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Abstract

Expression of the SodA superoxide dismutase (MnSOD) in Escherichia coli is regulated by superoxide concentration through
the SoxRS system and also by Fur (Ferric uptake regulator) through a mixed incoherent feed forward loop (FFL) containing
the RyhB small regulatory RNA. In this work I theoretically analyze the function of this feed forward loop as part of the
network controlling expression of the two cytoplasmic superoxide dismutases, SodA and SodB. I find that feed forward
regulation allows faster response to superoxide stress at low intracellular iron levels compared to iron rich conditions. That
is, it can conditionally modulate the response time of a superimposed transcriptional control mechanism.

Citation: Semsey S (2014) A Mixed Incoherent Feed-Forward Loop Allows Conditional Regulation of Response Dynamics. PLoS ONE 9(3): e91243. doi:10.1371/
journal.pone.0091243

Editor: Eshel Ben-Jacob, Tel Aviv University, Israel

Received October 19, 2013; Accepted February 11, 2014; Published March 12, 2014

Copyright: � 2014 Szabolcs Semsey. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Danish National Research Foundation. The funder had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: S. Semsey is an Associate Editor at PLOS ONE. This does not alter the author’s adherence to all the PLOS ONE policies on sharing data and
materials.

* E-mail: semsey@nbi.dk

Introduction

The highly reactive superoxide (O2
-), which is produced

intracellularly as a common byproduct of aerobic life, is one of

the main reactive oxygen species that can damage cellular

components. Most of the cells exposed to oxygen possess enzymes

that provide protection to superoxide toxicity by catalyzing

dismutation of superoxide to hydrogen peroxide and oxygen.

Extracellular superoxide is produced for instance by phagocytic

leukocytes to inactivate invading microorganisms, or by hetero-

trophic bacteria, affecting global biogeochemistry [1]. Therefore

pathogenic bacteria evolved mechanisms to inactivate superoxide

molecules or their production in host macrophages [2]. Escherichia

coli has three superoxide dismutases (SodA, SodB, and SodC)

which require different metal cofactors and are regulated in

different ways [3–8].

The active SodA, or MnSOD, contains manganese. SodA can

bind iron and manganese with similar efficiencies [9] but the iron-

substituted SodA is catalytically inactive [10]. SodB, or Fe-SOD,

contains iron. The cytosolic SodA and SodB proteins have

overlapping functions [11] but they are functionally not equivalent

[12]. The periplasmic SodC protein contains copper and zinc, and

may be important to protect the cell from macrophage killing [13–

15].

Transcription of sodA, but not of sodB, is activated by superoxide

stress through the SoxR-SoxS system [5,16]. Expression of both

SodA and SodB is regulated by intracellular iron availability

(Figure 1). Transcription of sodA is directly inhibited by the iron-

bound form of the Ferric Uptake Regulator (Fe-Fur) [8], while

sodB transcription is independent of Fe-Fur [7]. However, Fe-Fur

levels affect SodB protein production through the small regulatory

RNA (sRNA) RyhB, which acts by inhibiting translation initiation

and by decreasing mRNA stability [17]. SodA expression is also

negatively controlled by RyhB [3], therefore SodA expression is

inhibited through an incoherent feed-forward loop (FFL). Similar

steady-state SodA activities were found in wild type and Dfur

strains [8], suggesting that the FFL results in similar levels of

repression at both high and low levels of free intracellular iron

(Figure 1). In order to pinpoint the function of this FFL, I

investigated the performance of feed-forward regulation of SodA

compared to a control system where SodA expression is

independent of Fe-Fur and RyhB.

Results

I have developed a mathematical model to study the

characteristics of feed-forward regulation of SodA expression.

The model is described in detail in the Models section. Using this

model I compared the steady state and dynamic behaviors of the

natural system, where SodA expression is regulated by RyhB and

Fe-Fur through a FFL, with a hypothetical control where SodA

production does not depend on FeFur or RyhB concentration.

The incoherent FFL keeps steady state SodA mRNA levels
constant

Similar SodA activities were reported in wild type cells growing

in iron rich conditions and in Dfur strains [8] where RyhB is

expressed at maximal levels [17]. The parameter values in the

model were chosen to match this experimental observation. Thus

the model produced similar SodA mRNA levels at high iron (Fe-

Fur-repressed) and low iron (RyhB-repressed) conditions.

First I explored the steady-state levels of SodA at intermediate

Fe-Fur levels in the absence of superoxide stress. Simulations

showed that SodA mRNA levels were kept in a relatively narrow

range as Fe-Fur levels were changed from 2 to 2000 nM (Figure 2).

Unlike typical regulatory systems which regulate transitions

between a high and a low expression state, i.e. turn a gene on
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or off, this FFL regulates transitions between similar expression

states. Although the SodA mRNA has similar concentrations in

these states, it has substantially higher turnover (higher production

and degradation rates) at low iron levels (Figure 2, dotted line).

Simulations of transitions between low and high iron
levels

To explore how SodA mRNA levels respond to changes in iron

availability, I simulated sudden changes in Fe-Fur levels (Figure 3).

SodA expression responded by a transient increase to iron

depletion (,2-fold), and returned to its original level after about

1.5 cell generation (Figure 3A). Such transient expression change,

i.e. exhibition of near perfect adaptation, is a typical feature of

incoherent FFLs [18–21]. It results from the delay in RyhB

mediated inactivation of SodA mRNA, which depend on the rate

of RyhB production relative to its targets production rates and on

the efficiency of RyhB pairing with the SodA mRNA. To explore

how changes in these parameters affect the shape of the response

curve, I performed simulations where RyhB was produced at

lower rates than the estimated upper bound used in Figure 3A (see

Methods). To obtain the same steady-state SodA mRNA levels at

low and high Fe-Fur levels as with the standard parameters used in

Figure 3A, the rate of RyhB pairing with the SodA mRNA was

properly increased (Figure 3B, solid lines). The individual effects of

decreased RyhB production rate and increased pairing of RyhB

and SodA mRNA were simulated for comparison (Figure 3B,

dashed and dotted curves, respectively). As a result of lower RyhB

production rate and more efficient complex formation between

RyhB and SodA mRNA, the amplitude of the response decreased

and the peak of the response occurred earlier. These effects are

due to the improved ability of SodA mRNA to compete with the

strong targets for RyhB binding [22]. Similar simulations with

higher sRNA production rates and decreased pairing rates did not

change the response curve.

The opposite effect was observed when the Fe-Fur concentra-

tion was suddenly increased (Figure 3C). In this case SodA mRNA

levels decreased because Fe-Fur blocks only the production of

SodA and RyhB mRNA, and it takes more than one cell

generation to clear the existing RyhB sRNA molecules from the

system.

Simulation of superoxide stress at low and high iron
levels

Intracellular superoxide levels are sensed by the SoxR protein,

which contains two [2Fe–2S] clusters. In its oxidized form, SoxR

activates transcription of the SoxS protein, which regulates

transcription of about 40 promoters. Induction of superoxide

stress by paraquat results in about six-fold increase in sodA

transcription [5]. Although sodA transcription is increased in Dfur

cells, similar fold activation was observed in wild type and Dfur

cells in the presence of paraquat [5]. Therefore in the model I

assumed that SoxS and Fur act independently on the sodA

promoter. Because SoxS in intrinsically unstable with an in vitro

half-life of about 2 minutes [23], I simulated the effect of

superoxide stress simply by increasing the maximal sodA

transcription rate (Figure 4). I performed simulations at both low

(1 nM) and high (2000 nM) Fe-Fur levels. At low Fe-Fur levels the

FFL mediated system responded substantially faster than the

constitutive system, both to the appearance and to the removal of

superoxide stress (Figure 4 A and C). However, in the simulations

at high Fe–Fur levels the response dynamics of SodA mRNA was

indistinguishable in the FFL mediated and constitutive systems

(Figure 4 B and D).

Discussion

In bacteria, small regulatory RNAs are often part of feed-

forward motifs which contain both protein and RNA regulators

(mixed FFLs) [24–26]. Unlike in pure transcriptional FFL motifs,

where incoming regulatory signals must be integrated at the

promoter of the target gene using a certain logic [20,27,28], in

mixed motifs the actions of the protein and sRNA regulators on

target production are spatially separated and independent of each

other. The function of incoherent feed-forward loops in genetic

regulation has been addressed both experimentally and theoret-

ically. For example, incoherent FFLs were shown to accelerate

response times [29], provide fold change detection [19], and

generate non-monotonic input functions [30].

Regulatory effects of the mixed FFL
In this work I studied the function of a mixed FFL embedded

into a small regulatory network that controls expression of

cytoplasmic superoxide dismutases in E. coli (Figure 1). This

system responds to two intracellular input signals, iron and

superoxide concentrations. The system maintains SodA mRNA

levels at a narrow concentration range at a wide range of iron

Figure 1. Regulation of cytoplasmic superoxide dismutases by
intracellular free iron and superoxide levels. SodA expression is
regulated by iron through an incoherent feed-forward loop (shown in
red).
doi:10.1371/journal.pone.0091243.g001

Figure 2. Steady state levels (solid black line) and production
rate (dotted grey line) of SodA mRNA as a function of Fe-Fur
level in the absence of superoxide stress. The functional
interactions in the feed-forward loop at low and high Fe-Fur levels
are shown in bold.
doi:10.1371/journal.pone.0091243.g002
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concentrations, although the SodA mRNA turnover is higher at

low iron levels (Figure 2). Similar to dominant negative

autoregulatory systems [31], this FFL is mostly responsible for

regulation of expression dynamics during transitions between

different environmental conditions.

In the absence of superoxide, the system responds to changes in

iron levels with similar pulse dynamics as was previously predicted

for incoherent FFLs where the master regulator was an activator

[19]. In the iron rich LB medium SodA and SodB transcript levels

are similar [32]. However, iron levels greatly exceed manganese

levels in E. coli grown in iron rich conditions [33], and a fraction of

SodA proteins is inactive because being substituted by iron instead

of manganese. When intracellular iron becomes scarce, the cell

stops production of several non-essential iron using proteins, such

as SodB, thus allowing essential proteins to utilize the available

limited free iron pool [34].

The loss of SodB activity upon iron depletion is compensated on

one hand by a decrease in the level of iron-substituted SodA, and

on the other hand by a transiently increased SodA production

(Figure 3A). Simulations of the transition from an iron-depleted to

an iron rich environment predict the opposite effect (Figure 3C).

In this case, SodA activity decreases because of the slower

production and of the higher iron substitution rates as well.

Superimposed global controls
SodA expression is regulated by global regulators responding to

intracellular iron and superoxide concentrations. The iron

response system is acting through a mixed FFL, involving direct

transcriptional and indirect translational regulation, while the

superoxide response system acts directly at the transcriptional level

(Figure 1). Because the FFL regulating SodA consists of global

regulators which are used for regulation of many other genes, it

does not generate an extra cost for the cell. Our simulations

suggest that the major advantage of this FFL is that it can

conditionally modulate the response time of a superimposed

transcriptional control mechanism, allowing faster response of

SodA when SodB function is limited. At low iron levels the

superoxide stress response is predicted to be about three times

faster compared to the control system, while at high iron levels the

responses are identical (Figure 4). This effect is due to the mixed

nature of the FFL, which allows differential regulation of SodA

mRNA production and degradation rates by controlling tran-

scription initiation (by Fe-Fur) and translation initiation/mRNA

stability (by RyhB) separately. In the FFL regulated system the

steady state SodA mRNA level is resulted from equilibrium of

production, RyhB mediated degradation, natural degradation,

and dilution. Compared to the FFL-regulated system, the

constitutive system operates with a constant low SodA mRNA

degradation rate, and therefore requires a smaller production rate

to obtain the same steady state mRNA level. At low Fe-Fur levels,

the FFL regulated system allows faster initial SodA mRNA

Figure 3. Simulations of transitions from high to low (A and B)
and low to high (C) iron conditions in the absence of
superoxide stress. The Fe-Fur concentration was changed at zero
time from 2000 nM to 1 nM (A and B) or from 1 nM to 2000 nM (C). The
solid black curves represent RyhB levels, while the solid red and green

curves represent the levels of SodA and SodB mRNAs, respectively. The
dashed red line represents the control system where SodA is produced
constitutively. (B) Changes in the level of SodA mRNA were simulated
using different sRNA production rates (aS) and RyhB pairing rates (dA).
The rate pairs used were chosen to obtain the same SodA mRNA levels
at low and high iron conditions. The solid red curve represents
simulations with the standard parameters (aS = 280/cell gen;
dA = 0.0019/min). The solid blue (aS = 105/cell gen; dA = 0.008/min) and
cyan (aS = 70/cell gen; dA = 0.016/min) lines show simulations where the
sRNA was produced at lower rates but formed a complex with the SodA
mRNA at a higher rate. The dashed and dotted lines represent
corresponding simulations when only the sRNA production rate was
decreased or the complex formation rate was increased, respectively.
doi:10.1371/journal.pone.0091243.g003
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production rate upon superoxide stress compared to the consti-

tutive system, and reach a steady state quickly because of the

increased RyhB mediated degradation, which is directly propor-

tional to the level of SodA mRNA. The FFL also allows faster

recovery from stress because of the active degradation of the

existing SodA mRNAs.

In conclusion, the FFL allows faster superoxide stress response

and better adaptation in iron restricted environments, such as

Figure 4. Simulations of changes in superoxide levels at low (left panels) and high (right panels) iron conditions. The dominant
regulatory interactions are indicated on the top. At zero time the maximal transcription rate of SodA (aA) was increased 6-fold (top panels) or
decreased from this induced level to the uninduced level (bottom panels). The solid black curves represent RyhB levels, while the solid red and green
curves represent the levels of SodA and SodB mRNAs, respectively. The dashed red line, which overlaps with the solid red curves in panels B and C,
represents the control system where SodA is produced constitutively.
doi:10.1371/journal.pone.0091243.g004
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mammalian hosts. The same regulatory system is present in

pathogenic strains (e.g. E. coli O104:H4, Shigella flexneri 2a str

301), suggesting that the fast response may help in inactivating

superoxide molecules generated by the immune system.

Methods

The dynamical variables I keep track of in our model are the

concentrations of RyhB (S), SodA mRNA (mA), and SodB mRNA

(mB). Similar to previous models of sRNA regulation [22,34–37], I

assume that: (i) the degradation of the sRNA-mRNA complex is

faster than the dissociation of the same complex, so that the

binding is effectively irreversible; (ii) both the sRNA and the

mRNA are inactivated [38]; (iii) translation of the mRNA is not

possible after the complex with the sRNA is formed. I also assume

that 1 nM corresponds to one molecule per cell [39,40].

The deterministic differential equation that model RyhB

dynamics is:

dS

dt
~

aS

tG

1z
F

KD

{
S(t)

tG

{
S(t)

tS

{dAS(t)mA(t){dBS(t)mB(t) ðIÞ

The first term represents the production of RyhB, which is

repressed by Fe-Fur (F). In this term, aS is the maximal production

rate of RyhB per cell generation time [41]. KD ( = 0.02 mM) is the

binding constant of Fe-Fur to its operator site [42]. In the second

and third terms tS ( = 30/ln2 min) [38] and tG ( = 40/ln2 min)

represents the passive degradation and dilution (by cell devision) of

RyhB, respectively. The last two terms represent the active

degradation of the RyhB-mRNA complexes by RNaseE [38].

SodA dynamics was modeled by the following equation

dmA

dt
~0:3

aA

tG

z0:7

aA

tG

1z
F

KD

{
mA(t)

tG

{
mA(t)

tA

{dAS(t)mA(t) ðIIÞ

Based on sodA promoter activities reported in wild type and Dfur

strains [8], I assume that that the sodA promoter has a basal activity

even in the presence of Fe-Fur. The first term represents this basal

activity, while the second term represents the Fe-Fur regulated

activity. The effect of superoxide stress through the SoxR-SoxS

system is not modeled explicitly; instead, it is simulated by

increasing the maximal sodA promoter activity (aA). The next two

terms represent dilution and passive degradation (tA = 11.8/

ln2 min) [32] of the SodA mRNA, while the last term represents

the sRNA mediated degradation. The parameter for RyhB pairing

with the SodA mRNA, dA, was chosen to be 0.0019/min to obtain

similar SodA mRNA levels in the absence and in the presence of

Fe-Fur [8].

The dynamics of SodB is modeled by the following equation:

dmB

dt
~

aB

tG

{
mB(t)

tG

{
mB(t)

tB

{dBS(t)mB(t) ðIIIÞ

The first term represents the production of SodB. The next two

terms represent dilution and passive degradation (tB = 8.8/

ln2 min) [32] of the SodB mRNA, while the last term represents

the sRNA mediated degradation. The parameter for RyhB pairing

with the SodB mRNA, dB, was chosen to be 0.014/min to

reproduce the experimental observation that the SodB level in Dfur

cells is 13% of the wild type level [43].

There are several other RyhB target mRNAs exist in the cell,

which, similar to SodB, are not regulated directly by Fur.

Therefore mB represents all these mRNAs. The value for aB (63

molecules per cell generation) was chosen based on the reported

level of SodB mRNA (about 5 molecules/cell) [44] and on the

estimate that SodB mRNA production constitutes about 40% of

the production of strong targets [41].

The values of aA, and aS were chosen in such a way that

aA+aB = aS/4 (representing the upper bound for aS [41]), and

SodA production was assumed to represent 10% of the production

of all targets in the absence of superoxide stress (aA = 7/cell

generation). I compare the above natural system to a hypothetical

one where SodA levels depend only on superoxide concentration

and not on Fe-Fur or RyhB levels. In this case, equations I and III

remain the same, and equation II becomes

dmA

dt
~

aAC

tG

{
mA(t)

tG

{
mA(t)

tA

where aAC = aA/3.3 to match the Fur-Fe regulated SodA level.
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