibit N1 through short-range inhibition (Left). But if
the same stimulus falls well outside N1’s RF, it will also fall outside the RF of cells close to N1, which are the only ones that can inhibit N1; therefore, N1 will
not be inhibited by the non-preferred stimulus (Right). The only required assumptions are that neighbouring cells tend to have comparable RF sizes, and that
the spatial extent of short-range lateral inhibition is small relative to RF size.

doi:10.1371/journal.pcbi.1004770.g002
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when the stimulus is anti-preferred (see Fig 5). Thus, our model reflects the similarity-gain
principle posited by Martinez-Trujillo and Treue.

We also studied the effects of attentional modulation on contrast response curves, that is, the
curve of neural response as a function of stimulus contrast (Fig 6). The stimulus is again a single
semi-rectified Gabor function centered at the center of the cell’s RF, with stimulus amplitude
increasing linearly until neural response saturates. We confirmed that our model exhibits the
phenomenon predicted by Reynolds and Heeger’s normalization model, in which the modula-
tion of response curves resembles more a response-gain or an input-gain, as the spatial size of
the attentional modulation is made smaller or larger (respectively) in regard to RF size (Fig 6A,
top row). Intuitively this is because larger attentional modulation implies that neighbouring cells
are also modulated with almost equal strength; thus the net effect of attention, after taking into
account inhibitory normalization between neighbouring cells, is very small at high contrasts.
However at lower contrasts, normalization is inherently less potent: the denominator of the nor-
malization equation (Eqs 3 and 6) is dominated by the additive constant and thus produces rela-
tively little mutual inhibition, leaving the attentional multiplication relatively untouched.

In addition, our model makes the novel prediction that the modulation of response curves
should move gradually from a response gain to an input gain, as the focus of attention moves
away from the center of the cell’s RF (Fig 6B, bottom row). Intuitively, this effect can be
explained as follows: as the focus of attention moves away from the cell’s RF center, the cell

Fig 3. Biased competition. Response of a top-layer cell selective for vertically-oriented stimuli. Response to
two opposite stimuli in the RF (third bar) is intermediate between the cell’s responses to either stimulus in
isolation (first and second bar). Attending to one of the stimuli partially restores the response to that stimulus
alone, without any change in the display (fourth and fifth bar). The numbers above the fourth and fifth bars
indicate the magnitude of attentional modulation in comparison to the no-attention response to the exact
same stimulus (third bar).

doi:10.1371/journal.pcbi.1004770.g003
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feels less effect from the small-radius top-down multiplicative modulation (which produces the
response gain); however, it still receives the effects of indirectly-modulated bottom-layer inputs
(which produce a contrast / input-gain), because the latter effect has a much larger spatial
radius, due to the lateral range of feedback and feedforward connections. A curious observation
is that, for a certain distance between attentional focus and RF center, the model produces
intersecting curves, as was reported in some studies (Fig 6c; see also [7]). In our model, this is
again a direct consequence of the dependence of normalization on contrast: as contrast
increases, the relatively small increase from modulated inputs is defeated by the increased inhi-
bition from neighbours which now receive stronger, direct top-down modulation than the
studied cell.

Attentional effects on receptive fields
We investigated the effects of attention on RF position (Fig 7) and size (Fig 8). Our simulated
setting is similar to the one described by [13,15]. Two “target” stimuli (Gabor patches) are posi-
tioned on both sides of the studied cell’s location. Following [13,15], these are of the anti-pre-
ferred orientation and at reduced intensity (85%) to avoid saturating the cell’s response. Then, a
“probe” stimulus (preferred orientation, full intensity) is positioned successively at 15x15 loca-
tions arranged in a square grid centered at the cell’s location. The responses of the cell to each of
these probe stimuli are collated to build a map of the cell’s actual RF in a given condition.

Fig 4. Time course of attentional effects.Cell activations as a function of time in the top and bottom layer,
in the presence or absence of attention. Attentional modulation occurs earlier and is stronger in the top layer
than in the bottom layer.

doi:10.1371/journal.pcbi.1004770.g004
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We first position the “target” stimuli well within the studied cell’s rest RF, and compute the
effective RF when attention is focused on either of the targets, as well as in the absence of atten-
tion. Results in Fig 7 show that the cell’s rest RF is both shifted in position and shrunk in size
by focusing attention on a position within the RF. The RF shift is also illustrated by comparing
conditions in which attention is focused on either of the two targets. By contrast, when the two
targets are located on the outer edge of the RF, focusing attention on a target expands the RF
towards it rather than shrinking it, reproducing the results of [15].

Finally, David and colleagues showed that feature-based attention can also subtly alter the
shape preference of V4 cells (that is, their featural receptive field), making them closer to the
attended features in the spectral domain [17]. We use a procedure similar to theirs to recon-
struct the so-called “spectral receptive field” (SRF) of top-layer cells, which provides a visualiza-
tion of featural receptive fields. The SRF is essentially a normalized two-dimensional Fourier
transform of the cell’s preferred stimuli, indicating the response as a function of stimulus verti-
cal and horizontal frequency (or, equivalently, orientation and overall spatial frequency). It is
computed by reverse correlation, as a weighted average of the 2D Fourier transforms of incom-
ing stimuli, weighted by the responses to this stimuli (David and colleagues include a correc-
tion term for spectral autocorrelation, which we neglect here for simplicity).

We computed the SRF of top-layer cells by exposing them to a number of image patches,
taken from the Van Hateren database of whitened images (thought to emulate the output of
retinal processing), and then weighting the summed 2D Fourier transforms of these patches by
the cell’s response (Fig 9). The resulting SRFs are as expected from the known feature prefer-
ence of the cell, consisting of elongated ellipses aligned to the cell’s preferred orientation. Cru-
cially, applying attention to a particular orientation has the effect of subtly shifting the RFs
towards this orientation, as seen from the difference maps. This reproduces the effects observed
by David and colleagues [17].

Fig 5. Feature-similarity gain. Response of a model cell selective for vertically-oriented stimuli, for stimuli of
varying orientation, with feature-based attention to the stimulus orientation (red) or in the absence of attention
(blue). Dots represent model responses; lines are Gaussian fits. Compare Fig 4 of [12].

doi:10.1371/journal.pcbi.1004770.g005
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Fig 6. Effect of attention on response curves as a function of stimulus intensity. Top row (A): Similarly to Heeger & Reynolds’ normalization model of
attention, response curves becomemore similar to a response gain or a contrast gain (respectively) when the attentional field is made smaller or larger in
comparison to RF size. Middle row (B): In addition, the model predicts that attentional effects should shift from a response gain (first panel) to a contrast gain
(second panel), and might also produce crossing curves (third panel), as the focus of attention shifts away from the center of the stimulus and of the cell’s RF.
Note that the contrast-gain effect persists (though with decreasing magnitude) as attention shifts further away from the RF, due to the wide range of feedback
connections between top and input layers. Compare with Fig 5 of [7].

doi:10.1371/journal.pcbi.1004770.g006

Fig 7. Spatial attention shifts receptive fields. Reconstructed receptive fields obtained by mapping the response of the cell to a moving probe stimulus,
under various attentional conditions. Compare with Fig 2 of [13].

doi:10.1371/journal.pcbi.1004770.g007
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Discussion
We have shown that many effects of attention on neural responses can be explained by a rela-
tively simple mechanism, invoking modulatory feedback connections between areas and short-
range lateral inhibition within each area. Our model replicates observed attentional effects on
both firing rates and receptive field structure, including both response and contrast gain effects,
biased competition scaled to RF size, feature-similarity gain modulation, RF shifts and rescal-
ing according to position of attentional focus, and shifts of featural tuning.

Our model makes the novel prediction that attentional effects on contrast response curves
should change from response gain to contrast gain as the focus of attention shifts away from
the cell’s RF center. We are not aware of any reported study that would provide a direct test of
this prediction. However, we note that Herman and colleagues [38] estimated the effect of
attention focused either on a fixed-position target, or to smaller targets with variable, unpre-
dictable position. They reported that behavioral responses were consistent with a response-
gain effect when the attended stimulus position was known and predictable, and a contrast-
gain effect when this position was unknown and unpredictable (within a fixed region). They
interpret this result as an effect of a larger attentional field size, supported by imaging data.
However we note that this result is also consistent with a larger distance between the atten-
tional focus and the exact stimulus position (due to increased uncertainty in stimulus position).
This could also produce a larger area of increased activity in imaging data if we assume that the
attentional focus moved over possible stimulus positions before stimulus onset. Further experi-
mental work is clearly needed to provide a clear test of this prediction.

While our model makes use of “feedback” connections, we use the term in a functional
rather than anatomic sense: by feedback connections, we mean any topographically organized

Fig 8. Spatial attention resizes receptive fields. Conventions are as in Fig 7. Focusing attention inside the receptive field shifts and shrinks the receptive
field around the focus of attention (top row). Focusing attention just outside the receptive field expands it slightly towards the focus of attention (bottom row).
Compare with Fig 6 of [15].

doi:10.1371/journal.pcbi.1004770.g008
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connections between “higher” and “lower” areas in the visual hierarchy. While direct cortico-
cortical connections may well support much of this feedback influence, sub-cortical structures
also carry targeted, topographically precise “feedback” information between cortical areas. For
example, the pulvinar thalamic nucleus contains multiple maps that receive overlapping pro-
jections from hierarchically adjacent cortical areas, and has been implicated in attentional pro-
cessing [29,39]. Thus, both cortico-cortical and cortico-thalamo-cortical projections may
support the feedback projections discussed here.

Fig 9. Feature-based attention shifts the reconstructed receptive fields of top-layer cells in featural (spectral) space. Top and Middle row: the
reconstructed spectral preference (2D Fourier spectrum) of a horizontally-selective and vertically-selective cell, respectively, under attention to two different
orientations. Note that both cells have preferred orientation equidistant from either attended orientation, and thus receive quantitatively similar attentional
modulation in all conditions. The last column indicates the normalized difference (a-b) / (a+b) between the two attentional conditions, reflecting the shift
caused by attention. Bottom panel: difference between attentional conditions, using the summed spectral receptive fields of both horizontally- and vertically-
selective cells.

doi:10.1371/journal.pcbi.1004770.g009
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Our model implements simple neurons, with instantaneous activation values, rather than
individual spikes or time-varying firing rates. Therefore, although it can reproduce gross tem-
poral dynamics at the scale of whole areas, it cannot capture the fine temporal dynamics of
attentional effects on individual cell responses. In particular, it cannot describe known effects
of attention on firing synchrony [40] and noise decorrelation [41], or the stronger effect of
attention on the late phase of neural responses. Although the model captures diverse effects on
firing rates and receptive field structure, investigating fine temporal and correlation effects will
require more advanced models with realistic temporal dynamics.

Because our model is based on feedback connections and mutual inhibition within each
layer, it is clearly related to Tsotsos’ selective tuning model [42]. However, our model aims at a
more biologically plausible implementation that does not invoke specific operations such as
connection pruning or biased winner-take-all. Furthermore, the source of attentional modula-
tion in our model is a plain response modulation of the “top” layer (which models the interme-
diate layers of the visual cortex, namely V4 and MT); this is in contrast with most existing
models of attentional effects, which tend to posit that attention operates through gain modula-
tion of inputs to the studied layer [4,5,19,21]. As mentioned in the introduction, substantial
evidence suggests that attentional modulation falls on higher rather than input layers of the
visual system, including a top-down cascade of attentional effects [24], decreasing size of atten-
tional modulation in upstream areas [9], direct interactions between attentional and mid-level
visual areas during attention [31,33], and strong connections from FEF to V4 rather than V1
or V2 [30].

The model discusses within-RF competitive effects, which are known to be scaled to RF size
across many areas [9,26]. We show that this apparently fine-tuned matching emerges automat-
ically from short-range mutual inhibition within each layer. However, our model does not
include the distinct phenomenon of outside-RF surround suppression. Surround suppression
differs from within-RF competition in many ways, perhaps more spectacularly by being maxi-
mal for iso-oriented stimuli rather than anti-oriented stimuli. The mechanisms for within-RF
and surround suppression are likely to differ [43], and the mechanism for surround suppres-
sion remains largely unclear (see the apparently conflicting results of [44] and [45]; also [46]
and [47]). More importantly for our purposes, attentional effects for surround stimuli are
known to be weak in comparison to the strong and reliable within-RF competitive effect [9].
Therefore we chose to omit surround suppression from our model at the present time and
postpone integration of surround effects for future work.

An important aspect of our model is the paucity of assumptions, especially when consider-
ing the wide range of effects explained. We only posit the existence of modulatory feedback
connections and short-range mutual inhibition between neighbouring neurons; these two
effects suffice to produce diverse, yet precise effects, including complex alterations of response
rates and receptive fields, automatically scaled to RF size across varying areas. In particular,
there is no need for a dedicated circuitry that would selectively target spatial and fine-feature-
specific neuronal populations in early visual cortex. Importantly, this does not exclude the pos-
sibility that such specific mechanisms are also involved in generating attentional modulation.
Rather, it suggests that these mechanisms need not be invoked to explain the set of effects
described above. In this respect, our model may thus be seen as a potential “null model” of
attentional modulation in cortical responses, describing observed attentional effects as the
expected outcome of well-known features of cortical organization.

The model supposes that a top-down attentional signal falls on the higher levels of the visual
system, in the form of a multiplicative modulation; however, it is agnostic as to the source of
this top-down signal, or how it is computed. A large body of research suggests that allocation
of visual attention is controlled by a set of mutually connected areas, including the Frontal Eye
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Fields, Lateral Intraparietal cortex, and sub-cortical structures such as the Superior Colliculus
[1,2,29] or the pulvinar [39]. Several models seek to explain how these areas compute the actual
locus of attention under different conditions, including bottom-up saliency effects [48] and
guided target-seeking search [49]. Integrating such models of attentional selection with reliable
mechanistic models of attentional modulation could open the way to a broad understanding of
visual attention in the brain.

Materials and Methods
Here we provide a full description of our model. We provide both descriptive equations, and a
snippet of our original Matlab code for reference. The full Matlab source code for our imple-
mentation of the model is available online.

Our model is composed of two reciprocally-connected square areas (the “top” and “bottom”

layers). The bottom layer emulates the properties of visual area V1, while the top layer emulates
properties of higher visual areas that receive the top-down attentional modulation (such as V4
and MT).

Each area is organized as a regular lattice of locations, with one location above every pixel of
the input image, and contain 8 orientation-selective cells at every location. In the bottom layer,
the cells at any location are a full complement of orientation-selective edge detectors, imple-
mented as Gabor filters of 8 orientations between 0 and 157.5 degrees inclusive. Thus, the total
excitation of a bottom-layer cell at position x and orientation θ is:

EBottom
x;y ¼ ð ð1 þ FBx;yÞ � Gaborðx; y; sBottomÞ � ImageÞ2 ð1Þ

where Gabor(x, θ, σBottom) represents a Gabor filter centered at position x with orientation θ
and standard deviation (“radius”) σBottom, and� represents spatial convolution (i.e. pointwise
multiplication followed by summation). Note that σBottom, which determines the effective size
of V1 RFs, was always set to 3 pixels in all experiments. The 1+FB term represents modulatory
feedback from the top layer, as described below (the additive constant 1 ensures that feedback
is strictly excitatory). Note that cell activations are squared to reproduce a power-law response
curve [50,51].

The model implements divisive, non-feature-specific mutual inhibition (i.e. normalization)
between neighbouring cells within each area, again with a Gaussian profile. The normalized
excitation defines the cell’s final response RBottom

x;y :

InhBottomðxÞ ¼ SyðEBottom
x;y � Gaussðx; sInhÞÞ ð2Þ

RBottom
x;y ¼ EBottom

x;y

InhBottomðxÞ þ CBottom
ð3Þ

Gauss(x,σ) denotes a Gaussian function with mean x and standard deviation σ. Note that Eq
2 essentially denotes a convolution with a Gaussian kernel for each orientation, then a point-
wise summation of the resulting maps (reflecting short-range, untuned mutual inhibition). Eq
3, in which cBottom is a constant, is the well-known normalization equation [4,43,52]. In all sim-
ulations, σInh was set to 1, emphasizing the short range of inhibition in our model.

Top-layer cells receive excitatory connections from the bottom-layer cells: the RBottom
x;y values

constitute the inputs to the top layer. The connection between any two cells is proportional to a
Gaussian function of their distance, both in space and in preferred orientation. Note that while
bottom-layer cells are orientation-selective due to the Gabor filters that constitute their input
weights, the orientation selectivity of top-layer cells arises solely from their selective
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connections from bottom-layer cells. Furthermore, top-layer cells also receive the attentional
modulation, which is either spatial or feature-based (i.e. orientation-specific). Normalization
occurs as in the bottom layer.

ETop
x;y ¼ ð ð1 þ Ax;yÞ � Gaussðy; sOriÞ � Gaussðx; sTopÞ � RBottom

x;y Þ2 ð4Þ

InhTopðxÞ ¼ SyðETop
x;y � Gaussðx; sInhÞÞ ð5Þ

RTop
x;y ¼ ETop

x;y

InhTopðxÞ þ CTop
ð6Þ

Notice that the first of these equations describes a convolution of the bottom-layer maps
with both spatial and orientation Gaussian kernels, with pointwise multiplication by the local
attentional field Ax,θ (see below). In other words, the Bottom-layer output is convolved with a
Gaussian spatial kernel, and the resulting set of maps (one per orientation) is then convolved
with an orientation-wise 1D Gaussian kernel centered at the appropriate orientation for each
given top-layer cell (and with standard deviation σOri). Again, activations are squared, and
attentional feedback is made purely excitatory by a unit additive constant. The other two equa-
tions describe local normalization, similarly to Eq 3 above. Note that σInh has the same value
(i.e. 1) for both layers.

The attentional term Ax,θ is a Gaussian function of either the distance from attentional
focus Xatt (for spatial attention) or the angular distance between the preferred orientation and
the attended orientation (for feature-based attention).

Ax ¼ aAttSpatialGaussðXAtt; s
AttSpatÞ ð7Þ

Ay ¼ aAtt
FeatureGaussðyAtt; sOriÞ ð8Þ

Notice that the spread of feature-based attention in orientation space (Eq 8) is equal to σOri,
the spread of connection selectivity in orientation space, as used in Eqs 4 and 9.

In addition, top-layer cells send feedback connections to bottom-layer cells, as represented
by the FB term in Eq 3. The feedback connection between any two cells has weight proportional
to the feedforward connection between these two cells. Thus, the expression that computes the
FBx,θ term in Eq 1 is similar to Eq 4, replacing RBottom with RTop and multiplying by a constant
αFB indicating the relative “strength” of feedback:

FBTop
x;y ¼ aFB � Gaussðy; sOriÞ � Gaussðx; sTopÞ � RTop

x;y ð9Þ

As a result of top-down feedback connections, bottom-layer responses are modified, so the
activities of top-layer cells (which use bottom-layer cells as inputs) must be recomputed. The
whole process is iterated until equilibrium is reached (in our experiments, 30 iterations suffice
to equilibrate responses).

Note that we used the exact same values for all model parameters across all of our experi-
ments. These were set to σBottom = 3, σTop = 12, σInh = 1, σAttSpat = 3, σOri = 1.1�π/8, aAtt

Spatial = 2,

aAttFeature = 0.2, αFB = 18.
To determine adequate values for the normalization constants cBottom and cTop, we ran the

model on a specific input image composed of a semi-rectified Gabor (identical to the ones used
for the biased competition experiments described in Results), setting the values of c for each
layer to a fixed multiple σNorm of the maximum pre-inhibition activation in that layer at each
successive iteration. This fixed multiplier σNorm = 0.6 therefore indirectly determines both
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cBottom and cTop. The values of cBottom and cTop quickly converged to 2.6757 and 1.09�10−4,
respectively. These values were used for all experiments.

Note that top-layer RFs are 4 times as large as bottom-layer RFs, reflecting the rough relative
size of V1 and V4/MT RFs; while inhibition has a (constant) range much shorter than either
RF size or attentional modulation, consistent with the short, layer-independent range of inhibi-
tion posited by our model.

To estimate the sensitivity of our model to precise parameter values, we simply altered all
free parameters (σBottom,σTop,σInh,σAttSpat,σOri,aAttSpatial, a

Att
Feature,α

FB,σNorm) by a common multiple.

We find that cutting all values by 20% does not modify the qualitative conclusions of the model
(S1 Fig). However, increasing all parameter values by 20% (but not 10%) effectively eliminates
the attentional biasing effect. Thus, the model is moderately tolerant to parameter changes,
despite the numerous nonlinear interactions present in the model. Again, we stress that we
used the same parameter values for all experiments, in contrast to other models in which
parameters are adapted to produce adequate results for each experiment; we believe this
strengthens the plausibility of our model.

Due to the simplicity of the model, we can complement the above descriptive equations
with a snippet of our actual Matlab code, thus providing an unambiguous description of the
model’s operation (note that our full code is available online).

% Network activities are computed iteratively to allow
% feedback to equilibrate

for numiter = 1:30

% excFFv1 is the network input (dimensions ImWidth x ImHeight x 8),
% computed by processing the stimulus through a bank of Gabor
% filters at 8 different orientations

v1 = excFFV1; % Stimulus input

% Feedback from top layer (initially, fbv1 = 0)
v1 = v1.� (1 + fbv1);
v1 = v1.^ 2; % Squaring

% Normalization (division by local activity summed over orientations)
v1inh = imfilter (sum(v1,3), INHF); % INHF is a 2D Gaussian filter
v1 = bsxfun(@rdivide, v1, (SIGMAV1 + v1inh));

% Excitatory transmission from bottom to top layer.
% Note the use of separable convolution for Gaussian filters.
% RFV4_1D is a 1-dimensional Gaussian filter, applied in the x and y
% dimension. ORIF is a 1-dimensional Gaussian filter applied in the
% third (orientation) dimension.
v4 = imfilter(imfilter(v1, RFV4_1D), RFV4_1D');
v4 = imfilter(v4, ORIF, 'circular');

%Attentional modulation
v4 = bsxfun(@times, v4, (1 + v4attfield));
v4 = v4.^ 2; % Squaring

% Normalization by local activity
v4inh = imfilter (sum(v4,3), INHF);
v4 = bsxfun(@rdivide, v4, (SIGMAV4 + v4inh));
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% Computation of the feedback to the bottom layer for next step
fbv1 = imfilter(imfilter(v4, RFV4_1D), RFV4_1D');
fbv1 = FBSTRENGTH � imfilter(fbv1, ORIF, 'circular');

end

Supporting Information
S1 Fig. Reducing all free parameters by 20% preserves the conclusions of the model. Con-
ventions are as in Figs 3, 5, 7 and 8. While the quantitative values differ, the effects of attention
(biased competition, feature-similarity gain, RF shifts and RF scalings) are qualitatively pre-
served. Note that, by contrast, increasing all parameter values by 20% (but not 10%) largely
eliminates most of the attentional effects.
(TIFF)
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