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Abstract

The ability of sensory networks to transiently store information on the scale of seconds

can confer many advantages in processing time-varying stimuli. How a network could

store information on such intermediate time scales, between typical neurophysiological

time scales and those of long-term memory, is typically attributed to persistent neural

activity. An alternative mechanism which might allow for such information storage is

through temporary modifications to the neural connectivity which decay on the same sec-

ond-long time scale as the underlying memories. Earlier work that has explored this

method has done so by emphasizing one attractor from a limited, pre-defined set. Here,

we describe an alternative, a Transient Attractor network, which can learn any pattern

presented to it, store several simultaneously, and robustly recall them on demand using

targeted probes in a manner reminiscent of Hopfield networks. We hypothesize that such

functionality could be usefully embedded within sensory cortex, and allow for a flexibly-

gated short-term memory, as well as conferring the ability of the network to perform auto-

matic de-noising, and separation of input signals into distinct perceptual objects. We dem-

onstrate that the stored information can be refreshed to extend storage time, is not

sensitive to noise in the system, and can be turned on or off by simple neuromodulation.

The diverse capabilities of transient attractors, as well as their resemblance to many fea-

tures observed in sensory cortex, suggest the possibility that their actions might underlie

neural processing in many sensory areas.

Introduction

The real world “causes” of sensory inputs usually persist for much longer than the time scales

of neural processing in sensory areas. As a result, there is great utility for neural and circuit

mechanisms within sensory cortex that can hold information for several seconds, much longer

than the timescale of neural integration. Storage of information on this time scale is commonly

addressed in the context of “short-term memory” [1], but there is more general utility for sec-

onds-long storage of information. For example, such aggregation of information over time can

be used to segregate auditory stimuli into perceptual auditory objects [2]. Similarly, features of

visual objects can be assembled over time using such associations despite temporary occlusions

and visual noise [3].
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The most common models of short-term memory rely on the concept of a “persistent

attractor” [4,5]. A network with a fixed set of recurrent connections can support “attractors”,

which correspond to particular patterns of activity that remain stable or decay slowly with sec-

onds-long time scales. In this context, placing the network in one of these attractors (via

inputs) can result in short-term memory, which can be ‘recalled’ by observing the activity at a

later time (before the attractor decays). Persistent activity is typically maintained by a combi-

nation of excitatory and inhibitory activity [6,7], and persistent states can even exist in random

networks with particular properties [8]. The unifying feature of persistent attractor networks is

that information is stored in neural activity itself, thus keeping it readily accessible.

The persistence of memory-specific neural activity in certain cortical regions during short-

term memory tasks has been cited as evidence supporting the persistent attractor hypothesis

for short-term memory [9,10]. More recently, however, it has been shown that this activity is

not necessary for the persistence of the underlying memories [5,11,12], and that some form of

short-term memory also occurs in the sensory cortices themselves [13–15]. An alternative

location for the storage of information about recent inputs is in the local connectivity within

the network itself. Indeed, such memory storage is implicit in models of long-term memory

[16], where memories are encoded in the excitatory connectivity which is established using a

simple form of associative plasticity. Such a scheme could also be used for short-term memory

if such changes in synaptic connectivity were temporary, allowing for the short-term preserva-

tion of information within the network without affecting the network’s long-term structure

[17–20]. The temporary change would support a particular attractor in the presence of appro-

priate inputs [21], thus allowing for memory recall over this period. We label such attractors

‘transient’ as they only exist during appropriate input and due to relevant changes to network

connectivity (which are themselves temporary).

Here, we propose transient attractors as a unifying mechanism within cortical networks

that can support multiple types of computation that require combining information across

time scales longer than those of the underlying neurons (similar to another recently published

model [22]). We first demonstrate how a transient attractor functions in the context of a classic

short-term memory task. Several memories can be stored in the network structure, allowing

for their recall in the presence of suitable inputs. These memories then fade over several sec-

onds. The same network can be used to extract information from time varying stimuli, specifi-

cally in the tasks of stream segregation and signal de-noising. We finish by considering some

issues that impact the various uses of transient attractors, including transient attractor mainte-

nance, the effect of top-down attention and the overall robustness of the network.

Results

We consider here a simple form of a transient attractor network (Fig 1A), which demonstrates

the basic behavior without requiring intricate models of any one process. To this end, each

neuron’s activity is summarized by a single, continuous variable, the firing rate (yi (t) for neu-

ron i at time t). This is calculated using a standard firing rate model (see Methods) that inte-

grates recurrent excitation and inhibition, along with feedforward inputs which represent the

stimulus. Short-term memory is supported within the network by varying the recurrent excit-

atory currents.

The network behavior is then shaped primarily by the dynamics of recurrent excitation. At

any given moment, the strength of a recurrent excitatory connection between (postsynaptic)

neuron i from a (presynaptic) excitatory neuron j, Wij(t), is the product of three terms: a fixed

baseline synaptic weight Sij, an associative (Hebbian) gain Hij(t), and a synaptic depression
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term xi(t):

WijðtÞ ¼ SijHijðtÞxiðtÞ ð1Þ

The Hebbian plasticity term Hij(t) increases with coincident pre- and postsynaptic activity

yi (t)yj(t), and decays towards some minimum value Hmin in the absence of any coincident

activity:

dHijðtÞ
dt

¼
1

tHþ

Hmax � HijðtÞ
h i

yi tð Þyj tð Þ �
1

tH�

HijðtÞ � Hmin

h i
ð2Þ

The growth term is scaled so that the connection strength cannot exceed a maximum value

Hmax. The rates of growth and decay are governed by their respective timescales, tHþ
and tH�

(with rate of growth significantly faster than that of decay).

Excitation is regulated by (and stable due to) two mechanisms: feedback inhibition, and the

synaptic depression term xi(t). For this simple network, we only consider a single inhibitory

unit, which receives inputs from, and projects back to, the excitatory neurons and itself;

Fig 1. Transient attractors in single layer network via associative weight modifications. (A) Network structure. (B)

When presented with stimulus, recurrent connections between simultaneously active neurons are strengthened. (C)

Stimulus: two patterns shown successively at 4 Hz, capped at beginning and end by probe (D) Activity of excitatory

neurons in response to stimulus (E) Weight changes for representative sample of recurrent connections. (F) Potential of

sample excitatory neuron #3. Initially, both probes cause some inhibition while after training the in-pattern probe causes

elevated potential (firing), while other probe causes increased inhibition. (G) Inhibitory cell’s firing rate.

https://doi.org/10.1371/journal.pone.0188562.g001
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connections to and from the inhibitory neuron are uniform. This inhibitory unit therefore

suppresses all neurons by an amount proportional to the total excitatory activity, resulting in

competition between the excitatory neurons. Synaptic depression xi(t) is governed by a stan-

dard model [23]:

dxiðtÞ
dt
¼

1

txþ

1 � xiðtÞ½ � �
1

tx�

xiðtÞyiðtÞ½ � ð3Þ

This decreases the strength of a given connection Wij(t) (Eq 6) due to presynaptic activity

yi(t), and otherwise increases back to a baseline (unity).

In this simple network, the baseline strength is assumed to be uniform (Sij = S0). As we will

describe, this gives the network the maximum potential for memory storage, but alternatives

will be considered later.

Short-term memory via transient attractors

The behavior of this network can be understood in the context of attractor dynamics [24]. In

the presence of a constant external input, firing rates in the network will settle into a stable pat-

tern of neural activity–an attractor–that depends on both the external input and the state of

the network. Note that such a definition of an attractor is broader than that used in much of

the persistent attractor literature, which only considers attractors that remain active when

external input is removed. Because both the stimulus and effective synaptic strengths can

change in time, the attractor for a given network itself is time-varying, and–crucially–will

depend on recent history of network activity through the associative gain term (Hij). This

approach of the memory being the attractor that results from time-varying synaptic strengths–

and not the neural activity itself–not only allows for more flexible storage of information, but

also the targeted recall of certain memories and effects a significant reduction in the interfer-

ence between simultaneously stored memories.

We first illustrate how the transient attractor network works within a minimal network

with just four excitatory neurons (Fig 1A). We select two patterns to store: the first with neu-

rons #1 and #3 coactive, and the second with neurons #2 and #4 coactive (Fig 1B). Before the

memory is stored, we present “probe” stimuli, each driving a single neuron (Fig 1C, left) in

order to verify there are no preexisting network attractors. Indeed, such probe stimuli only

evoke activity in the neurons that were externally stimulated (Fig 1D, left). To imprint the

memory, the two patterns are displayed alternately at 4 Hz for 1 sec (Fig 1C, center). Following

this, both probe stimuli are displayed again (Fig 1C, right) to determine if the memories are

recalled in the network activity. Indeed, while only the stimulated neurons fire in response to

the probe stimuli at the beginning (Fig 1D, left), the patterns emerge after training (right).
During the training period, the memory is imprinted in the increased recurrent weights

between coactive neurons over repeated presentations (Fig 1E). These strengthened connections

then lead to increases of membrane voltages when even a part of the recently imprinted pattern is

shown (Fig 1F). This in turn causes an increase in inhibitory firing rates proportional to the addi-

tional excitatory activity (Fig 1G), and an increase in suppression of the non-paired neurons.

We next extend this simple example to a much larger network, capable of learning multiple,

overlapping patterns. This network has 100 excitatory neurons, arranged in a 10×10 grid. Note

that the grid arrangement is only to make visualizing the patterns of activity easier, and it does

not represent any biases in connectivity; the excitatory connections are all-to-all, and of equal

strength. We train this network with three patterns, two digits (to be easily recognizable) and a

third composed of randomly selected neurons. This set of patterns illustrates how any pattern

can be stored in the network, but also note that the two digits chosen have a large number of
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shared elements. Random subsets of each pattern are selected as probe stimuli, and the network

is tested to have no preexisting attractors, and trained as described above (Fig 2A). The success-

ful storage of the memories in the network can be verified by comparing the levels of activity of

the excitatory neurons to the initial and final probes (Fig 2B). This shows that an attractor has

been created for each pattern. Furthermore, due to the inhibition-mediated competition, activ-

ity does not ‘leak’ between overlapping attractors, and the stored information is recalled in the

presence of a relevant probe. This demonstrates that this network is capable of performing

short-term memory tasks involving multiple (potentially overlapping) memories held simulta-

neously. As with Hopfield networks, the memory capacity of this network (i.e., the number of

patterns that can be stored simultaneously in memory) increases with the number of neurons

[25], but in practice such a capacity cannot realistically be used due to the limitation of the tran-

sient time scale over which the trained patterns of connectivity maintain themselves.

Stored short-term memories in this network have an additional attractive property in con-

trast to persistent-activity-based attractors: namely that they are stable while being stored.

Such stability can be demonstrated in an example network where there is a clear topography

between different activity states of the network. Thus, we next consider a ring attractor [26]. A

ring attractor is composed of a circle of neurons, with each neuron preferentially connected to

its neighbors (Fig 3A). In principle, ring attractors based on persistent activity can store a con-

tinuous variable because activity at any point on the ring can be stable. However, it has been

shown that any noise in recurrent connections will cause a severe reduction in the number of

stable equilibriums: typically down to a handful [27]. In practice, this means that the system

will always drift to one of the relatively few global attractors (Fig 3B).

Transient attractors avoid this drift by having the network inactive in between training and

read-out (Fig 3C), meaning that the memory cannot drift. Any unpatterned noise in the inter-

vening period will not consistently activate pairs, and thus the presence of the attractor itself

will also be robust to noise (see below). This observation complements earlier work [27] show-

ing plastic synapses will reduce the rate of drift in the case of persistent activity (Fig 3D). Fur-

thermore, analogous to the more general network considered above (Fig 2), this network is

capable of storing multiple locations simultaneously (Fig 3E), each re-activated by their own

probe. This demonstrates how storing information in modified synaptic connections, as

opposed to persistent activity, prevents slow distortion of the information by small errors

within the network (in this case, attractor drift).

Fig 2. Transient attractors store several arbitrary patterns. (A) Stimulus composed of probe stimuli and

training stimuli, with three different patterns (two recognizable patterns, one random, all overlapping). Probes

are random subset of 25% of each pattern respectively. (B) Excitatory activity (firing rate) at time of probes.

https://doi.org/10.1371/journal.pone.0188562.g002
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Maintenance of information over time

By design, information stored in transient attractors degrades at the time scale of the underly-

ing transient synaptic plasticity. While this would appear to limit the amount of time a mem-

ory can be stored by the transient attractor, such a network can extend to storage over longer

periods of time through reactivation of the attractor [18]. Such reactivation will strengthen all

relevant connections, and thereby allow information to be stored for durations well past the

time scales of the decay of the transient synaptic plasticity.

To demonstrate how the transient attractor is capable of this, we first store two overlapping

patterns (Fig 4A, left). Without any further activity, the information stored will become inacces-

sible over several seconds due to the timescale of decay of the induced synaptic plasticity. How-

ever, here the stored information is refreshed by regular reactivation of the attractors via

pulsing background activity (Fig 4A, center). Background stimulation causing the refresh need

not be specific to any stored pattern; in this example, background stimulation is uniform across

all channels, but as a result momentarily activates individual attractors within the network. Fur-

thermore, the pulsing nature allows for sequential activation of multiple attractors due to the

synaptic depression of synapses which were most recently activated. The pulsing uniform activ-

ity is not the only conceivable method of refreshing memories; for example, specific memories

might be targeted using an appropriate probe. As a result of this attractor reactivation, it can be

seen that the duration of the memories has been extended (Fig 4A, right and Fig 4B). This dem-

onstrates the how transient attractors could store information over variable time scales.

Associating distinct patterns of input via temporal coherence

For the above examples of memory, stimuli were presented separately in time in order to focus

on the storage and retrieval of patterns. However, real world stimuli will often not be so conve-

niently separated in time, with different components that can only be distinguished by

Fig 3. Short-term memory in a ring attractor. (A) Structure of ring attractor (inset: bidirectional excitatory weight from

neuron i to neuron j). All plots have noise (epsilon) = 0.05. (B) Persistent activity subject to drift. Center of distribution of activity

shown for ten initializations, one typical trajectory shown by shading. (C) Plastic synapses allow for information storage in

transient attractors at any single location (D) Transient attractors stabilize activity in case of persistent activity (initial departure

due to immediate depressive feedback) (E) Transient attractors allow for simultaneous storage of multiple locations (recall

prompted by stimulating either upper or lower half of cells).

https://doi.org/10.1371/journal.pone.0188562.g003
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detecting shared temporal features. Such a theory of “temporal coherence” has been suggested

as a solution for the “cocktail party” problem, that is the ability to associate the features com-

prising different sounds and focus on those components while suppressing others [28,29].

Temporal coherence has likewise been used for visual object separation [3].

The network described above can perform a simple example of such segregation based on

temporal coherence. The training stimulus is composed of two random, non-overlapping pat-

terns of activation, which are then modulated by two random and independent temporal enve-

lopes (Fig 5A). As with earlier examples, probes are displayed before and after exposure to

patterns to demonstrate the creation of transient attractors. While both patterns were present

at some amplitude throughout the training period, the network responses to the probes (Fig

5B) following training reveal that the network has learned both patterns. This happens due to

the inhibitory feedback which prevents both patterns from being represented simultaneously.

As patterns in the network are not represented simultaneously (even if both are present in the

Fig 4. Network can separate patterns using temporal coherence. (A) Two training patterns and their

temporal envelopes. (B) Excitatory activation at time of probes revealing transient attractors have formed for

each pattern.

https://doi.org/10.1371/journal.pone.0188562.g004

Fig 5. Transient attractors for de-noising and object recognition. (A) Stimulus composed of two parts.

Signal (top) is occluded pattern (25% occlusion) for 25 ms, repeats every 100ms. Noise (bottom) random

across all non-signal channels. Noise and signal have approximately same amplitude, average activity and

temporal correlations. (B) Network activity in response to stimulus. Initially network responds to noise and

signal equally, but over time correlations in input allow it to filter out noise and complete the pattern.

https://doi.org/10.1371/journal.pone.0188562.g005
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stimulus), they are essentially temporally segregated within the network allowing associations

to be learned. Conversely, any inputs which have been co-active for a significant period of

time are temporally associated, and will be bound while the two inputs are displayed. We con-

clude that the network is capable in-principle of performing some form of on-line temporal

coherence analysis [30].

Separating signal from noise

Just as networks with persistent activity may act as neural integrators [31], the transient

attractor network may also act as an integrator, allowing it to filter out noise and store an

uncorrupted version of the signal. This works because changes to network connectivity sum

for short time scales (those less than the time scale of decay). We demonstrate this ability with

an example where the signal corruption is due to both occlusion (part of pattern temporarily

absent) and uniform noise (additional spurious inputs). We construct a stimulus composed of

two parts, signal and noise (Fig 6A). Different partially occluded versions of the pattern are

presented briefly. Noise is also introduced, with other inputs randomly active such that the

average firing rate is constant across all inputs.

In the context of such stimulation, it is not possible to distinguish between signal and noise

by examining either any individual channel over all time, or all channels together at one

Fig 6. Maintenance of transient attractor by uniform input. (A) Two overlapping patterns stored in

memory during first second, recall attempted between 4.8 and 5 seconds. Intermediate period filled with either

pulsing low intensity uniform network inputs (top) or no input (bottom). (B) Continued activity allows network to

maintain transient attractors and extends duration of memory.

https://doi.org/10.1371/journal.pone.0188562.g006
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individual point in time. However, because the plasticity integrates over all temporal associa-

tions on the second-long time scale, the noise ends up contributing much less to the connectiv-

ity compared with the more consistent signal over this time scale, resulting in an attractor

dominated by the combinations of associates that got presented. By the end of training, presen-

tation of a part of the pattern will activate a transient attractor corresponding to the entire pat-

tern (Fig 6B), both filtering out the noise and filling in the majority of the occluded channels.

Modeling attention and the role of inhibition

The transient attractor network also has the ability to turn on or off its function through

straightforward modulation of inhibition. When the overall strength of inhibition is increased,

recurrent activation of attractors will be suppressed such that the network will have no attrac-

tors other than faithfully relaying the stimulus. To demonstrate this, we consider the network

described in Fig 2, and re-run the simulations when the level of inhibition is increased by dou-

bling the strength of all inhibitory synapses. Although exposure to patterns still leads to synap-

tic strengthening, such changes are insufficient to create a stable attractor, and the final probe

no longer leads to pattern recall (Fig 7). In this example, inhibitory modulation works to pre-

vent retrieval of previous associations. Such basic modulation coincides with observations of

the requirement of attention or engagement for the storage of short-term memories [9], as

well as for changes associated with auditory streaming [29], and is generally useful to selec-

tively perform the various functions of a transient attractor network.

Model robustness

Stability is often a large concern in neural networks with recurrent excitation; a slight modifi-

cation to the strength of recurrent connections can either lead to runaway excitation or silence

activity throughout the network. We can test how fine this balance is in our model by changing

the baseline synaptic strengths of all neurons of a certain type, for example halving all feedback

inhibition, and determining if the network continues to successfully store and recall patterns.

Each individual parameter could be varied by at least 25% in either direction (Fig 8A), showing

the model to be highly resilient to the average sizes of synaptic strengths. We attribute this sta-

bility to the close link between inhibition and excitation, as the amount of inhibition scales

with the amount of excitation, similar to many E-I networks [24]. Additional stability to the

network is a result of saturating firing rates within the single-neuron models.

Fig 7. Inhibition as proxy for attention. Network from Fig 1A with either standard (A, C) or increased (B, D)

levels of inhibition. Excitatory neuron responses (A, B) and potentials (C, D) reveal dependence on level of

inhibition, and suggest inhibition as proxy for attention.

https://doi.org/10.1371/journal.pone.0188562.g007
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We also perform a much more extreme manipulation. We randomly removed a percentage

of recurrent connections while keeping total recurrent connection strength constant. Such a

manipulation results renders the network structure highly heterogeneous. It was found that

the network still functions remarkably well at recalling any pattern for connection densities as

low as 20% (Fig 8B). This result comes from the manner in which memories are stored–as

associations between many different pairs of neurons–which is only perturbed when a large

proportion of connections have been removed. This demonstrates that the underlying func-

tionality of the network is not overly reliant on a homogeneous network structure, and there-

fore may function well within biological networks that can be highly heterogeneous in nature.

The transient attractor model becomes more robust in larger networks; the larger number

of neurons comprising each pattern make it exponentially less likely that any two patterns will

significantly overlap (relative to the number of neurons in the patterns). This is related to the

reason that the memory capacity of a Hopfield network scales linearly with network size. Like-

wise, memories in larger networks are stored across multiple synapses, so that the network will

be more robust to irregularities at single synapses.

Discussion

Here we have presented the transient attractor network, defined primarily by recurrent excit-

atory connections that are governed by an associative (Hebbian) plasticity that decays within

seconds. We have demonstrated that such a network is capable of a wide range of useful

Fig 8. Network resilience. (A) The network continues to be able to successfully recall information for a wide

variety of values of each parameter (ratio compared to default plotted). (B) Network performance for sparse

network over 100 trials. PPV = Positive Predictive Value, TPR = True Positive Rate. Dashed/solid lines are

median before/after training, shaded region lies between first and third quartile.

https://doi.org/10.1371/journal.pone.0188562.g008
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behaviors, including short-term memory (Figs 1–3), source (or stream) segregation (Fig 4),

signal de-noising (Fig 5), memory maintenance (Fig 6), top-down modulation (Fig 7). Fur-

thermore, we demonstrated the robustness of the model with respect to both synapse strength

and homogeneity (Fig 8). The concept that the same underlying network mechanism might

have several uses in sensory computation is compelling in its simplicity. In fact, each of the

tasks in Figs 2 and 4–7 was performed using the exact same network with the same parameters.

Furthermore, while many of the above functions of transient attractor networks are demon-

strated with these simplified networks, the networks size should actually make its desirable

properties more robust.

The mechanisms and network structure underlying transient attractors are known to exist

in the cortex–except, perhaps, for associative transient plasticity (see below). It does not

depend on a set of stable attractors, or some finely prescribed structure. This allows it to be a

candidate for short-term memory in a wide variety of regions, such as the primary sensory cor-

tex [14,15]. This is in contrast with a large number of short-term memory models which pre-

scribe such tasks to particularly specialized regions of the brain. The broad applicability of

short-term memory benefits from widely applicable mechanisms, perhaps working in tandem

with more specialized regions.

Alternative models for short-term memory

The classic model for short-term memory stores information in persistent attractors [5], that is

through a self-sustaining state within the network. Once such an attractor is activated, activity will

persist until externally stopped, while the identity of the persistent attractor stores the information.

This self-sustenance is typically achieved in neural networks through different combinations of

recurrent excitation [4,32], inhibition [33], or both [6,7,34]. Of the many models of persistent

attractors, an interesting subset made use of synaptic modifications to the attractor to aid in the

persistence of activity [27,35]. The combination of persistent activity and underlying synaptic mod-

ifications does resemble the transient attractor network (Fig 3D), but nevertheless information

storage in these networks relies on persistent activity. While various experiments [36–40] support

the idea of persistent activity underlying short-term memories, a number of conflicting studies in

different brain areas have drawn doubt on the universality of such a mechanism [5,11,18].

As a result, other models for short-term memory have been proposed, using processes such

as cell assemblies [41], non-stationary activity [42], cross-regional networks [43,44], or purely

feed-forward circuits [32]. These other ideas all rely on neural activity for information storage,

and thus are still distinct from the idea of storing information in neural connectivity.

Several models have also been proposed which store short-term memories as temporary

changes in synaptic strength–as the transient attractor network does–using either direct asso-

ciative plasticity [17,19,20,22] or synaptic facilitation [18]. In the majority of these, the scope of

the memories was pre-defined by the structure of the network. Sandberg et al. [17] used a ring

attractor which could store individual variables due to the ring structure, Szatmary and Izhike-

vich [19] used randomly created periodic attractors, while Mongillo et al. [18] facilitated pre-

defined cell assemblies. This is in contrast to the transient attractor network, which considers

how recent stimuli might shift the locations of the attractors. In this respect, our model is

highly similar to a model recently proposed by Fieberg and Lansner [22], which stored short-

term memories in transient associative changes to the connectivity. Our work adds to this idea

by demonstrating how such a mechanism occurring within the sensory cortices might assist

with a variety of other functions such as temporal coherence analysis, signal denoising, and

memory maintenance, combined with analysis of the systems robustness to a variety of

perturbations.
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Experimental evidence for transient associative synaptic plasticity

The transient attractor network above relies on an associative learning rule that decays on the

order of seconds. There is scattered experimental evidence for transient associative effects (i.e.,

where strengthening of connectivity occurs between coactive neurons), which has been observed

in ferret auditory cortex [29], macaque ITC [45], and dissociated networks [46]. It is known that

associative learning takes place over a variety of timescales due to multiple mechanisms [47],

including some direct associative connections which decay in minutes [48,49]. It is conceivable

such processes might exist for shorter timescales, but have proven difficult to separate from non-

associative plasticity similar timescales (such as synaptic facilitation and depression). Such asso-

ciative plasticity also may be possible to achieve associative changes in effective coupling using

non-associative facilitation within certain network structures; this is the subject of future work.

Extensions of the transient attractor network

It is hypothesized that the pre-existing wiring of neural networks in sensory cortices is informed

by the structure of natural stimuli [50], which is equivalent to non-uniform connectivity (Sij) in

the transient attractor network. While such non-uniformity would bias the network towards

some attractors, this could be advantageous in sensory cortex, as the location of transient attrac-

tors will be guided both by the immediate history and by the pre-learned nature of typical sti-

muli. When presented with a novel stimulus, the network’s interpretation may be biased by

learned stimuli, which are presumably the stimuli that have proven the most useful (given rules

of long-term plasticity). This coordination of short- and long-term plasticity is distinct from ear-

lier work that stored short-term memories by strengthening some pre-existing attractors: in the

transient attractor model, recent activity may change the nature of (e.g. strengthen, make stable

or shift) pre-existing attractors. This allows for much greater flexibility in memory storage; the

number of possible transient attractors (as influenced by pre-learned patterns, recent history,

and by the nature of the instantaneous input) is far larger than that of pre-existing attractors.

Methods

Neuron model

In our model, the firing rate of neuron i at time t, yi(t) is governed by the neuron’s instanta-

neous membrane potential, vi(t). The dependence of firing rate on the potential is described

using a saturating, rectified linear function

yiðtÞ ¼ max½1 � expðaðb � viðtÞÞÞ; 0� ð4Þ

The membrane potential evolves proportional to the sum of the recurrent excitatory IExc(t),
inhibitory IInh(t), input Iin(t) and leak ILeak(t) currents,

dviðtÞ
dt
¼

1

tLeak
IExcðtÞ þ IInhðtÞ þ IInðtÞþILeakðtÞð Þ ð5Þ

IExcðtÞ ¼
P

Excj
WijðtÞyjðtÞ ð6Þ

IInhðtÞ ¼WInhyInhðtÞðE
I
rev � viðtÞÞ ð7Þ

ILeakðtÞ ¼ � viðtÞ ð8Þ
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Note that the excitatory and inhibitory recurrent currents are themselves a weighted sum of

other neurons’ firing rates (with weight Wij(t) between excitatory neuron i and j, and WInh

from the inhibitory neuron to all excitatory neurons). Finally, the inhibitory current acts to

return the membrane potential to the inhibitory reversal potentials (EI
rev), while the excitatory

currents are independent of the membrane potential; this is simplification is valid since the

excitatory reversal potential is far larger than typical values for the membrane potential, so that

the difference between the two is approximately constant.

Parameters

Simulation parameters which remain constant across all simulations are listed in Table 1.

Weights between neurons depend on the network structures used in each Figure, as follows:

For Fig 1: WSE = 5, WIE = 5, WII = 20, WEI = 10, WEE = 1

For Fig 3 (ring attractor): WSE = 1, WIE = 10, WEI = 2, WEE = 1.5

For Figs 2 and 4–8: WSE = 5, WIE = 5, WII = 20, WEI = 1, WEE = 0.1

Ring model (Fig 3): The profile of the recurrent excitatory baseline weights across space fol-

low a Gaussian bell curve with a standard deviation of 10 centered at the postsynaptic neuron’s

location, and a strength of 1.5 in the center (recorded in Parameters above). All weights are

then multiplied by a random noise term, drawn from normal distribution, μ = 1, σ = 0.05.

Temporal Coherence Model (Fig 5): Time courses were generated using a continuous low-

pass filter applied to Gaussian noise; in particular, a filter was used in which the energy at a fre-

quency f was multiplied by exp(-0.1�f).

De-noising model (Fig 6): The signal pattern was deliberately chosen for its distinctive

shape; the pattern was then used to classify all input channels as either signal or non-signal.

The signal channels were only ever active when a significant number of the other signal chan-

nels were active. In particular, an occluded pattern (a subset of 75% of all signal channels) was

shown for the initial 25 ms of each 100 ms window. The subset included was chosen in a man-

ner that meant the occluded pattern would be spatially continuous. In contrast, the activity of

each non-signal channel was composed of 25 ms long bursts of activity. At any time, each dor-

mant non-signal channel had a constant probability of starting a burst. This probability was

selected so that the average activity across non-signal channels is equal to average activity in

signal channels.

Robustness analysis (Fig 8): In order to test robustness to changes in synaptic strengths, the

baseline strength for each type of connection was modified until the memory recall is no lon-

ger ‘successful’. The change in baseline strength was applied to all connections of any single

type, and the default case used was that presented in Fig 2. Recall was deemed ‘successful’ if,

Table 1. Simulation parameters.

Name Symbol Value

Max Hebbian Hmax 5

Min Hebbian Hmin 1

Facilitation increase tHþ 100ms

Facilitation decrease tH� 200ms

Depression increase txþ 50ms

Depression decrease tx� 100ms

Leak current τLeak 1ms

Firing scale a 1

Firing threshold b 1

https://doi.org/10.1371/journal.pone.0188562.t001
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during relevant probe, the average firing rate within either pattern was at least 0.1 (10% of the

maximal firing rate), and at least five times greater than the average firing rate of the most

active non-pattern channel.

The sensitivity to sparsity was tested by changing the density of recurrent connections. 20

different sparsity values were tested (from 0.05 up to 1, with a step size of 0.05), with 100 trials

at each value. The recurrent connection matrix was then randomly set using according to the

sparsity value; each connection was independently set to zero with probability = 1 –density.

All the remaining weights were then scaled uniformly to ensure that the total strength of recur-

rent excitatory connections remained constant. For each trial, two random patterns were

selected, with each pattern being a subset of 20 randomly selected excitatory neurons. From

each of these patterns a probe (a subset of 5 neurons) was then selected. The results record the

behavior of the various neurons after training in the presence of the probe; because the probe

neurons are externally stimulated, they were excluded from the analysis. Each excitatory neu-

ron was considered active if its average firing rate was over 0.1 while the probe displayed.

These results were then summarized using two measures. The first of these, Positive Predictive

Value (PPV). This represents what proportion of cells that were active were actually members

of the appropriate pattern (that is, the pattern which matches the probe used). The second

measure used is the True Positive Rate (TPR), which is the proportion of the neurons from the

appropriate pattern which were active. These two measures combined give a complete descrip-

tion of how the different populations of neurons reacted to the probe.

Source code

All code was written in MATLAB, and is accessible as supplementary information (S1 File).

Supporting information

S1 File. MATLAB code for all simulations.
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