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The draft genomes of heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) strain MM66 and MM66 isolates
demonstrating altered vancomycin resistance levels were produced in an effort to provide information on mutations contribut-
ing to the vancomycin resistance levels observed in these strains.
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The use of vancomycin for the treatment of methicillin-
resistant Staphylococcus aureus (MRSA) infections (1, 2) has

been challenged by the emergence of vancomycin-intermediate
(3) and -resistant (4, 5) S. aureus (VISA and VRSA, respectively).
We reported on a heterogeneous vancomycin-intermediate S. au-
reus (hVISA) strain (MM66) isolated from a hospital in Las Cru-
ces, New Mexico, that when grown in the presence of vancomycin
gave rise to stable VISA subpopulations (6). In order to provide
insight on the MM66 hVISA mechanism, we have completed
and compared the draft genomes of MM66, an MM66 VISA
(MM66-4) (6), and a reduced vancomycin-intermediate (RVI)
MM66 isolate (MM66RVI-4).

MM66RVI-4 was obtained by passaging MM66 in Luria broth
(LB) and selecting for colonies unable to grow on LB agar contain-
ing 1 �g/ml vancomycin. The DNA of all strains was isolated from
overnight cultures (37° C, 200 rpm) grown in Mueller-Hinton
broth (MHB). Draft genomes of MM66 and MM66RVI-4 were
produced with the Roche 454 GS (Junior) pyrosequencing plat-
form and assembled using the Roche GS de novo assembler (v.
2.7). Libraries of MM66 and MM66-4 were constructed with the
phusion-based Illumina genomic DNA library preparation proto-
col and sequenced using Illumina genome analyzer II 90-bp
paired-end reads. De novo assembly was generated using filtered

sequence reads and the ABySS assembler (v. 1.3.7) (7). All genome
sequences were uploaded to the RAST server for annotation (8).

The vancomycin Etest MIC (6) of MM66RVI-4 and MM66
were 2 �g/ml and 3 �g/ml, respectively. MM66RVI-4 also dem-
onstrated decreased distances grown on 0 to 3 �g/ml vancomycin
(41.6 mm � 3) and 0 to 3 �g/ml teicoplanin (16 mm � 3) gradi-
ents (9) compared to MM66 (61.6 mm � 4, and 30.6 mm � 4,
respectively (n � 3; P � 0.05). In addition, MM66RVI-4 did not
grow as well in MHB containing 2.5 �g/ml vancomycin and dem-
onstrated reduced cell survival in vancomycin resistance popula-
tion analysis (9) (0 to 3.5 �g/ml) performed with MH agar. Fur-
thermore, whereas MM66 grew on a 0 to 175 �g/ml oxacillin
gradient (84.0 mm � 2), MM66RVI-4 grew only on a 0 to
0.5 �g/ml gradient (73 mm � 5).

Draft genome information for all strains is summarized in Ta-
ble 1. The number of RAST predicted protein-coding sequences
were 2,684 (454) and 2,858 (Illumina) for MM66 and 2,563 and
2,814 for MM66RVI-4 and MM66-4, respectively. All strains se-
quenced were multilocus sequence type 5 (ST-5) and staphylococ-
cal cassette chromosome mec type II (SCCmecII) (10, 11). The
isolation ST-5/SCCmecII strains in the Las Cruces area have been
previously reported (12, 13). The loss of oxacillin resistance in
MM66RVI-4 is corroborated by an ~46.5-kb deletion of SCCmecII

TABLE 1 Staphylococcus aureus genome assembly and accession numbers

Strain Sequence coverage (%) No. of contigs (bp) N50 (Mbp) Genome length (bp) GC content (%) Accession no.

MM66 30.1a 114 (�200) 0.17 2,834,320 32.9 JMBT00000000
MM66 348b 90 (�1,000) 0.09 3,002,171 33.0 CCCM000000000
MM66RVI-4 36.6a 197 (�200) 0.21 2,732,996 33.0 JMBU00000000
MM66-4 612b 73 (�1,000) 0.15 2,940,194 32.8 CCCI000000000
a 454 sequence coverage.
b Illumina sequence coverage.
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that remains in MM66 and MM66-4. Selection for VISA in the
laboratory can also lead to SCCmec loss (14, 15). Mutations in
genes encoding the two-component GraSR system are thought to
support the VISA mechanism (16–19) and all MM66 derivatives
harbored the same mutation in graS (S270N). In addition, muta-
tions within apt and yycG of MM66-4 (20) were confirmed.

Nucleotide sequence accession numbers. These whole-
genome shotgun projects have been deposited at DDBJ/EMBL/
GenBank under the accession numbers JMBT00000000,
CCCM000000000, JMBU00000000, and CCCI000000000.
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