
MINI REVIEW
published: 03 December 2018

doi: 10.3389/fimmu.2018.02804

Frontiers in Immunology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 2804

Edited by:

Diana Dudziak,

Universitätsklinikum Erlangen,

Germany

Reviewed by:

Katsuaki Sato,

University of Miyazaki, Japan

Richard A. Kroczek,

Robert Koch Institute, Germany

*Correspondence:

Heleen Vroman

h.vroman@erasmusmc.nl

Specialty section:

This article was submitted to

Antigen Presenting Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 16 July 2018

Accepted: 14 November 2018

Published: 03 December 2018

Citation:

Huber A, Dammeijer F, Aerts JGJV

and Vroman H (2018) Current State of

Dendritic Cell-Based Immunotherapy:

Opportunities for in vitro Antigen

Loading of Different DC Subsets?

Front. Immunol. 9:2804.

doi: 10.3389/fimmu.2018.02804

Current State of Dendritic Cell-Based
Immunotherapy: Opportunities for in
vitro Antigen Loading of Different DC
Subsets?
Anne Huber 1, Floris Dammeijer 1,2, Joachim G. J. V. Aerts 1,2 and Heleen Vroman 1,2*

1Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands, 2 Erasmus Cancer Institute,

Erasmus Medical Center, Rotterdam, Netherlands

Dendritic cell (DC) based cancer immunotherapy aims at the activation of the immune

system, and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate

the tumor. DCs represent a heterogeneous cell population, including conventional DCs

(cDCs), consisting of cDC1s, cDC2s, plasmacytoid DCs (pDCs), and monocyte-derived

DCs (moDCs). These DC subsets differ both in ontogeny and functional properties,

such as the capacity to induce CD4+ and CD8+ T-cell activation. MoDCs are most

frequently used for vaccination purposes, based on technical aspects such as availability

and in vitro expansion. However, whether moDCs are superior over other DC subsets

in inducing anti-tumor immune responses, is unknown, and likely depends on tumor

type and composition of the tumor microenvironment. In this review, we discuss cellular

aspects essential for DC vaccination efficacy, and the most recent findings on different

DC subsets that could be used for DC-based cancer immunotherapy. This can prove

valuable for the future design of more effective DC vaccines by choosing different DC

subsets, and sheds light on the working mechanism of DC immunotherapy.
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INTRODUCTION

The immune system is able to distinguish between self, non-self and eliminate damaged cells.
Consequently, it has the potential to eradicate cancerous cells displaying mutated, or aberrantly
expressed self-antigens. To avoid elimination by immune responses, tumors not only acquire the
ability to prevent immune recognition, but also create an immunosuppressive environment and
actively hijack immune cells to aid in tumor progression (1, 2). Re-activating the immune system
to treat patients with cancer was already proposed at the end of the nineteenth century and cancer
immunotherapy has further developed ever since (3–6). One type of immunotherapy is dendritic
cell (DC) vaccination (7). DC vaccination makes use of autologous DCs loaded ex-vivo with
specific tumor-associated antigens (TAAs) or whole tumor lysate to generate an immune response
aiming for cancer-cell elimination. DC vaccination using ex-vivo generated monocyte-derived DCs
(moDCs) in patients with cancer was first explored over two decades ago (8). Numerous clinical
trials [over 200 (9)] have established the safety and ability of moDC vaccines to induce anti-tumor
responses (10–12). More recently, also in vivo loading of DCs is being exploited (13–17). In this
review, we will discuss the cellular aspects essential for DC vaccination efficacy, the potential of
distinct DC subsets as sources for DC vaccination, and the implications for the future design of DC
vaccines.
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DENDRITIC CELLS

DCs play a crucial role in the immune system and link innate
and adaptive immune responses (18–21). They arise from
progenitor cells in the bone marrow and reside in peripheral
tissues in an immature state. Immature DCs (iDCs) are
specialized in antigen capturing, processing, and presentation.
Upon appropriate stimulation mediated by inflammatory and
pathogen-derived signals, iDCs undergo maturation. Mature
DCs express co-stimulatory molecules, secrete cytokines, and
migrate to lymphoid organs where they activate antigen-specific
T-cells (22). Besides the presentation of exogenous antigens on
MHC-II peptides, DCs are able to cross-present exogenously
captured antigens on MHC I-associated peptides (23). Thereby,
DCs can present TAAs to CD8+ T-cells which makes them of
particular interest for cancer immunotherapy (24).

DCs consist of developmentally and functionally distinct DC
subsets. These include moDCs, conventional DCs—consisting
of cDC1s and cDC2s—and plasmacytoid DCs (pDCs) (25–
27). While moDCs are derived from the common monocyte
progenitors (cMoPs), cDCs, and pDCs arise from a common
DC precursor (27–29). Each DC subset has specialized functions
however, these are not exclusive and seem to depend on
both location and environmental cues (30). In general, moDCs
efficiently promote T-cell differentiation, but are poor inducers
of CD4+ T-cell proliferation (31). In contrast, moDCs can
be powerful activators of tumor-specific CD8+ T-cells (32).
It is known that mature moDCs secrete chemokines and
pro-inflammatory cytokines which are crucial to attract other
immune cells and T-cells to the local environment (33). cDC1s
are specialized in recognizing viral and intracellular antigens
and are important for cytotoxic T-cell (CTL) responses, whereas
cDC2s are particularly apt in priming CD4+ T-cells (34).
Depending on the experimental model, cDC2s induce T-helper
(Th) 2 or Th17 responses (35, 36). pDCs are prominent
producers of type I interferon in response to single-stranded
RNA and double-stranded DNA upon e.g., viral infections,
which is important for DC maturation and CD8+ T-cell
activation (34, 37). However, their antigen-presenting capacity
is being questioned, especially as it was recently discovered
that pDC characterized by CD123 expression and BDCA2 are
contaminated by pre-cDCs (38, 39).

DC VACCINES

DC-based cancer immunotherapy depends on the crucial role
that DCs play in inducing antigen-specific T-cell responses (40).
In many tumors, immune responses are ineffective due to the
immunosuppressive environment of the tumor and/or the lack
of immunogenicity of the tumor (41, 42). In addition, the tumor
microenvironment (TME) promotes exhaustion of effector
CD8+ T-cells (43). Some tumors are even able to hamper the
recruitment of cDC1s, by downregulating CCL4 signaling upon
constitutively active β-catenin signaling and thereby hamper
priming and accumulation of tumor-infiltrating T-cells (44),
indicating the importance of endogenous DCs for initiating anti-
tumor immunity. DC vaccines aim to overcome the absence or

malfunctioning of endogenous DCs by manipulating autologous
DCs to enhance T-cell responses directed against the tumor.

Currently a wide range of procedures to generate autologous
DCs exist using distinct sources, such as peripheral blood
monocytes, naturally occuring DCs, or CD34+ hematopoietic
precursor cells mobilized from the bone marrow (10), enabling
the generations of various DC subsets [such as moDCs, cDCs,
or pDCs (45–47)]. In addition, different sources of TAAs
[e.g., cancer cell line lysate, whole tumor lysate, or tumor-
associated peptides (45, 48, 49)], as well as different antigen-
loading methods [such as pulsing, via viral vectors, or mRNA
transfection (10)] are used to load DCs. Moreover, various
maturationmethods including cytokines, CD40 ligands, and TLR
agonists (50) are known. Currently, there is a great effort made
in improving existing DC vaccines and developing new ones.
New approaches include genetically engineered DCs that express
TAAs or display enhanced immunostimulatory properties or
explore in vivo antigen loading of DCs with freshly released TAAs
due to chemotherapy or immunogenic tumor-cell death (51–58).

GENERATION OF PATIENT-DERIVED DCs
EX VIVO

Because DCs comprise <1% of peripheral blood mononuclear
cells (PBMCs), one major challenge is the generation of
sufficient numbers of DCs for vaccination purposes. Therefore,
DC vaccination studies frequently used moDCs that can be
generated ex-vivo in large numbers from purified monocytes
that were consequently cultured with granulocyte-macrophage
colony-stimulating factor (GM-CSF) and interleukin (IL)-4 (59).
Recently, it was described that monocytes cultured with GM-
CSF and IL-6, and activated with IFN-γ, give rise to a newly
described mo-cDC1s population that has similarities to cDC1s
(60). In addition, cDCs and pDCs can be generated from CD34+

hematopoietic stem cells using fms-like tyrosine kinase 3 ligand
(Flt3L) (61, 62).

The phenotype, function and ability to induce T-cell responses
by in vitro generated DCs is highly dependent on the culture
methods used (63). For instance, culturing human monocytes
with CD137 protein generates DCs potent in inducing CD8+

T-cells with superior lysing capabilities against cells infected
with cancer-causing viruses (64, 65). Comparing different
technologies for monocyte isolation demonstrated that isolation
techniques can also influence the antitumor immunogenicity
and cytokine production of the generated moDCs (66, 67).
Furthermore, the cytokines and growth factors required for
precursor-cell differentiation into DCs and subsequent activation
influence DC function, and in consequence, the effectivity of DC
vaccines (68–71).

LYMPH NODE HOMING OF VACCINATED
DCs

To activate antigen-specific T-cell responses, DCs need to
reach the lymph nodes (LNs) in order to present antigen to
cognate TAA-specific T-cells. In order to optimize DC-trafficking
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to the LN, various injection routes and strategies have been
explored. In a pre-clinical mouse study, different vaccination
routes were compared to load DCs in vivo with naked antigen-
encoded RNA. Herein it was shown that only intra-nodal (i.n)
vaccination induced potent expansion of antigen-specific T-
cells resulting in prolonged survival, which was not observed
upon intra-dermal (i.d.), subcutaneous, or near nodal vaccination
(72), indicating the superiority of i.n. vaccination. However, in
various clinical studies superior efficacy of i.n. vaccination was
less clear. In one study, moDCs pulsed with three melanoma
peptides were administered either i.d. or i.n. to 25 patients
with metastatic melanoma. After i.d. administration, 4% of DCs
migrated to the LNs, whereas migration upon i.n. injection
varied between 0 and 56%. The total number of vaccinated
moDCs in single LNs were 10- to 30-fold higher after i.n.
administration than i.d. injection. However, surprisingly, there
was no difference in the strength of the immune response
evaluated by TAA-specific CD8+ T-cells isolated from DTH
reactions between the two administration routes (73). Another
study in 54 patients with different types of HER2+ breast
cancer employed moDCs loaded with six HER2 MHC class
II binding peptides injected intralesionally, i.n. or both. More
than 80% of the patients had new or increased systemic anti-
HER2 CD4+ or CD8+ T-cell responses and 32 patients had
a HER2-specific CD4+ T-cell response in the sentinel LN
(SLN) after vaccination but these were not significantly different
between the three administration routes (74). The large variation
observed upon i.n. vaccination also stress the difficulty of i.n.
vaccination over i.d. vaccination, and could indicate that accurate
i.n. vaccination outperforms i.d. vaccination. It has also been
shown that migration to the LNs upon i.d. vaccination can be
improved by pre-treating the vaccination site with a potent recall
antigen, as tetanus/diphtheria (Td) toxoid pretreatment. This
improved DC migration to the LNs, progression free survival
and overall survival in patients with glioblastoma (75). Strikingly,
systemic TAA-specific immune responses and enhanced tumor
CD8+ T-cell infiltration were even observed upon intra-tumoral
injection of DCs containing an vector expressing the CCL21
gene in 16 patients with advanced non-small cell lung carcinoma
(NSCLC) (54).

Therefore, the superior route or site of injection is still
unknown, as no differences were found in safety or antigen-
specific immune responses upon either intradermal or -nodal
injection (73, 74). These results further urge the need to compare
DC vaccination efficacy between different administration routes.

EVALUATION OF EFFICACY OF EX VIVO

GENERATED moDC VACCINES

As the molecular underpinnings of an effective DC-therapy
induced T-cell response are still incompletely understood, it
has been difficult to identify factors associated with therapeutic
success. As the location and mechanism of T-cell immune
responses initiated upon DC therapy is unknown, there is
also no consensus how DC vaccination efficacy should be
evaluated. One effort to generalize the monitoring of effectivity

is by the Response Evaluation Criteria in Solid Tumors
(RECIST) or by the more recently described modified RECIST,
which enables categorization of patient responses into complete
response, partial response, stable disease and progressive disease
determined by the amount of tumor shrinkage of a given
number of tumor lesions, disease progression, and assessment
of pathological LNs (76, 77). Nevertheless, various studies
monitored response differently and focused on either clinical
responses (summarized in Table 1) or different aspects of
the immune response. Moreover, most studies failed to find
significant correlations of measured immune characteristics and
clinical outcome.

A phase I clinical trial employed autologous tumor lysate-
pulsedmoDCs in ten patients with malignant mesothelioma after
chemotherapy. Clinical responses were evaluated by modified
RECIST. In addition, efficacy of DC vaccination was determined
by increased cytotoxicity of isolated PBMCs against tumor cells
and higher percentages of CD8+ T-cells expressing granzyme B,
an indication for their capacity to lyse cells. After vaccination,
four out of six patients showed increased cytotoxicity levels
and granzyme B expressing CD8+ T-cells increased in nine
patients (45). In another phase I clinical trial in nine patients
with mesothelioma using allogeneic tumor cell lysate-pulsed
moDCs, tumor-specific T-cells could be detected in the majority
of patients in a skin biopsy after a positive DTH skin test.
In addition, radiographic responses (two partial responses and
seven patients with stable disease), progression free survival (8.8
months) and overall survival [(OS) not reached] of the patients
were monitored and analyzed according to modified RECIST
criteria (78). During one study in 27 prostate cancer patients
with rising serum prostate-specific antigen [(PSA); indication
for biochemical relapse of prostate cancer] levels, kinetics of
PSA was monitored and used to determine the efficacy of the
vaccination with moDC pulsed with allogeneic tumor cell lysate.
The median PSA doubling time (PSADT), which determines
clinical outcome, increased from 5.67 to 18.85 months. In
addition, the frequency of PSA-specific T-cells increased after
vaccination and tumor-specific IgG antibodies could be detected
in nine patients. However, these immune response characteristics
did not significantly correlate with PSADT (48). A recent phase I
clinical trial in patients with NSCLC employed moDCs pulsed
with two TAAs, silenced with SOCS1, and stimulated with
flagellin. Upon vaccination, regulatory T-cells (Tregs) decreased,
and three patients had increased levels of IL-6 and/or TNFα,
whereas IL-2, IL-4, IL-10, and IFNγ were unaffected. These
observed immune responses did not correlate with the clinical
response (49). Another phase II trial in 156 patients with
hepatocellular carcinoma (no residual tumor after standard
treatment) investigated DC-based adjuvant immunotherapy
using triple TAA-pulsed moDCs. While recurrence-free survival
(RFS) and OS were not different between the immunotherapy
and control (no treatment) groups, immunotherapy increased
TAA-reactive T-cell responses and IFNγ levels, whereas levels of
serum TGF-β decreased. Nevertheless, this did not correlate to
RFS. Interestingly, when radiofrequency ablation (RFA) patients
were excluded in post-hoc analyses, immunotherapy did prolong
RFS of non-RFA patients (79).
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TABLE 1 | Clinical trials employing different DC subsets and different sources of antigens.

DC

subset

Loading

with

No. of

patients

Tumor type Vaccination procedure Clinical outcome References

moDC Autologous

lysate

10 Epithelial

MPM

Three vaccinations i.d. (1/3) and i.v.

(2/3) in at 0, 2 and 4 weeks

CT scans and chest X-rays analyzed

with modified RECIST: PRs (n = 3),

SD (n = 1) and NR (n = 6)

(45)

moDC Allogeneic

tumor cell

lysate

9 MPM Three biweekly vaccinations i.d. (1/3)

and i.v. (2/3), followed by a boost at 3

and 6 months

CT scans analyzed with modified

RECIST: PR (n = 2), SD (n = 7)

Median PFS of 8.8 months and

median OS not reached

(78)

moDC Allogeneic

tumor cell

lysate

27 Prostate

cancer

Twelve vaccinations s.c. at the axillary

and inguinal areas; patients received

1 week of cyclophosphamide in

metronomic setting prior to

vaccinations

Increase of median PSADT from 5.67

(prior treatment) to 18.85 months

(after treatment)

(48)

moDC 2 TAAs 15 NSCLC Three vaccinations i.v. in 1-week

intervals

Long-term follow-up until 2017: low

dose group: no recurrence,

progressive disease and death (n = 1

each); middle dose group: no

recurrence (n = 3); high dose group:

no recurrence (n = 7), progressive

disease and death (n = 1)

(49)

moDC 3 TAAs 156 Hepatocellular

carcinoma

Six injections s.c. near the inguinal

lymph nodes over 14 weeks

Difference in RFS not statistically

significant between treated and

control groups; Significantly

prolonged RFS in the treated

non-radiofrequency ablation

subgroup

(79)

moDC TAA-mRNA 30 AML (in

remission)

I.d. injections four times at 2-week

intervals

Antileukemic effect (n = 13) with

minimal residual disease (n = 9) or SD

(n = 4); significantly higher OS and

RFS compared to non-responders

(80)

moDC 4 HLA class I

and 6 HLA

class II

peptides

53 Metastatic

melanoma

Four vaccinations (at week 0, 2, 6,

10) followed after 2 months by 6

vaccination maintenance cycles for

up to 2 years

No regression of all metastases

according to WHO criteria but slow

regression of individual metastases;

75% OS at 5 years in group of

tumor-free patients; 19% of patients

still alive after 12-year follow-up

(81)

moDC 6 HER2 MHC

class II

binding

peptides

42 HER2+

breast cancer

Six weekly injections into the breast,

into the groin LNs, or into both breast

and in groin LNs

Higher pathologic complete response

rate in ductal carcinoma in situ

patients compared with invasive

breast cancer patients (28.6% vs.

8.3%)

(74)

cDC2s 3 TAAs 14 Metastatic

melanoma

Three i.n. injections once every 2

weeks; followed by 2 maintenance

cycles of 3 biweekly vaccinations

each with a 6-week interval

Long-term PFS of 12-35 months (n =

4) and median OS of 13.3 months

(47)

pDCs 3 TAAs 15 Metastatic

melanoma

Three i.n. injections once every 2

weeks, followed by 2 maintenance

cycles of 3 biweekly vaccinations with

a 6-week interval

SD (n = 2), mixed response (n = 1);

increased PFS (4.0 vs. 2.1 months)

and OS (22.0 vs. 7.6 months)

compared to 72 matched control

(chemotherapy-treated) patients

(46)

AML, acute myeloid leukemia; cDC2s, conventional DCs 2; CT, computed tomography; i.d, intra-dermal; i.n.,intra-nodal; i.v., intra-venously; moDCs, monocyte-derived DCs; MPM,

malignant pleural mesothelioma; NR, no response; NSCLC, non-small cell lung carcinoma; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; OS,

overall survival; pDCs, plasmacytoid DCs; PFS, progression-free survival; PSADT, prostate-specific antigen doubling time; RFS, recurrence-free survival; SD, stable disease; TAA,

tumor-associated antigen; s.c. subcutaneous.

In contrast, a phase II study in 30 patients with acute myeloid
leukemia could correlate long-term OS with higher numbers
of circulating TAA-specific CD8+ T-cells after therapy with
moDCs electroporated with TAA-mRNA (80). Furthermore,

a phase I/II clinical trial that studied the effectivity of DC
vaccination in 62 patients with melanoma used moDCs loaded
with 4 HLA class I peptides and 6 HLA class II peptides.
DC vaccination increased the numbers of vaccines-specific
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FIGURE 1 | Overview of immunological changes observed upon moDC therapy. Vaccination with moDCs can lead to various immunological changes such as an

increase in numbers of circulating immune cells (TAA-specific CD8+ T-cells, CD8+ T-cells expressing IFNγ or Granzyme B, CD4+ T-cells, eosinophils), or a decrease

of other immune cells (Tregs). In addition, systemic cytolytic lymphocyte (CTL) or natural killer (NK) cell responses, as well as CD4+ T-cell responses in sentinel lymph

nodes (LNs) were observed. Levels of TAA-specific IgG antibodies and cytokines (IL-6, IFNγ, TNFα) increased, whereas levels of TGFβ decreased. Vaccination with

moDCs also resulted in tumor-infiltrating CD8+ T-cells, increased cytotoxicity of isolated PBMCs (monocytes, CD8+ and CD4+ T-cells, B-cells), and allergic reactions

at the DC injection site. Of the shown changes, only increased circulating TAA-specific CD8+ T-cells, eosinophilic blood count, strength of allergic reactions at DC

injection site, and a CD4+ T-cell response in sentinel LNs correspond to clinical outcome.

IFNγ-producing T-cells, whereas numbers of Tregs and myeloid
derived suppressor cells (MDSCs) were unaltered. Surprisingly,
IFNγ-producing T-cells did not correlate with OS, whereas the
intensity of allergic vaccine-injection site reactions significantly
correlated with OS. Furthermore, a maximal eosinophilic blood
count (>250 per 100 µl blood) significantly improved survival
specifically in tumor bearing melanoma patients (81). Another
study in 42 patients with HER2+ breast cancer, that used moDCs
pulsed with six HER2 MHC class II binding peptides, could
correlate pathologic complete response with the CD4+ Th1
immune response in the sentinel LN, but in peripheral blood (74).

Overall, it seems that DC vaccination induced various
immune responses, but most of the observed immunological
responses do not reflect clinical responses (Figure 1). This
could be due to the fact that most studies are phase I/II
clinical trials in which safety and feasibility are the primary
outcomes and not efficacy. Furthermore, this could be caused
by the type and location of the immune response measured,
as most studies focused on TAA-specific T-cells in peripheral
blood. As DC vaccination initiates T-cell responses in the
LNs and these TAA-specific T-cells exert their cytolytic
function in the tumor, it would be more likely that immune
responses in LNs or in the tumor predict OS better than
immune responses measured in peripheral blood. This could be

performed using a recently described method that can quantify
tumor-specific CTLs in preclinical models at different sites
(82).

Furthermore, it was shown inmurinemodels that DC vaccines
elicited cytotoxic and regulatory natural killer cell responses
against tumors (83, 84). This stresses the necessity to investigate
other cell subsets, besides T-cells, influenced by DC vaccines.

POTENTIAL OF NATURALLY OCCURRING
DC SUBSETS FOR USE AS VACCINES

Despite the growing knowledge in DC immunobiology, the exact
diversity and biology of T-cell responses generated by different
DC vaccines is still poorly understood. The recent development
of antibody-coated magnetic beads enables the isolation of
natural occurring DC subsets directly from peripheral blood in
considerate numbers. For example, more than 10 million pDCs
or more than 27 million cDCs can be isolated from apheresis
products (46, 47).

The first phase I/II clinical trials have been performed using
naturally occurring DCs for DC therapy and have shown that
this is safe and feasible (46, 85). One of the clinical trials
that used naturally occurring cDC2s loaded with three TAAs
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in 14 melanoma patients showed that the presence of TAA-
specific T-cells in peripheral blood and DTH tests correlated
with progression-free survival in three patients (47). Another
clinical study in 15 patients withmetastaticmelanoma used pDCs
pulsed with three TAAs. Increased TAA-specific CD8+ T-cell
frequencies were measured in the blood of seven of the fifteen
patients. Clinical outcome (PFS and OS) of patients treated with
TAA-loaded pDCs was increased as compared to 72 matched
control patients treated with chemotherapy (46).

Unfortunately, it is unknown whether naturally occurring
DCs outperform cultured moDCs as source for DC therapy
in patients, as clinical trials comparing different DC subsets as
a source for DC therapy have not been performed. However,
in mice, efficacy of different DC subsets for DC-therapy was
compared. Herein, they found that moDCs in the tumor
are superior in antigen uptake and processing but failed to
induce efficient T-cell proliferation. MoDCs in the tumor
even seemed to have immunosuppressive properties, as they
inhibited T-cell proliferation by increased iNOS expression (86),
however this is likely dependent on environmental cues, as
cultured moDCs are highly immunogenic. Tumoral cDC1s were
superior in stimulating naïve and previously activated CD8+

T-cells, beneficial for tumors with abundant Tregs, whereas
cDC2s purified from tumor were more efficient in CD4+

T-cell stimulation and differentiation into Th17 cells, which
was effective for tumors with abundant M2-oriented tumor-
promoting tumor-associated macrophages (TAMs) (86, 87). In
another study of melanomamousemodels, cDC1s but not cDC2s
were shown to transport intact TAAs to TdLNs and cross-present
them to CD8+ T-cells (88). Whether these findings will be
confirmed with ex vivo loading of natural occurring DCs remains
to be determined, and is currently extensively studied.

IMPLICATIONS FOR FUTURE DESIGN OF
DENDRITIC CELL VACCINES

The use of different natural occurring DC subsets for vaccination
is promising and more studies directly comparing the various

subsets are urgently needed. In addition, more research into the
contribution of the DC subsets to the different aspects of anti-
tumor immunity is required, as this can be beneficial for tumors
with different composition of the TME.

It is known that different types of human solid tumors are
infiltrated to various extents by different types of immune cells
(89–91). The presence of these immune infiltrates even has
prognostic value (92–94). Moreover, it might guide the choice
of which DC type to employ for vaccination, as different DC
subsets elicit differing T-cell responses against the tumor. Hence,
identifying whether the immunosuppressive environment of the
tumor consists Tregs or TAMs before treatment might help
in choosing the right DC subset to induce the proper T-cell
skewing.

Besides the direct (re)activation of tumor-specific T-
cells, efforts are undertaken to combine DC vaccination
with agents that can modulate the TME itself e.g., by
immunotherapy, radiotherapy, or chemotherapy to act
synergistically with DC vaccination, which can improve
immunogenicity, T-cell infiltration, T-cell exhaustion, and
overcome the immunosuppressive environment of the tumor
(82, 95–98).

CONCLUSION REMARKS

Although DC vaccination has been optimized in recent years, a
great potential for improvement still remains. More (pre)clinical
studies investigating the working mechanisms underlying DC
vaccine efficacy are required. Therein, a major focus should
be laid on different DC (and other myeloid) subpopulations
and their specialized contribution to antitumor immunity, as
it is likely that different cancer types might need different DC
therapeutic strategies.
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