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Cytotoxic T lymphocytes (CTLs) play a crucial role in the infections and the antitumor immunity. Induction and activation
of antigen-specific CTLs is an important strategy in immunotherapy for various diseases, and several researchers have focused
on the modulation of CTL induction and function. Natural killer T (NKT) cells are an important focus area of researchers
studying immunomodulatory responses to tumors and infectious diseases. CD1d-restricted NKT cells consist of type I NKT
cells and type II NKT cells. α-galactosylceramide (α-GalCer)-activated type I NKT cells secrete both Th1 (e.g., IFN-γ) and
Th2 cytokines, affect the expression of costimulatory molecules in immune cells, and regulate the host immune system. Type
II NKT cells, however, are stimulated by sulfatide, a self-glycolipid derived from myelin, and play an immunosuppressive role
in animal model of autoimmune diseases. CTL generation, activation, and suppression are strongly affected by activated type I
and type II NKT cells. Thus, the regulation of these NKT cells leads to the modification of CTL function. CTLs contribute to
antimicrobial responses, antitumor immune and autoimmune responses. Understanding the role of NKT cells in the regulation of
CTL generation, activation, and suppression enable the development of novel treatment strategies for these diseases.

1. Introduction

Cytotoxic T lymphocytes (CTLs) constitute a distinct lym-
phocyte subpopulation, and are induced by several diverse
stimuli, including major histocompatibility antigens, protein
antigens, viruses, and intracellular bacteria and parasites.
CTLs recognize peptides bound to the major histocompat-
ibility complex (MHC) class I molecules, and the activa-
tion and proliferation of CTLs are induced by exposure
to specific antigens. Activated CTLs secrete the essential
cytolytic mediators (perforin, granzyme, etc.) and induce
apoptosis in target cells (tumor cells, viral infected cells,
etc.). Moreover, activated CTLs secrete various cytokines
such as interferon gamma (IFN-γ) and tumor necrosis
factor alpha (TNF-α), which enhance antigen presentation
and mediate antipathogenic effects. Previous reports showed
that various cytokines such as interleukin-(IL2) or IFN-
γ-producing CD4 T-cells are required for the generation
of effective CTL immunity to infection and cancer [1, 2].
The modulation of CTLs induction and functions is critical

for designing effective strategies against various viruses and
tumors.

CD1d-restricted natural killer T (NKT) cells have
recently gained importance as one of the regulators of the
immune system. NKT cells play a role in immune responses
in infections, cancers, allergies, autoimmune disease, and
so forth. NKT cells form a unique lymphocyte population
that expresses both natural killer (NK) receptors and T cell
receptors (TCRs). Most NKT cells utilize an invariant TCR-α
chain rearrangement (Vα14-Jα18 in mice and Vα24-Jα18 in
humans). Studies on NKT cell have mostly been performed
using α-galactosylceramide (α-GalCer); this compound was
isolated from a marine sponge and developed as an anti-
tumor compound and is not found in mammalian cells
[3]. Several NKT cells in mice are stained with α-GalCer
loaded onto the CD1d-tetramer. These α-GalCer-reactive
NKT cells are called invariant or type I NKT cells. Type
I NKT cells have the remarkable ability to produce both
Th1 (e.g., IFN-γ) and Th2 (e.g., IL-4, IL-10) cytokines
on stimulation and can subsequently help activate other
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immune cells, such as T cells, natural killer (NK) cells, or
dendritic cells (DCs) [4]. Activated invariant NKT cells, like
other cytotoxic cells such as NK cells or CTLs, can induce
cell death in target cells by expressing cell-death-inducing
effector molecules, including the Fas ligand (FasL) and the
TNF-related apoptosis-inducing ligand (TRAIL) [5, 6].

Some CD1d-restricted NKT cells do not express Vα14-
Jα18; they are called nonclassical or type II NKT cells.
These cells are more heterogeneous than type I NKT cells
in terms of both TCRα and TCRβ chain usage; how-
ever, they also produce both Th1 and Th2 cytokines on
TCR stimulation [7–9]. Recently, sulfatide, a self-glycolipid
derived from myelin, was reported to specifically stimulate
type II NKT cells [10]. The injection of sulfatide in vivo
strongly prevented disease onset in a model of Th-1-induced
experimental autoimmune encephalitis; this suggests that
type II NKT cells have a strong immunoregulatory function.
Other studies have reported the immunosuppressive role
of type II NKT cells [11, 12]. On the other hand, it was
previously reported that type II NKT cells are activated in
response to hepatocytes expressing hepatitis B viral antigens
in a transgenic mice model of acute hepatitis B virus
infection [7]. In this model, type II NKT cells can cause liver
cell injury and recruit lymphomononuclear inflammatory
cells. Thus, type II NKT cells may have the ability to induce
the inflammatory. NKT cells (type I and type II) play a
critical role in immune modulation. In the present paper,
we have reviewed the role of NKT cells in the regulation of
immunological responses, particularly CTL induction and
function.

2. Role of NKT Cells in
CTL Induction and Activation

Several studies have shown that the activation of type I
NKT cells is intimately associated with the elimination of
cancer cells [13–15], or various pathogens [16–18]. CTLs are
involved in adaptive immune responses and are key players
in mediating immunity against pathogens and tumors. The
enhancement of CTL induction and activation via type
I NKT cell activation causes immunopotentiation against
tumors or microbes. In several studies, IL-12 or α-GalCer
was generally used to activate type I NKT cells [15, 19, 20].
IL-12 administration can large amount of Th-1 cytokine
(IFN-γ) in type I NKT cells-dependent manner [21]. On the
other hand, activated type I NKT cells by α-GalCer secrete
both Th-1 (IFN-γ) and Th-2 (IL-4) cytokines. Thus, various
stimulatory substances of type I NKT cells exhibit different
patterns of cytokines production. Our group has previously
evaluated and confirmed the role of activated NKT cells in
the induction of hepatitis B virus-(HBV-) specific CTLs [22].
Moreover, HBV-specific CTL precursor cells are frequently
observed in the spleens of HBV surface antigen (HBsAg)
transgenic mice; these mice show immunological tolerance
to the HBsAg when animals are pretreated with HBsAg
and α-GalCer. Consistent with this result, enhanced T cell
responses were observed using OCH, an analog of alpha-
GalCer with a truncated sphingosine chain and a reduced

capacity to induce IFN-γ [23]. This report demonstrated
that the enhancing effect of iNKT cell stimulation on T cell
responses does not require IFN-γ. In this section, we summa-
rize the mechanism of CTL induction and activation after the
activation of type I NKT cells in response to various stimuli
including cytokines, costimulatory molecules, and dendritic
cells (DCs). Various cytokines, costimulatory molecules, and
DCs strongly contribute to the induction and activation of
CTLs (Figure 1).

2.1. Cytokines Mediate CTL Induction via NKT Cell Acti-
vation. CD8-positive T cells require various stimuli to
become fully activated and to induce differentiation and
proliferation. Several cytokines, costimulatory molecules,
and immune cells play critical role in CTL induction
and activation. Several recombinant cytokines, namely, IL-
2 [24], IL-4 [25], IL-7 [26], IL-10 [27], IL-12 [28], IL-15
[29], and TNF-α [30], were found to significantly enhance
CTL production. The extent of enhancement depends on
the particular antigen, responding cell populations, and
various environments. In particular, IL-2 was found to
potently induce specific cytotoxicity. IL-2 was found to be
an important endogenous cytokine for CTL production
because cells from IL-2-deficient mice show impaired CTL
production in vitro [31], and treatment with anti-IL-2 [22]
or anti-IL-2 receptor [32] antibodies blocks CTL production.
Recently, Lin et al. also demonstrated that DNA vaccine
encoding a fusion of IL-2 and E7 proteins generated the
highest frequency of E7-specific CD8+ T cells in vivo [33].
IL-2 seemed to be a critical cytokine for CTL induction
in vivo. We have previously reported that the activation
of type I NKT cells strongly promotes the proliferation of
HBsAg-specific CTLs via the production of high levels of
IL-2. The enhancement of IL-2 production was observed at
least 24 hours after the administration of α-GalCer. Although
IL-2, IL-4, IFN-γ, and TNF-α production was found to
increase after α-GalCer administration, the contribution of
IL-2 was significantly higher than that of other cytokines
(IL-4, IFN-γ, and TNF-α) in the enhancement of CTL
production. The blocking of IL-2/IL-2 receptor signal led
to an inhibition of IFN-γ and IL-12 production by DC
and impaired T-cell stimulatory activity [34]. IL-2/IL-2
receptor signal contributes to various cytokines that play an
important role in CTL induction. Another report showed
that the adjuvant activity of α-GalCer is lost in mice lacking
the IFN receptor [35]. These data indicate that IFNs are
important for mediating the adjuvant effect of α-GalCer.
IFN-γ secreted by NKT and/or NK cells acts on antigen-
presenting cells (APCs) by upregulating the MHC class
I processing machinery or enhances the acquired APCs-
mediated immune response by directly acting on antigen-
specific CD8-positive T cells. Moreno et al. showed that anti-
IFN-γ antibody inhibits the enhancement of CTL induction
by α-GalCer [36]. IL-12 production from APCs is also
enhanced by NKT cells activation following CD40-CD40
ligand (L) interaction [37, 38]. Type I NKT cells bridge
innate and adaptive immune responses by stimulating the
production of CTLs in an IFN-γ- and/or IL-12-dependent
manner [38, 39].
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Figure 1: Cellular and molecular mechanisms of CTLs responses mediated by type I and type II NKT cells. Activated type I NKT cells have
two distinct effects that regulate CTL function. CTLs are activated by type I NKT cells via cytokines (IL-2, IL-12, IFN-γ, and TNF-α) and
costimulatory molecules (CD40L and CD28). In contrast, increased expression of Th2 cytokines (IL-4) and other costimulatory molecules
(CTLA-4 and PD-L) inhibits CTL production or activation. Activated type II NKT cells suppress CTL activity via cytokines (IL-4, IL-13, and
TGF-β).

2.2. Costimulatory Signals Mediate in CTL Induction via
NKT Cell Activation. The activation of CD8-positive T cells
occurs when naı̈ve cells encounter APCs; this activation
depends on (1) the number of MHC complexes that are
present on the APCs and the affinity of TCRs for the MHC
complexes and (2) the signals provided by the APCs in
the form of costimulatory molecules. The B7/CD28 and
CD40/CD40L costimulatory pathways are the best studied
costimulatory interaction pathways that contribute to T cell
activation and production. NKT cell activation by α-GalCer
can upregulate costimulatory molecules (CD40, CD80, and
CD86) in both CD8+ and CD8− DC subsets [40]. This
enhancement of costimulatory regulation is necessary for
the adjuvant function of α-GalCer in vivo. With regard to
the role of costimulatory signals in NKT cell functions,
costimulatory molecules including CD28, ICOS, CD40,
and 4-1BB are known to promote Ag-induced activation
and cytokine production by NKT cells [41–45]. Hayakawa
et al. showed that α-GalCer-induced Th1-type responses,
represented by enhanced cytotoxic activity of splenic or
hepatic mononuclear cells and an antimetastatic effect, were
impaired in both CD28-deficient and CD40-deficient mice
[41]. In contrast, α-GalCer-induced Th2-type responses,
represented by increased serum IgE and IgG1 levels, were
impaired in the absence of the CD28 costimulatory pathway
but not in the absence of the CD40 costimulatory pathway.
These data indicated that both CD40/CD40L and CD28/B7
interaction play a critical role in promoting CTL inducted
by α-GalCer. Thus, these costimulatory molecules contribute
to the activation of type I NKT cells and the activation and
production of CTLs.

Previous report demonstrated that coadministration of
OVA and α-GalCer led to a significant increase in OVA257-
264-specific CD8 T cells over that in animals given OVA and
vehicle alone [23]. These results indicated that the levels of
cross-presentation were markedly increased by concomitant
stimulation of iNKT cell activity. The enhancement of cross-
presentation in APC may also increase the antigen specific T
cell responses.

MHCs and the process of antigen presentation are
currently gaining wide attention in the field of immunology.
The immune system contains a distinct group of antigen-
presenting cells called DCs, which are specialized for the
capture of antigens and induction of T cell immunity. Several
mechanistic studies have revealed the importance of DCs
in CTL production [46–48]. CD40L and TNF-α are two
of the most potent stimuli for DC maturation. Mature
DCs express high levels of CD40, whereas activated T cells
express CD40L. Therefore, successful T cell-DC interaction
should enable prolonged survival of DCs via CD40/CD40L
interaction.

α-GalCer upregulates CD40L expression on type I NKT
cells and mediates the maturation and activation of DCs
to produce IL-12 [37, 38]. IL-12 from DCs activates type I
NKT cells to produce IFN-γ, which in turn stimulates NK
cells and CTL-mediated cytotoxicity [49, 50]. Moreover, α-
GalCer-activated NKT cells also induce the maturation of
DCs, which contributes to the upregulation of Th1 responses
[40, 51]. This upregulation of Th1 responses promotes CTL
producton. We previously validated factors that play a critical
role in increasing the number of HBV-specific CTLs after in
vivo administration of the HBV antigen and α-GalCer [22].



4 Journal of Biomedicine and Biotechnology

The CD40-CD40L interaction was found to play a critical
role in promoting CTL production via the activation of the
type I NKT cells.

3. Role of NKT Cells in CTL Suppression

Several reports have indicated that NKT cells also play a
suppressive role in the regulation of immunity. Further,
this immunosuppressive action of type I and type II NKT
cells may also affect CTL production and activation. This
section focuses on the effects of several cytokines, such as
IL-4, IL-13, and transforming growth factor beta (TGF-
β), and several costimulatory molecules, such as cytotoxic
T lymphocyte associated antigen-(CTLA-4), programmed
death (PD)-1, and lymphocyte activation gene-(LAG-3),
on the suppression of CTLs production and activation
(Figure 1).

3.1. Cytokines Mediate CTL Suppression. IL-4, IL-13, and
TGF-β are known to suppress immune response and are
actively secreted upon NKT cell activation. TGF-β has strong
inhibitory effects on the immune system and negatively
affects many immune cell types and their functions [52, 53];
TGF-β1-deficient mice contain spontaneously activated T
cells and die from massive inflammation of vital organs [54].
The blocking of TGF-β by an anti-TGF-β antibody syner-
gistically enhanced tumor vaccine efficacy; this protection
was mediated by CD8-positive T cells [55]. Thus, TGF-β
can suppress immunity via the impairment of CTL function.
α-GalCer administration into mice is known to induce
moderate hepatitis [56]. Zhou et al. recently found that
the commercially available α-GalCer derivative, α-galactosyl-
C18-ceramide (α-Gal-C18-Cer) identical to α-GalCer except
for 1 double bond in the sphingosine side chain at a
location similar to that found in isoglobotrihexosylceramide
(iGb3) [57], activates hepatic type I NKT cells (as reflected
by IFN-γ production) but does not induce biochemical
hepatitis, even at intravenous doses of up to 40 μg/mouse.
In this experimental model, the activation of type I NKT
cells by α-Gal-C18-Cer results in the recruitment of TGF-
β-producing CD4-positive Foxp3+ T cells in the liver.
Another report demonstrated that α-Gal-C18-Cer markedly
increase hepatic CXCR3 level on the dependentmanner of
NKT cells [58]. The increase of CXCR3 expression recruits
CXC3-positive regulatory T cells. Thus, α-Gal-C18-Cer can
potentially suppress CTLs via the recruitment of regulatory
T cells.

In a fibrosarcoma model, in which the tumor recurred
at the site of tumor challenge following primary tumor
growth and spontaneous regression, CTL function against
the tumor was impaired by CD4-positive T cells [59].
These suppressive CD4-positive T cells were found to be
IL-13-producing CD1d-restricted NKT cells [60, 61]. CD1d
knockout (KO) mice were highly resistant to the tumor,
and IL-13 secretion by T cells was significantly reduced
in these mice model. This was consistent with the finding
that CD4-positive NKT cells from tumor-bearing mice up-
regulate IL-13 production. These results clearly indicated

that CD4-positive NKT cells are the main source of IL-
13 in tumor-bearing mice because CD4-positive T cells
from NKT cell-deficient mice produce very low levels of
IL-13. IL-13 secreted by NKT cells is thought to impair
CTL activation. IL-13 also induces the production of TGF-
β from myeloid-derived cells, and TGF-β suppresses CTLs.
Recent studies have reported that these CD4-positive CD1d-
restricted NKT cells are type II NKT cells [11]. Type II
NKT cells have variable TCR gene rearrangements that are
distinct from those of type I NKT cells; further, type II NKT
cells are activated after sulfatide administration [10]. The
activation of type II NKT cells by sulfatide prevents exper-
imental autoimmune encephalomyelitis, and concanavalin
A-induced hepatitis [10, 62]. Sulfatide-mediated protection
from autoimmune diseases involves the regulation of type I
NKT cells, inhibition of effector functions of conventional T
cells, and modification of DC function. CTLs functions are
also impaired by the inhibition of conventional T cells and
DC functions. Thus, the activation of type II NKT cells by
sulfatide may be useful in the development of novel strategies
for the treatment of autoimmune diseases associated with
activated CTLs.

Type I NKT cells that can strongly secrete Th2 cytokines
also contribute to immunosuppression. Bone marrow-
derived NKT cells could inhibit graft versus host disease
(GVHD) in a mouse model [63]. The same group reported
similar results by using a different model of GVHD suppres-
sion [64]. In both studies, the inhibition of GVHD depended
on the ability of NKT cells to produce IL-4. IL-4 production
by NKT cells was found to dominate the response of GVHD
suppression and thereby counteract the potential effect of
Th1 cytokines on these cells, at least in these models.

Previous report indicated that α-GalCer prevents devel-
opment in nonobese diabetic (NOD) mice [65]. NOD mice
have functional Vα14 NKT cells that can be stimulated with
α-GalCer to potentiate Th2 (IL-4, IL-10) immune responses.
Furthermore, Beaudoin et al. demonstrated that type I NKT
cells can inhibit the differentiation of naı̈ve T cells into Th1
effectors, and this inhibition was strong enough to block
the development of diabetes [66]. Activation of type I NKT
cells might be useful for therapeutic intervention in human
diseases characterized by Th1-mediated pathology such as
Type 1 diabetes.

3.2. Costimulatory Signals Mediate CTL Suppression. T cell
activation is induced on B7CD28 or CD40/CD40L interac-
tions to provide costimulatory signals. Recent reports have
revealed that several additional molecules on the APCs
provide costimulatory signals. These signaling molecules can
be either positive effectors or inhibitory molecules, and the
paradigm shift from T cell activation to tolerance depends on
the integration of the myriad interactions between various
cell surface molecules and their effects on cell fate decisions.
Several of these proteins, such as CTLA-4, PD-1, and LAG-3,
and their effect on the induction of T cell tolerance in CTLs
need to be studied.

CTLA-4 is a member of the CD28 receptor family, and
is an inhibitory molecule that suppresses T cell activation
[67]. CTLA-4, like CD28, binds to B7 molecules, but with
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an affinity that is 20–50-fold higher than that of CD28
[68]. The surface expression of CTLA-4 is upregulated in
activated T cells, presumably as part of a normal negative
feedback loop to terminate activation. Inhibition of CTLA-
4 activity by using blocking antibodies against CTLA-
4 prevents anergy in CD4-positive T cells in several in
vivo models; this implies that CTLA-4 is an important
molecule involved in anergy induction. However, CTLA-
4 is probably not required for anergy induction in CD8-
positive T cells, because 2C T cells from CTLA-4 KO mice
are equally susceptible to anergy as T cells from their wild-
type littermates. Further, tolerance against tissue antigens
expressed on cells that lack B7 molecules could explain the
CTLA-4-independent CD8-positive T cells tolerance. Thus,
these results emphasize the potential mechanistic differences
in the induction of tolerance between CD4-positive and
CD8-positive T cells. The contribution of type I NKT cells
was recently investigated in a murine model of cancer treated
with radiotherapy and CTLA-4 blockade [69]. Compared
with wild-type mice, type I NKT cells KO mice showed
markedly high survival and cure rates following radiotherapy
and [69] CTLA-4 blockade; this suggests that type I NKT
cells can play an important role in regulating the response
to treatment.

PD-1 is another important inhibitory receptor that has
been implicated in T cell tolerance and autoimmunity [70].
PD-1 is an inducible receptor found on T cells and has
been shown to downregulate T cell activation and the
development of effector functions. The ligands that bind
to PD-1, namely, PD-L1 and PD-L2, were identified on
the basis of sequence similarity to common B7 molecules.
PD-L1 is widely expressed on cells of hematopoietic and
parenchymal origin, whereas PD-L2 expression is more
tightly regulated, and is observed on macrophages and
DCs [71]. Several studies have validated that PD-1/PD-L1
interaction is crucial for the development of tolerance in
CD8-positive T cells. Furthermore, PD-1 depletion leads
to an increase in the absolute number of CD8-positive T
cells, thereby indicating that PD-1 mediates tolerance by
downregulating the proliferation of T cells. T cells primed
in the absence of PD-1/PD-L1 interaction also actively
secrete cytokines and produce granzymes [72]. These results
indicate that PD-1 generates tolerance to autoreactive T
cells by downregulating CD8-positive T cell proliferation
and differentiation. The blocking of PD-1/PD-L interactions
during α-GalCer treatment prevents the induction of type I
NKT cell anergy, thereby preserving the therapeutic activity
of these cells against B16 tumors [73]. Type I NKT cells
in α-GalCer-treated PD-1-deficient mice were also found to
retain their antimetastatic activity. Previously, it was reported
that a single administration of α-GalCer induces long-term
NKT cell unresponsiveness in mice. NKT cells failed to
proliferate and produce IFN-γ upon α-GalCer restimulation
[74]. Therefore, α-GalCer that induced the conventional
T cell activation also disappear by this NKT cell anergy.
Recent study reveals that the PD-1/PD-L1 interaction is
essential for the induction and maintenance of iNKT cell
anergy [75]. The blocking of PD-1/PD-L1 interaction may
enhance the induction of antigen-specific CTL response by

α-GalCer stimulation. Akbari et al. investigated the role
of PD-L1 and PD-L2 in regulating type I NKT cells-cell-
mediated airway hyperreactivity (AHR) in a murine model
of asthma [76]. AHR severity and airway inflammation
were significantly greater in PD-L2 KO mice than in wild-
type mice after both ovalbumin sensitization and challenge
or α-GalCer administration. Type I NKT cells obtained
from PD-L2 KO mice produced significantly more IL-
4 than those obtained from control mice. These results
suggest that PD-1 or PD-2/PD-L interaction is important
to induce anergy in activated type I NKT cells. This anergy
may result in the impairment of CTL production and
activation.

4. Conclusion

The concept of immune modulation is based on the idea that
the host immune system plays a critical role in promoting
host protection against pathogens or cancer. In particular,
CTLs play a central role in the exclusion of intracellular
pathogens or cancer cells, and the modulation of CTL pro-
duction or activation is beneficial for controlling the disease.
NKT cells have two opposite functions: immunoactive and
immunosuppressive functions. Type I and type II NKT cells
exhibit these immunoregulatory functions, and a control
of this bipolar NKT cell functions is necessary for effective
immunotherapy against chronic viral infection, cancer, and
autoimmune diseases.
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