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Abstract Chemical cross-linking coupled with mass
spectrometry (CXMS) identifies protein residues that are
close in space, and has been increasingly used for mod-
eling the structures of protein complexes. Here we show
that a single structure is usually sufficient to account for
the intermolecular cross-links identified for a stable
complex with sub-pmol/L binding affinity. In contrast, we
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restraints

Protein interaction dynamics

show that the distance between two cross-linked residues
in the different subunits of a transient or fleeting complex
may exceed the maximum length of the cross-linker used,
and the cross-links cannot be fully accounted for with a
unique complex structure. We further show that the
seemingly incompatible cross-links identified with high
confidence arise from alternative modes of protein-pro-
tein interactions. By converting the intermolecular cross-
links to ambiguous distance restraints, we established a
rigid-body simulated annealing refinement protocol to
seek the minimum set of conformers collectively satisfy-
ing the CXMS data. Hence we demonstrate that CXMS
allows the depiction of the ensemble structures of protein
complexes and elucidates the interaction dynamics for
transient and fleeting complexes.
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INTRODUCTION

A protein interacts with other proteins to perform its
function. The binding affinity or Kp value between two
proteins ranges over ten orders of magnitude, and the
resulting complex can be stable, transient or fleeting
(Jones and Thornton 1996; Nooren and Thornton
2003). Examples of stable complexes include enzyme/
enzyme inhibitor and antigen/antibody (Kastritis et al.
2011), while transient and fleeting complexes are
often involved in cell signaling. Transient complexes
are those with Kp values greater than 1 pmol/L,
whereas fleeting complexes are three-four orders of
magnitude weaker with Kp values in mmol/L (Vino-
gradova and Qin 2012; Xing et al. 2014; Liu et al.
2016).

Two transiently interacting proteins not only form a
stereospecific complex, they can also form a series of
nonspecific encounter complexes (Tang et al. 2006;
Fawzi et al. 2010; Schilder and Ubbink 2013). Encounter
complexes are important structural intermediates, and
facilitate the formation of the stereospecific complex.
Yet, encounter complexes constitute only a minor pop-
ulation of the total complex, and are difficult to study
(Berg et al. 1981; Schreiber and Fersht 1996; Gab-
doulline and Wade 2002). With the Kp value in mmol/L,
the distinction between specific and non-specific com-
plexes starts to blur, and the subunits in a fleeting
complex often adopt a variety of conformations (Tang
et al. 2008; Liu et al. 2012). As such, to characterize the
structure of a protein complex, especially a transient or
fleeting complex, it often requires an ensemble
description to recapitulate the different conformational
states.

Chemical cross-linking of proteins coupled with
mass spectrometry analysis (CXMS) is an emerging
technique to investigate protein-protein interactions
(Rappsilber 2011; Herzog et al. 2012; Kalisman et al.
2012; Lasker et al. 2012; Walzthoeni et al. 2013;
Politis et al. 2014). Amine-specific homo-bifunctional
cross-linkers, including bis-sulfosuccinimidyl suberate
(BS*) and bis-sulfosuccinimidyl glutarate (BS®G), are
commonly used. Recently, carboxylate-specific cross-
linkers reactive towards glutamate or aspartate resi-
dues, such as pimelic acid dihydrazide (PDH; Leitner
et al. 2014), were added to the CXMS toolbox. In
theory, two primary amine groups (either lysine side
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chain or protein N-terminus) or two carboxylate
groups (either glutamate or aspartate side chains) that
are close in space can be covalently linked. The cross-
linked residues can be identified with the use of a
database search engine (Rinner et al. 2008; Yang et al.
2012), and each intermolecular cross-link can be
converted to a distance restraint for modeling the
complex structure (Rappsilber 2011; Kalisman et al.
2012; Walzthoeni et al. 2013; Schmidt and Robinson
2014).

As CXMS has been increasingly used for the struc-
tural characterization of protein complexes, two tech-
nical issues have become apparent (Rappsilber 2011;
Merkley et al. 2014). First, only a fraction of the cross-
links expected from the known structure of a protein
complex are experimentally observed. This can be due
to low accessibility and reactivity of the involved
residues (Leitner et al. 2014). Second and more
intriguingly, for a subset of cross-links, the theoretical
distance between two cross-linked residues, as calcu-
lated from the specific complex structure, sometimes
exceeds the maximum length of the cross-linker
(Kahraman et al. 2013). Incorrect identification of
cross-linked peptides has been blamed for such dis-
crepancies (Zheng et al. 2011; Kalisman et al. 2012).
Yet, with the most stringent criteria that essentially
eliminate false identifications, sometimes there remain
cross-links violating the distance limits (Lossl et al.
2014). So what are the origins of these “incompatible”
cross-links?

CXMS data have been recently implemented in
ROSETTA software package for modeling protein com-
plex structures (Kahraman et al. 2013; Lossl et al.
2014). The approach aims to obtain a single structure
that satisfies CXMS restraints and has the lowest
ROSETTA energy score, and is suited for characterizing
stable complex structures. Nevertheless, as transient
and fleeting complexes can adopt a multitude of con-
formational states, a single-conformation representation
may not suffice. Here we show that the highly reliable
but seemingly incompatible cross-links arise from
alternative modes of protein-protein interactions. We
present a rigid-body refinement protocol against all the
experimental cross-links, and show that an ensemble
representation comprising multiple conformers of the
complex is often required when characterizing transient
and fleeting complexes.

© The Author(s) 2015. This article is published with open access at Springerlink.com
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RESULTS
Refinement of the stable complex structure

To refine against intermolecular CXMS restraints, we
treated each subunit as a rigid body. Any two cross-
linked lysine residues were restrained to have their
C4-C,, distance to be less than the maximum length of
the corresponding cross-linker using a square-well
pseudo-energy potential. BS* and BS?G covalently link
lysine residues <24 A and <20 A apart, respectively, as
measured from C, to C, atoms (Lee 2009; Kahraman
et al. 2011). Cross-links may also involve protein
N-terminus; when fully extended, the maximum C,-C,
distance between an N-terminal residue and a lysine is
15 A for BS®G and 19 A for BS>.

We then assessed the refinement protocol on the
complex between trypsin and bovine pancreatic tryp-
sin inhibitor (BPTI), a stable complex with a Kp value
of ~60 fmol/L (Marquart et al. 1983; Kastritis et al.
2011). Based on the known structure of the complex
(PDB code 2PTC), there can be a maximum of 17 the-
oretical inter-subunit lysine-lysine cross-links with BS®
cross-linking reagent (Table S1). Starting from the
structures for the free proteins (PDB codes 4GUX and
1JV8, for trypsin and BPTI, respectively), we fixed the
coordinates of trypsin and allowed BPTI to freely
rotate and translate as a rigid body. With simulated
annealing, we refined the complex structure against the
CXMS restraints, with additional van der Waals repul-
sive term employed. Calculating one structure takes
less than 2 min on a single core of Intel Xenon 5620
CPU. Repeating the calculation from different starting
positions for the two subunits afforded a set of highly
converged structures with overall root-mean-square
deviation (RMSD) for backbone heavy atoms almost
0 A. Importantly, the RMS difference between the CXMS
model and the crystal structure was only 0.54 A

(Fig. 1).

Further assessment of the rigid-body refinement
protocol

In practice, however, it is rare to have as many as 17
intermolecular cross-links for a complex with the size of
trypsin/BPTI (281 residues total and 18 lysine resi-
dues). Often, only a few cross-links can be experientially
identified. To assess how robust the refinement protocol
is with fewer CXMS restraints, we obtained CXMS data
from the published studies (Herzog et al. 2012; Kahra-
man et al. 2013) for the complex between protein
phosphatase 2A catalytic subunit (PP2Ac) and

© The Author(s) 2015. This article is published with open access at Springerlink.com

immunoglobulin binding protein 1 (IGBP1). PP2Ac and
IGBP1 interact with each other with a Kp value of
~300 nmol/L (Jiang et al. 2013), and six intermolecu-
lar cross-links were identified between Lys?5-Lys'®?,
Lys®-Lys'® Lys3S-Lyst®3, Lys*-Lys'S® Lys*0-Lys'®3,
and Lys*-Lys'®® (from PP2Ac to IGBP1) (Herzog et al.
2012). Starting from the structures for free PP2Ac (PDB
code 2NYL) and IGBP1 (PDB code 3QC1) proteins, we
obtained their complex structures by refining against
the CXMS distance restraints. The probabilistic distri-
bution was computed for PP2Ac with respect to IGBP1
in all the structural models and was shown as atomic
probability map (Schwieters and Clore 2002), which
encompassed the known complex structure (Fig. 2A).
Importantly, the overall backbone RMS difference
between the CXMS models and the crystal structure for
PP2Ac/IGBP1 complex was as small as 2.8 A (Fig. 2B)
(Jiang et al. 2013).

Then what is the minimum number of intermolecular
cross-links needed to model the complex structure?
With the use of three experimental cross-links involving
PP2Ac Lys*® (Lys*®-Lys'®®, Lys*’-Lys'®®, and Lys*'-
Lys'®®), the resulting structures took up similar posi-
tions (Fig. S1A) as the structures calculated using the
full set of CXMS restraints, though a bit more scattered.
With only one CXMS restraint, for example from PP2Ac
Lys®® to IGBP1 Lys'®?, the modeling still afforded a set
of CXMS models that are similar to those calculated with
the full set of experimental CXMS restraints (Fig. S1B).
Thus, the more CXMS restraints were incorporated, the
more converged the resulting models were. We also
performed the structural refinement using five out of
the six cross-links, and then back-calculated the C,-C,
distance for the unused cross-link. Except for the cross-
link between PP2Ac Lys®® and IGBP1 Lys'®®, the calcu-
lated distances are mostly within the maximum length
stipulated by the corresponding cross-linker (Table S2).
Thus, the cross-link between PP2Ac Lys28 and IGBP1
Lys'®® afforded a key restraint about the complex
structure, and owing to the sparsity of the inter-
molecular cross-links, this cross-link is not redundantly
provided by other cross-links.

Using CXMS, we characterized the complex between
CDK9 and Cyclin-T1. This complex is responsible for
transcription elongation, and its two subunits interact
with each other at a Kp value of ~300 nmol/L
(Baumli et al. 2008). We focused our attention on the
intermolecular cross-links that were identified twice
or more, for which the probability of being observed
by random chance was below 1072 for at least one
instance and below 1073 for additional instances (a
false discovery rate cutoff of 0.05, an E-value cutoff
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Trypsin

Fig. 1 Comparison between the CXMS model and the X-ray
structure for the complex between trypsin and BPTI. The two
structures are superimposed by trypsin (orange cartoon), and
BPTI in the CXMS model and in the crystal structure (PDB code
2PTC) are colored gray and blue, respectively. The CXMS model
was obtained by refining against 17 theoretical inter-molecular
cross-links. The RMS difference of backbone heavy atoms between
the two complex structures is 0.54 A. Lysine residues involved are
labeled

rate of 1073, spectral count >2, and the best E-value
cutoff of 10~%). With these stringent criteria, it would
be unlikely that the cross-links were identified by
random chance, and the remaining cross-links should
be correctly assigned. Three intermolecular cross-links
were identified for CDK9/Cyclin-T1 (Table 1) and the
corresponding MS2 spectra are shown in Fig. S2. For
each, the two linked lysine residues were found within
the maximum length of the cross-linker, as calculated
from the known structure of the complex (Baumli
et al. 2008).

We treated each subunit in CDK9/Cyclin-T1 as a
rigid body, and refined against the intermolecular
CXMS distance restraints: two cross-linked lysine
residues were restrained to have their C,-C, distance
to be less than the maximum length of the corre-
sponding cross-linker using a square-well energy
potential. Since each intermolecular cross-link was
observed with both BS?’G and BS® cross-linkers
(Table 1), we restrained the C,-C, distance to be
shorter than the length of BS*G (20 A for lysine-lysine
cross-links and 15 A for lysine-protein N terminus
cross-links). In the refinement, the coordinates for one
subunit, CDK9, were fixed, while the other subunit,
Cyclin-T1, was grouped as a rigid body, given full
translational and rotational freedoms. A single inter-
molecular CXMS restraint was readily satisfied, but the

Fig. 2 CXMS model obtained for the complex between PP2Ac and IGBP1. A The distribution of PP2Ac with respect to IGBP1 (orange
cartoon) is shown as atomic probability map, plotted at 30% threshold and shown as gray meshes. B The RMS difference between the
CXMS model (gray cartoon for PP2Ac) and the crystal structure of the complex (PDB code 4IYP) can be as small as 2.8 A. With PP2Ac
superimposed, IGBP1 in the crystal structure is shown as blue cartoon. Cross-linked lysine residues are labeled and the intermolecular

cross-links are shown as red lines
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resulting complex model was poorly converged, with
Cyclin-T1 dangling along one side of CDK9 (Fig. S3). As
Lys’* and Lys'** are adjacent to each other in CDKO,
cross-links of Cyclin-T1 Lys® to these two residues
provided redundant information about the complex
structure. Cyclin-T1 Lys'°® and CDK9 Lys®® are located
at the other side of the complex; as a result, the
refinement against the corresponding cross-link
restraint afforded a different but overlapping distri-
bution of the complex. With all three restraints used, a
narrower distribution was obtained (Fig. 3A). Signifi-
cantly, the structural models based on CXMS restraints
encompassed the known crystal structure of CDK9/
Cyclin-T1, and the pairwise RMS difference between
the CXMS model and the PDB structure was as small as
2.86 A (Fig. 3B). Thus, we show that the CDK9/Cyclin-
T1 complex can be modeled as a single conformer,
based on sparse CXMS distance restraints.

CXMS analyses of transient and fleeting
complexes

We then performed CXMS analysis for EIN/HPr and
ubiquitin homodimeric complexes using BS%G and BS3.
EIN and HPr are involved in signal transduction for
bacterial sugar uptake and interact with each other with
a Kp value of ~ 7 pmol/L (Suh et al. 2007). Ubiquitin is
an important signaling protein in cell and can nonco-
valently dimerize with a Kp value of ~5 mmol/L (Liu
et al. 2012). Using the same stringent criteria described
above, intermolecular cross-links for the two complexes
are also presented in Table 1, and the corresponding
MS2 spectra are shown in Figs. S4 and S5. A total of 13
intermolecular cross-links were identified for EIN/HPr,
but only one of them (EIN Lys>® to HPr Lys**) was found
consistent with the stereospecific complex structure
(Garrett et al. 1999). For validation, we also performed

Table 1 Intermolecular cross-links observed for transient and fleeting protein complexes

Cross-linked pairs BS%G BS? Total spectra Best E-value® Cy-Cy (A)° Remarks®
Cyclin-T1(6)-CDK9(144) 13 15 28 1.7 x 107%° 185 -
Cyclin-T1(6)-CDK9(74) 9 35 44 3.7 x 107 11.2 -
Cyclin-T1(100)-CDK9(56) 30 25 55 25 x 10713 9.3 -
EIN(1)-HPr(24)¢ 26 0 26 24 x 10718 49.1 EC-III
EIN(1)-HPr(49) 23 14 37 1.3 x 10732 45 EC-III
EIN(29)-HPr(1)® 0 18 18 9.4 x 1071° 49.1 EC-II
EIN(30)-HPr(1)® 0 7 7 1.1 x 10718 46.9 EC-II
EIN(30)-HPr(24) 25 74 99 21 x 107 36.8 EC-II
EIN(30)-HPr(27) 31 12 43 1.2 x 1072 35.3 EC-II
EIN(30)-HPr(49) 3 1 4 7.8 x 107* 29.9 EC-II
EIN(30)-HPr(79)° 0 10 10 2.2 x 1071° 495 EC-II
EIN(49)-HPr(24)¢ 15 0 15 8.4 x 1072 22.3 EC-I
EIN(49)-HPr(49)° 0 36 36 2.0 x 107%° 26.5 EC-I
EIN(49)-HPr(72)¢ 8 0 8 13 x 10718 35.2 EC-I
EIN(58)-HPr(24) 1 13 14 2.5 x 107%¢ 15.4 SC
EIN(238)-HPr(24)¢ 9 0 9 2.5 x 10718 56.1 EC-1II
Ub(6)-Ub(48) 24 24 48 5.1 x 107 - -
Ub(6)-Ub(63) 23 2 25 45 x 107 - -
Ub(11)-Ub(48) 3 83 86 1.6 x 107 - -
Ub(29)-Ub(48) 15 22 37 1.8 x 10712 - -
Ub(33)-Ub(48) 174 78 95 7.5 x 1072 - -
Ub(48)-Ub(48) 67 103 170 3.5 x 10718 - -
Ub(63)-Ub(63) 8 0 8 33 x 107*° - -

# The best E-value among all the MS2 spectra for each cross-link. E-value is the probability of observing the cross-link by chance

b Distance was calculated from the known stereospecific complex structure, PDB accession code 3EZA. No uniquely defined structure is

available for the ubiquitin dimer

¢ Designations of the conformational clusters for EIN-HPr complexes

4 Observed with BS?G, but not with BS®
¢ Observed with BS®, but not with BS?G

© The Author(s) 2015. This article is published with open access at Springerlink.com
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CXMS analysis for EIN/HPr using PDH (Leitner et al.
2014) as the cross-linking reagent.

In order to identify intermolecular cross-links
between two ubiquitin subunits in a ubiquitin homo-
dimer, we performed CXMS analysis on a mixture of *N-
labeled (natural isotope abundance) and '°N-labeled
ubiquitin proteins (Liu et al. 2012). The cross-links
between *N- and '°N-labeled peptides with character-
istic MS1 spectra (Fig. S6) should only arise from
intermolecular interactions (Taverner et al. 2002). In
this way, we identified a total of seven intermolecular
cross-links for the ubiquitin homodimer.

Ensemble structure refinement of protein
encounter complexes

To account for the experimental cross-links and to model
the structure of EIN/HPr complex, we fixed the position
of EIN and treated HPr as a rigid body given rotational
and translational freedoms. The intermolecular cross-
links could not be satisfied with a single-conformer
representation of the complex, as the restraints were
consistently violated with an average violation >8 A
(Fig. 4A). This means that in addition to the stere-
ospecific complex, HPr sampled a multitude of confor-
mations with respect to EIN, which were captured by
cross-linking. Thus, we invoked ensemble representation
for the complex—with EIN fixed, HPr was represented as

A B

R »'Cycliﬁ-"Ifl»:

multiple conformers. We treated each intermolecular
cross-link as an ambiguous restraint (Nilges 1995), and
defined the CXMS energy averaged over all the con-
formers in the ensemble with a steep dependence on the
C4-C, distance. In this way, a CXMS restraint could be
satisfied providing that it was accounted for by at least
one conformer in the ensemble. The ensemble refine-
ment showed that a minimum of four conformers was
required to fully satisfy the intermolecular CXMS
restraints with an average distance violation close to 0 A
(Fig. 4A). Too large an ensemble size, however, would
lead to over-fitting. When using five conformers to rep-
resent the complex, HPr in the additional conformers
were found scattering around, making no contribution to
the CXMS energy (Fig. S7).

Using a spherical coordinate system, we projected the
positions of HPr with respect to EIN in the CXMS models
to lower dimensions. In the 2D plot, HPr was found in
four distinct clusters (Fig. 4B), thus explaining the
requirement of four conformers in the ensemble. One
cluster (SC) contained conformers overlapping with the
known complex structure, and therefore accounted for
the stereospecific EIN/HPr interactions. HPr was posi-
tioned away from the specific interface with EIN in the
other three clusters (EC-I, EC-II and EC-III), which rep-
resented non-specific interactions between EIN and HPr.
Each cluster of conformers accounted for multiple
intermolecular cross-links (Table 1).

'
=  Cyclin-T1

Fig. 3 Structural model for the CDK9/Cyclin-T1 complex refined against intermolecular CXMS restraints. A The distribution of Cyclin-T1
with respect to CDK9 (orange cartoon) is represented as an atomic probability map plotted at a 10% threshold (gray mesh). B A selected
CXMS model, shown as orange and gray cartoon for CDK9 and Cyclin-T1, respectively. For comparison, the CDK9 of the crystal structure
(PDB code 3BLH) is superimposed, and the Cyclin-T1 crystal structure is shown as a blue cartoon. The root-mean-square deviation
between the two complex structures is 2.86 A. Each set of two cross-linked residues is denoted with a red bar
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We could cross-validate the ensemble structure
modeled from lysine-lysine cross-links with the CXMS
restraints from a different cross-linking reagent, PDH
(Leitner et al. 2014). For a pair of PDH cross-linked
glutamate residues, the C,-C, distance should be less
than 22 A. With high confidence, the PDH cross-links
were identified between EIN Glu*' and HPr Glu®® and
between EIN Glu®” and HPr Glu®® (Fig. S8). Calculated
from the stereospecific complex structure (Garrett et al.
1999), the C,-C, distances for these two pairs of resi-
dues were 41.2 and 12.9 A, respectively. Clearly, the
cross-link between EIN Glu*! and HPr Glu®® could not

A
12 A ~12
- - 2
§° ° 5
- %]
i 3
] . L
2 6 6 %
& 5
%]
g 34 -3 &
>
<
0- -0
1 2 3 4 5
Ensemble size
C

HPr

be accounted for with the stereospecific complex
structure alone. In the four-conformer ensemble struc-
ture modeled from BSZG/BS3 CXMS data, however, the
averaged C,-C, distance between EIN Glu* and HPr
Glu® was 23.1 + 4.9 A.

Previously, EIN/HPr complex has been characterized
with paramagnetic nuclear magnetic resonance (NMR),
and it was shown that EIN and HPr form a multitude of
encounter complexes, which facilitate the formation of
the stereospecific complex (Tang et al. 2006; Fawzi et al.
2010). Protein encounter complexes are of low occu-
pancies and short lifetimes. Previous NMR studies

From -90° to 90°

From -180° to 180°

Fig. 4 Ensemble refinement for the complex structure between EIN and HPr. A Average violation of CXMS distance restraint (blue axis on
the left) and the number of the satisfied restraints (orange axis on the right) versus the number of conformers representing the complex.
With four or more conformers, all CXMS restraints can be satisfied. B Spherical coordinates for the four-conformer ensemble structures
showing the distribution of HPr with respect to EIN. In each ensemble structure, the HPr is found in four clusters, namely EC-I, EC-II, EC-
I1I, and SC. For comparison, the structure for EIN/HPr stereospecific complex (PDB code 3EZA) is indicated as a cyan dot. C Atomic
probability map of the distribution of HPr with respect to EIN in the ensemble structure refined against intermolecular CXMS restraints.
The difference clusters of CXMS conformers are labeled. D Atomic probability map of the distribution of HPr with respect to EIN in the
ensemble structure refined against intermolecular PRE data. The NMR ensemble was calculated based on the previously published data
(Tang et al. 2006). EIN is fixed and shown as orange cartoon, the distribution of HPr is shown as gray meshes and plotted at 20%
threshold. For comparison, the stereospecific complex structure is superimposed, with HPr shown as blue cartoon, and the four clusters
are also marked
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estimated that encounter complexes made up less than
10% of the total EIN/HPr complex, thus putting the
apparent Kp value for the encounter interactions
>10 mmol/L (Fawzi et al. 2010). Importantly, the dis-
tribution of HPr relative to EIN modeled on the basis of
CXMS data (Fig. 4C) resembles the EIN/HPr encounter
complexes previously depicted using NMR spectroscopy
(Fig. 4D).

Ensemble structure refinement of a fleeting
complex

Performing CXMS experiments on an equimolar mix-
ture of '°N- and '*N-labeled ubiquitin proteins, we
identified five inter-molecular cross-links. We fixed the
coordinates for one ubiquitin, and allowed the other
one to move. A single conformation for the ubiquitin
dimer failed to satisfy all the restraints, with average
violations ~2 A. Hence we represented the ubiquitin
dimer with two, three, and four conformers, with C,
non-crystallographic symmetry enforced for each pair
of ubiquitin dimer. The CXMS restraints could be sat-
isfied with an N = 2 ensemble. Increasing the size of
the ensemble did not improve the agreement between
experimental and calculated C,-C, distances, and the
additional conformers in the N = 3 and 4 ensemble
scattered around with respect to its dimer partner
(Fig. S9). Thus, the N = 2 ensemble was sufficient to
describe the dynamic interactions between two ubiq-
uitin proteins.

In the CXMS models, the two ubiquitins adopt a
variety of orientations (Fig. 5A), characteristic of fleet-
ing protein-protein interactions (Liu et al. 2016). This
also explains why Lys*® in one ubiquitin was able to
cross-link to five different lysine residues, except for
Lys?” and Lys®3, in the other ubiquitin. Importantly, the
two subunits interacted at the B-sheet region in the
CXMS models, and the distribution of the CXMS models
was in good agreement with a previous NMR charac-
terization of the ubiquitin homodimer (Fig. 5B).

DISCUSSION

CXMS has been increasingly used to characterize
protein-protein interactions and to model protein
complex structures (Walzthoeni et al. 2013; Schmidt
and Robinson 2014). However, when experimental
cross-links cannot be accounted for with a unique
structure, previous CXMS applications generally ignored
“incompatible” ones or relaxed the C,-C, distance
restraints (Herzog et al. 2012; Politis et al. 2014). Here
we show that CXMS is exquisitely sensitive to encounter

134 | December 2015 | Volume 1 | Issue 3
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Fig. 5 Ensemble structure for the ubiquitin homodimer. With one
ubiquitin subunit fixed (orange cartoon), the probabilistic distri-
bution of the other ubiquitin subunit in the dimer is plotted at
20% threshold (gray meshes). The ensemble structures of
ubiquitin homodimer were calculated by refining against A inter-
molecular CXMS restraints or B intermolecular NMR restraints

and fleeting protein-protein interactions that have
apparent Kp values in mmol/L, and those seemingly
incompatible cross-links contain the information about
the dynamics of protein-protein interactions.

To account for the intermolecular cross-links identi-
fied with high confidence, we established a rigid-body
refinement protocol. The protocol enabled the depiction
of the relative subunit distributions in a complex. We
first show that the refinement protocol can model the
structures of stable complexes to high precision and
accuracy. For transient and fleeting ones, however, when
a single conformation failed to satisfy all the inter-
molecular cross-links, we invoked ambiguous distance
restraints, in which a distance restraint was accounted
for by any one of the conformers in the ensemble
(Fig. S10). Demonstrated with EIN/HPr and ubiquitin
homodimeric complexes, we showed that the resulting
structures satisfied the experimental intermolecular
cross-links and recapitulated alternative modes of
protein-protein interactions. Moreover, the lysine- and
carboxylate-specific cross-links for the EIN/HPr com-
plex corroborate each other, which attests the power of
CXMS in revealing the dynamics in protein interactions.
Nevertheless, it should be noted that, though a quali-
tative validation of the ensemble structure can be
readily performed, a complete cross-validation may not
be feasible owing to the sparsity of the CXMS restraints.

Protein interaction dynamics have been mostly
characterized using NMR spectroscopy. Though NMR
afforded more structural details than CXMS does, it only
works for relatively small protein complexes and
requires a large amount of isotopically labeled proteins.
In contrast, CXMS is not limited by the size of the pro-
teins, and can be performed on pg or ng of proteins of
natural isotope abundance. CXMS is often used con-
junction with other techniques like electron microscopy

© The Author(s) 2015. This article is published with open access at Springerlink.com



Protein interaction dynamics from mass spectrometry

METHODS

(EM; Rappsilber 2011; Thalassinos et al. 2013). Never-
theless, the data from other technique are sometimes at
odds with the CXMS data (Plaschka et al. 2015). Since
proteins dynamically interact with each other, we envi-
sion that the ensemble refinement protocol presented
herein will allow the reconciliation of different types of
data and enable the characterization of subunit rear-
rangement in these large complexes. The method
described herein does not take into account the flexi-
bility of each subunit. Yet we anticipate that CXMS
would allow the visualization of the dynamics for each
individual protein, providing that a large number of
intra-molecular cross-links of high confidence are
identified using cross-linking reagents of different
lengths and chemical properties.

MATERIALS AND METHODS
Cross-linking reaction and analysis

CDKO, Cyclin-T1, EIN, HPr, and ubiquitin proteins were
purified as previously described (Garrett et al. 1999;
Baumli et al. 2008; Liu et al. 2012). To prepare '°N-
labeled protein, bacterial cells expressing ubiquitin
were grown in M9 minimum medium with U-">NH,CI as
the sole nitrogen source. The two subunits in each
complex were mixed at a 1:1 ratio—0.6 pmol/L for
CDK9/Cyclin-T1, 16 pmol/L for EIN/HPr and 70 pmol/L
for the ubiquitin homodimer. Cross-linking reactions
were performed at room temperature in 20 mmol/L
HEPES buffer (pH 8.0, 7.2 and 7.5 for CDK9/Cyclin-T1,
EIN/HPr and ubiquitin, respectively) containing
150 mmol/L NaCl and 0.5 mmol/L BS® (Thermo Sci-
entific) or BS?G (Thermo Scientific) for 1 h, and were
quenched with 20 mmol/L NH4HCOs. Cross-linking
reactions using PDH for EIN/HPr complex were per-
formed at 37 °C in 20 mmol/L HEPES buffer pH 7.2
containing 150 mmol/L NaCl and 11 mmol/L 4-(4,6-
dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium
chloride for 1 h, and were quenched with 20 mmol/L
NH4,HCO3. The proteins were subsequently precipitated
with ice-cold acetone, air dried, and resuspended in
8 mol/L urea, 100 mmol/L Tris pH 8.5. The cross-linked
samples were assessed with SDS-PAGE; about 30%-
50% of the protein remains monomeric, whereas the
remaining proteins correspond to the singly cross-
linked form.

After trypsin (Promega) digestion, LC-MS/MS analy-
sis was performed on an Easy-nL.C 1000 UPLC (Thermo
Fisher Scientific) coupled with a Q Exactive Orbitrap
mass spectrometer (Thermo Fisher Scientific). The top
ten most intense precursor ions from each full scan
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(resolution 70,000) were isolated for MS2 analysis. The
pLink (Yang et al. 2012) program was used to search a
database containing the sequences of the proteins in
question and the cross-linked peptides were identified
with the following criteria: false discovery rate smaller
than 0.05 followed by an E-value cutoff of 10~ at the
spectral level; at the peptide level, spectral count >2
and the best E-value <102 for each identification. The
lower the E-value, the less likely the putative identifi-
cation is a false discovery (Yang et al. 2012). For each
complex, the cross-linking reaction was repeated twice
on different samples, which afforded almost identical
cross-links.

To identify the intermolecular cross-links between
two ubiquitin molecules, we mixed the I5N- and N-
labeled (natural isotope abundance) ubiquitin at a 1:1
ratio. The **N-/**N-labeled and *®N-/*°N-labeled cross-
linked peptide pairs were identified using pLink (Yang
et al. 2012). Based on a strategy previously described
(Taverner et al. 2002; Petrotchenko et al. 2014), we
assigned cross-links between the °N and the *N-
labeled peptides as intermolecular if the ratio in mass
intensity in liquid chromatography of 15N-/1*N-labeled
(or N-/'"N-labeled) cross-linked peptide relative to
the corresponding *N-/**N-labeled (or *°N-/**N-
labeled) cross-linked peptide in the extracted ion
chromatogram is >0.14. At this ratio, the intermolecular
contribution is >25%.

Refinement of protein complex structures

The starting structures for the specific complexes and
for constituting proteins were retrieved from the PDB.
The accession codes for trypsin, BPTI, and trypsin/BPTI
complex are 4GUX, 1JV8, and 2PTC, respectively. The
accession codes for PP2Ac and PP2Ac/IGBP1 complex
are 2NYL and 4IYP (Jiang et al. 2013), respectively. Only
the coordinates for the catalytic core domain were
extracted from the PDB structure ZNYL. The coordi-
nates for IGBP1 in the complex were obtained from the
PDB structure 3QC1 (free) and 4IYP (bound to PP2Ac).
Since many residues in free IGBP1 structure are missing
(residues V122-M144), the free structure was spliced
with the bound structure, and the resulting structure
was solvated in a cubic box containing the TIP3P water
molecules with a 10 A padding in all directions. The
structure was subjected 10 ns MD simulation in Amber
14 (Case et al. 2012) to relax the conformation, to
generate the initial coordinates for the unbound IGBP1.
The accession code for the CDK9/Cyclin-T1 complex
was 3BLH. The accession codes for EIN, HPr, and EIN/
HPr complexes were 1ZYM, 1POH, and 3EZA (Garrett
et al. 1999), respectively. The PDB accession code for
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ubiquitin monomer is 1UBQ (Vijay-Kumar et al. 1987).
The theoretical CXMS distance restraints for trypsin/
BPTI were calculated using Xwalk (Kahraman et al
2011) with 24 A cutoff. The intermolecular cross-links
for PP2Ac/IGBP1 complex were taken from a previous
study (Herzog et al. 2012). In that report, the authors
identified seven cross-links, one of which involves
IGBP1 Lys306; since the known structure for IGBP1
encompasses residues 1-221, this cross-link is not used
for the structural refinement.

Structural refinement against the CXMS restraints
was performed using Xplor-NIH (Schwieters et al.
2006). The refinement started from the coordinates for
the free proteins. Each protein subunit was treated as a
rigid body, and only CXMS and van der Waals repulsive
terms between the subunits are considered. In the
refinement, one subunit was fixed, and the other sub-
unit was manipulated with a random rotation and
translation, away from the fixed subunit. For each
intermolecular cross-link, a square-well energy function
was used to enforce the C,-C, distance of the cross-
linked lysine residues less than 24 and 20 A for the BS®
and BS2G cross-links, respectively (Lee 2009; Kahraman
et al. 2011). The upper limits of the distance restraints
for cross-linking involving a protein N-terminus were 19
and 15 A for the BS® and BS?G cross-linkers, respec-
tively. The lengths correspond to a fully extended cross-
linker and side chains of two cross-linked residues; no
energy penalty was applied when the back-calculated
C4-C, distance was within the maximally allowed
lengths. The penalty for a distance violation was defined
as kA? as the force constant k was gradually ramped
from 1 to 30 kcal/(mol - A?), as the bath temperature
cooled from 3000 K to room temperature in the simu-
lated annealing protocol. Upper limits for BS’G were
used when intermolecular cross-links were observed
with both BS?G and BS?; upper limits for BS® were used
for intermolecular cross-links were observed with only
BS3. In addition to the distance restraint derived from
CXMS, the restraints also included covalent terms, and
van der Waals repulsive energy term. For the ensemble
refinement of ubiquitin homodimer, a C, non-crystallo-
graphic symmetry term was applied for each pair of
interacting proteins.

For a protein complex, the structural refinement
against CXMS restraints was first performed with a
single-conformer (N = 1) representation for the com-
plex. All the CXMS restraints could be satisfied for
trypsin/BPTI and PP2Ac/IGBP1 complex. For EIN/HPr
or ubiquitin/ubiquitin complexes, however, not all the
cross-links could be accounted for. Thus we replicate
the moving subunit to generate an N =2, 3, 4, or 5
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ensemble to represent the complex, and different
conformers in the ensemble can overlap. Ambiguous
distance restraints were employed: each restraint was
applied to the C, atom of Lys(i) of the fixed subunit
and to the C, atom of Lys(j) of any conformer of the
moving subunit, in which i and j are the residue
numbers of cross-linked lysine residues in Table 1. We
defined the CXMS energy to be related to inverse sixth
power of the distance between the C, atoms of two
cross-linked residues, and to be averaged over all
conformers in the ensemble. As a result, the CXMS
term has a steep dependence on distance and is biased
towards the conformer with the shortest C,-C, dis-
tance, which can be satisfied providing that one of the
conformers in the ensemble has shorter-than-maxi-
mum lysine C,-C, atom distance. The calculation was
repeated 512 times starting from different random
positions for each conformer of the moving subunit,
and each calculation afforded a slightly different qua-
ternary arrangement of the complex. Structures with
no violations against CXMS restraints and no steric
clashes were selected for further analysis. The
flowchart for the ensemble refinement protocol against
CXMS data was illustrated in Fig. S10.

The center-of-mass for one subunit with respect to
the other subunit in the each CXMS model was calcu-
lated using an in-house Python script. The map projec-
tion with spherical coordinates was plotted using
Gnuplot. The intermolecular NMR paramagnetic relax-
ation data were taken from previously published studies
for EIN/HPr complex (Tang et al. 2006; Fawzi et al.
2010) and for ubiquitin homodimer (Liu et al. 2012),
and ensemble refinement against the NMR data was
performed as previously described. Reweighted atomic
probability maps depicting the distribution of one sub-
unit relative to another were calculated in Xplor-NIH
(Schwieters et al. 2006) and were plotted at respective
thresholds (Schwieters and Clore 2002). Structural fig-
ures were prepared with PyMOL (the PyMOL molecular
graphics system).

Abbreviations
CXMS  Chemical cross-linking of proteins coupled
with mass spectrometry analysis

NMR Nuclear magnetic resonance

EM Electron microscopy

BS? Bis-sulfosuccinimidyl suberate
BS*G Bis-sulfosuccinimidyl glutarate
PDH Pimelic acid dihydrazide

BPTI Bovine pancreatic trypsin inhibitor
PP2Ac Phosphatase 2A catalytic subunit
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IGBP1 Immunoglobulin binding protein 1
RMSD  Root-mean-square deviation
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