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Abstract

The gene composition of present-day genomes has been shaped by a complicated evolutionary history, resulting in diverse
distributions of genes across genomes. The pattern of presence and absence of a gene in different genomes is called its
phylogenetic profile. It has been shown that proteins whose encoding genes have highly similar profiles tend to be
functionally related: As these genes were gained and lost together, their encoded proteins can probably only perform their
full function if both are present. However, a large proportion of genes encoding interacting proteins do not have matching
profiles. In this study, we analysed one possible reason for this, namely that phylogenetic profiles can be affected by multi-
functional proteins such as shared subunits of two or more protein complexes. We found that by considering triplets of
proteins, of which one protein is multi-functional, a large fraction of disturbed co-occurrence patterns can be explained.
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Introduction

The gene content of present-day genomes reflects their

evolutionary history during millions of years. It is mainly the

result of gene gains, duplications, losses and (horizontal) transfer

leading to a diverse distribution of genes observed in diverse extant

taxa. Common ancestry is a major determinant of the gene

content of related species: closely related species generally share

more genes than distant ones [1,2].

However, the correspondence between gene content and

phylogeny is not perfect: distantly related genomes share genes if

their products are necessary to mediate a defined function or a

common lifestyle. This ‘‘functional signature of gene content’’ is

exemplified by genes encoding proteins needed for flagellum

mediated locomotion: some distantly related eukaryotes share

these genes because they have a motile life style or stage, while

amongst much closer related organism, some are flagellated and

contain flagellar related genes, while others are not flagellated and

thus do not have these genes [3]. In general it has been shown that

genes with similar, but not merely phylogenetic driven, presence

and absence (co-occurrence) patterns form pathways or complexes

[4]. This second signal in gene content is strong enough that the

similarity of occurrence across genomes can be used to predict

interactions; i.e. genes whose phylogenetic distributions are

significantly similar have a high probability to encode interacting

proteins (e.g. [4]).

However, the reverse does not hold: only 46% of groups of

interacting proteins (complexes or modules) were found to have co-

occurrence that is better than expected by chance [5]. This trend is

even clearer when interactions of protein pairs instead of groups are

analysed: In prokaryotes only 24% of interacting protein pairs were

found to significantly co-occur [6]. This observation is not caused by

technical errors as filtering on such errors has little impact on the

percentages [5]. This disrupted co-occurrence of interacting pairs

has been frequently reported in small-scale studies where gene

presence/absence is the result of manual analysis thereby mini-

malizing technical errors [7,8]. For example, a recent analysis of the

presence of orthologs of the anaphase-promoting complex (APC)

subunits (a crucial protein complex for the progression of the

eukaryotic cell cycle) across a diverse array of eukaryotic genomes

revealed many genomes with partial (and hence possibly non-

functional) protein complexes [7]. A generalized functional or

evolutionary explanation for this common pattern has not been

tested. Besides, a single unifying explanation is not expected and

likely a multitude of functional and evolutionary mechanisms play a

role. Importantly, a priori perfect co-occurrence is only expected if

the the function of a protein is completely functionally dependent on

a single other protein and vice versa. Given the complexity of a cell

this is likely most often not true. Therefore, we want to investigate

the effect of multiple dependencies, i.e. multiple independent

interactors, on the absence of co-occurrence.

The importance of proteins with multiple functions (called

‘‘moonlighting’’) which fulfil different tasks in distinct pathways or

complexes is increasingly recognised [9]. This is most clearly

defined when focussing on protein complexes where a dynamic

view of their composition in different cellular context mediated by

shared complex subunits has been established [10–14]. In addition

moonlighting proteins are continuously being discovered in small-

scale molecular biological research such as the succinate dehy-

drogenase subunit SDH3, which was recently shown to be a

component of the TIM22 mitochondrial inner membrane protein

insertion complex [15].

Despite awareness of the functional importance of shared

interaction partners between complexes or pathways, its impact on
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genome evolution (presence or absence of genes) has not been

widely recognised or researched. However, this functional

organisation seemingly provides an intuitive reason for lack of

co-occurrence: the absence of an interaction partner makes sense if

another interaction partner from another function or context is

still present. The target of rapamycin (TOR) complex, a major

regulator of growth in eukaryotes, provides an illustrative example:

the TOR complex consists of two sub-complexes (TORC1 and

TORC2), which are both absent in a distinct but overlapping

small set of eukaryotes (Figure 1A) [16]. This is reflected in the

complementary co-occurrence patterns of the genes encoding the

associated proteins. More formally, this situation can be described

by a triplet of proteins (open triangle) where a central protein

interacts with two proteins, which do not interact with each other,

and where the occurrence patterns of the two interaction partners

complement each other.

We want to test to what extent multifunctional proteins such as

shared subunits explain disrupted co-occurrence. Therefore, this

study considers triplets of interacting proteins in order to

comprehensively investigate the influence of additional interac-

tions on understanding the disrupted co-occurrence between a

pair of proteins. Triplets of co-occurrence patterns have been

previously used to predict functional relations [17–19]. Despite the

similarity in framework, our approach has a different goal, namely

quantifying the effect of proteins with multiple distinct interactions

on disrupted co-occurrence in eukaryotes using experimentally

determined interaction networks. Although we focus on protein

complexes because these are slightly more clearly defined and

better conserved in evolution, we also analyse pairwise protein

interactions where multiple functionally independent interactions

for a single protein could be arguably more expected.

Methods

Interaction data
To detect multi-functional proteins in protein interaction

networks, we use physical interactions based on protein complex

data sets from human and yeast complemented by generic protein-

protein interactions from yeast.

In general co-complex membership is more precisely defined

than generic protein-protein interactions, which are often an

inclusive category of various types of functional relatedness (and

thus increases the number of possible reasons for disrupted co-

occurrence). For this study, we also require complex definitions

where multi-functional proteins are allowed to be in more than

one complex; ‘‘islands’’ of non-overlapping complexes are often

over-simplified representations of reality and would not allow for

capturing the features we are looking for. These criteria lead to

two different data sets of complex definitions: From the Corum

database of manually curated protein complexes from mammals

[20] we extracted the human data, and from the IntAct database

[21], we extracted the yeast complexes as defined by [10]. We used

the Gavin definitions of complexes which includes core complexes

with their associated modules and attachments. For simplicity, we

will refer to the two data sets as ‘‘human’’ and ‘‘yeast’’ complexes,

respectively. In order to reduce the data-complexity associated

with complexes of different sizes and ‘‘shapes’’ (in terms of internal

structures, such as modules and attachments), we consider all

pairwise relationships within the complexes. Complexes that have

no unique members (i.e. they are completely covered by other

complexes) have been removed. This concerned 86 complexes in

the human data set, but none in the yeast data set.

The 491 yeast and 1,826 human complexes resulted in 45,412

(yeast) and 31,525 (human) pairs of co-complex proteins. The yeast

data set is made up of fewer connected components which are on

average almost 5 times larger than in the human data set (see

Table 1). Consequently, the yeast proteins are also much more

connected than the human data, with 50% more interaction pairs,

despite 40% less proteins involved.

We used BioGRID to contrast our results on complexes to more

general proteins interactions. This complementary data set allows

us to determine the generality or specificity of the outcomes of our

analysis with respect to varying interaction definitions. Since we

were focusing on physical interactions, we excluded associations

based on genetic studies from our analyses. Out BioGRID data set

comprises 5,521 yeast proteins forming 56,078 protein pairs

residing in two connected components (see Table 1). Consequent-

ly, the average degree is lower compared to the complex data.

Orthologs and phylogenetic profiles
Phylogenetic profiles represent the presence or absence of a

gene and its orthologs across genomes. For our large-scale analysis

to explore the shape of present-day genomes we compared pairs

and triplets of phylogenetic profiles. For this we selected a set of 51

eukaryotic genomics with respect to phylogenetic diversity, in

order to cover all major groups of eukaryotes. This selection

reflects a trade-off between genome quality and phylogenetic

diversity, which both have been shown to be major determinants

in how effective phylogenetic patterns can be used for function

prediction [22]. For example the Naegleria gruberi genome, although

not of perfect annotation and sequence quality, is invaluable as it is

a genome from a free-living excavate without reduced proteomic

diversity.

The coding sequences were downloaded from various sources

(see Supplementary Table S1 for a detailed list), and from each

gene only the longest transcript was kept. From these genomes, we

computed orthologous clusters using an OMA-like algorithm

[23,24], which we adjusted to the specific requirements for this

analysis. If not mentioned otherwise, we follow the OMA

algorithm, for which we refer to the respective articles, instead

of reformulating everything again. Here we will only list the

changes to the original algorithm: the minimal alignment score for

potential orthologs was reduced to 130, in order to identify also

weaker homology, and the minimal alignment coverage was

reduced to 40% in a first clustering step (assembling doubly-

Author Summary

Every genome of current day species contains a very
unique selection of genes. Why a specific genome is
composed of exactly those genes is determined by many
factors, but often not resolvable. It seems plausible that
interacting genes would either occur together or be
absent together, because if one of them is alone, it might
not be able to perform its function properly, just as a bolt
can only perform its function together with a nut and vice
versa. However, it turns out that interacting genes very
often do not nicely co-occur across a wide range of
species, and frequently one gene can be found but the
other not. In this study, we investigated the co-occurrences
of multi-functional proteins and found that they are often
maintained in a genome, even if one of their interaction
partners is lost. This is because they can still perform some
functions with other interaction partners that are still
present. We can show that this has a noticeable effect on
genome compositions and can explain otherwise surpris-
ingly mismatching co-occurrence patterns of interacting
genes.

Shared Proteins and Disrupted Co-occurrence
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connected components, as opposed to cliques in the original OMA

algorithm) and then alignments with only 25% sequence coverage

were added to the best matching cluster. These values were

empirically adjusted in order to maximize inclusion of distant

homologs while avoiding excessive clustering of paralogs. This lead

to 58,533 orthologous clusters for a total of 644,999 proteins. The

intended definition of such clusters is to represent all extant

descendants from a single gene in the last common ancestor of

eukaryotes; or, for a gene invented later, all descendants of that

gene. The orthologous cluster data set is provided as Supplemen-

tary Dataset S1.

We also used OrthoMCL to form orthologous clusters [25].

OrthoMCL uses different homology search and a completely

different clustering strategy than OMA and should therefore give

an indication of the robustness of our results towards technical

biases related to the orthology detection (Figures S1, S2, S3, S4).

Unless explicitly discussed in the Results sections both independent

algorithms show similar results which support our conclusions.

The distribution across species of a particular gene can be

represented by its phylogenetic profile, a list of presence and

absence of the gene and its orthologs in all species in the data set.

Figure 1. Visualization of complementarity score and illustration of triangle types. (A) Constitution of the two TOR sub-complexes TORC1
and TORC2 complex. (B) Phylogenetic profiles (as an example) of TOR and Rptor and Rictor and the formed triangle. The nodes represent proteins
and the lines indicate a pairwise interaction. (C) Visualization of the complementary score and the different triangle types used throughout the study.
We consider ‘‘open’’ and ‘‘closed’’ triangles and closed triangles with 2 inparalogs. The ellipses symbolize the different complexes.
doi:10.1371/journal.pcbi.1003124.g001

Table 1. Some statistics of the three interaction data sets.

yeast-compl. human-compl. yeast-inter.

number of complexes 491 1,826 –

number of proteins 1,474 2,446 5,521

number of pairs 45,412 31,525 56,078

average degree 61.6 25.8 20.3

connected components 15 125 2

average component size 98.3 19.6 2760.5

doi:10.1371/journal.pcbi.1003124.t001

Shared Proteins and Disrupted Co-occurrence
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Unless mentioned otherwise, we are only considering if some

orthologs of the gene are present in a certain species or if no

ortholog is present. The number of copies (in-paralogs) is not

relevant here. For simplicity, when we refer to the phylogenetic

distribution of ‘‘a gene’’, we mean ‘‘a gene and its orthologs’’.

Pairwise profile analysis
In the first part of our analysis, we wanted to establish for our

data sets, to what degree interacting proteins co-occur across

eukaryotes. The co-occurrence of two proteins (i.e. the correlation

of presence and absence across species) can be inferred from their

phylogenetic profiles. A simple approach to measure the similarity

of profiles (and thus co-occurrence) is counting the number of

species where one gene is present and the other not; this is called

the ‘‘Hamming distance’’ between two profiles. One of the major

problem with this approach, next to others, is the correlation

among closely related species: e.g. a single gene loss in an ancestor

of animals would lead to the absence of that gene in all animal

genomes and would thus increase the Hamming distance by

several units, even though it is the result of only one evolutionary

event. An even larger drawback with this approach is the

treatment of losses in the phylogenetic profile: shared losses count

as much towards similarity as shared presences and, given the

sparse nature of the data and the large-scale approach, will lead to

a certain level of uncertainty in calculating phylogenetic profiles

(see e.g. [26]). Thus, better measures have been developed, such as

the ‘‘partial correlation’’ used by [27]. It is based on the

correlation of reconstructed gene gains and losses on the branches

of the species tree, corrected by the correlation with the global

trend (e.g. whole-genome duplications or genome streamlining

events). This is also our choice for the analyses presented here.

For pairwise profile analysis, we considered only pairs in which

at least one of the two genes is present in at least half of all species,

in order to ensure that the analysis captures the global trends and

only uses gene pairs that actually co-occurred at least at one point

during evolution. We defined the conditions under which we can

consider two phylogenetic profiles to be very similar, which will be

called ‘‘matching’’: exact equality of the profiles is clearly too

stringent, because of the many possible sources of error (e.g.

missing gene predictions), but also since a loss in a single species is

often not very consequential for the overall picture.

Thus, we used the partial correlations among all protein pairs

from the species under study with at least one interaction as the

background distribution (of which the vast majority are non-

interacting pairs). For our main results, we consider two

interacting proteins as having ‘‘matching’’ profiles, if their partial

correlation exceeds that of 90% of these background pairs. In

addition we report the results for 85% and 95% in Figures S8 and

S9 (for both OMA and MCL). Our randomization should correct

for other signals in the occurrence data, such as the common

ancestry signal in gene content, and the fact that proteins with

interactions are better studied and/or more essential which could

also impact occurrence patterns. This is a similar strategy as

previously employed by [5,28] to determine whether a group of

proteins is exhibiting significant co-occurrence in its evolution.

This approach also allows to define a threshold independent of a

specific similarity measure.

If pairs are not matching, we also test whether they classify as

pairs that are in a subset pattern. Subset patterns are thought to

occur for two postulated reasons that create this type of non-

matching pattern. The first postulated cause for a subset relation is

because there is an assymmetric relation between two proteins,

and the second is because one protein was invented much later

than the other (lineage specific additions as predicted by the

irremediable complexity hypothesis [29]).

First we determine whether one OG is a taxonomic subset of

another. An OG is considered to be a taxonomic subset of another

OG, if they contain proteins from overlapping species sets, but one

of these sets spans a wider taxonomic range. Subsequently we

score the general subset-nature of the relation of one OG to the

other. Being a subset means that if gene A is present in a species,

then gene B may or may not be present, but if A is absent, then B

should also be absent. This situation can arise if B depends on A,

but A not on B. We quantify this property by counting in how

many species A is present without B (cases supporting the subset),

minus the number of species where B is present without A (cases

violating the subset property), with A being the protein that occurs

in more species. Again, we cannot expect many perfect subsets, for

the same reasons as described above. Thus, we apply again the

rule that two profile are considered to be in a ‘‘subset’’

relationship, if they achieve a higher subset score than 90% of

the background set of all protein pairs in the data set. A subset-like

relationship can also occur, if one of the genes was invented later,

in which case there is no asymmetric dependency between the

genes as described above. These are independently tested and

classified before as a taxonomic subset even if they would have

classified as a subset.

Triplet analysis
The main focus of our analysis is on protein triplets, in order to

quantify the influence of multi-functional proteins on co-occur-

rence disruptions. To this end we analysed triplets of proteins that

all have at least one interaction, but that not necessarily interact

with each other. All triplets A, B, C were evaluated with a

‘‘complementarity score’’ which is based on the phylogenetic

profiles of the 3 genes and expresses to which degree the following

properties are fulfilled: If A is present, then at least one of B and C

should also be present in a genome, but many genomes should be

missing one of B or C, ideally about equally often. In other word,

B and C should complement each other with respect to A, hence

the name complementarity score. This score is computed by taking

the smaller number of the ‘‘good’’ cases, where in a species either

A is present but only B or only C, and subtract from this number

the ‘‘bad’’ cases, i.e. the number of species in which the above

outlined conditions are violated. The scoring scheme is illustrated

in Figure 1 B. As for the pairwise analysis, we were only interested

in global trends and thus require the protein A to be present in at

least half of all species.

Results

Profile comparison of interaction pairs
The main goal of this study is to investigate the amount of

disrupted co-occurrence that can be explained by a protein being

shared between two complexes, or a protein having multiple

distinct interactions. First, however, we want to establish the

degree of disrupted co-occurrence in our data sets, i.e. how often

co-complex or interacting protein pairs have a similar profile and

what other patterns can be observed between non-similar profile

pairs.

For this we compared the profiles of all pairs of interacting

proteins in all three data sets (yeast and human complexes, and

yeast interactions) and classified the relationship into four different

types as described in Methods. The result, shown in Figure 2,

indicates that less than a fifth of interacting proteins also have a

matching profile (about 18% in both data sets, red slice). This is in

line, albeit slightly lower, than previous findings in prokaryotes [6].

Shared Proteins and Disrupted Co-occurrence
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Only a small fraction of protein pairs (6.2% in yeast, 4.2% in

human, yellow slice) fulfill the subset relationship, i.e. gene B was

lost in some species where A is still present. Using an alternative

orthology (OrthoMCL), this number is noticeably higher reflecting

the differences in the orthology detection algorithm.

We also found that a relatively large proportion of the pairs

(17% in yeast, 21% in human) show a taxonomic pattern, i.e. one

of the genes was invented at a later point and is thus not present in

the earlier-branching species. This confirms previous observations

that phylogeny leaves a strong signal in gene content [1].

Interestingly, both the yeast as well as the human data set lead

to similar distributions of the different types of profile relationships

as do the interactions and the complex data sets, despite having

different network structures (see also Table 1).

These results demonstrate that pairwise analysis is not sufficient

to explain the complex relationship between phylogenetic profiles

and protein interactions, as there is a large fraction of interacting

pairs with no obvious profile pattern (‘‘other’’, light blue slice

Figure 2). Although a considerable fraction of interacting proteins

show a matching profile, mechanisms or scenarios have to be

found to explain why interacting proteins often do not display

phylogenetic co-occurrence.

Triplet analysis
We propose that some of the unexplained mismatching profiles

could be due to multi-functional proteins. For this we consider

proteins that are part of two different complexes, which can lead to

scenarios, where if one of the two complexes is (partially) lost, the

protein would still be needed to perform its function in the other

complex. We also consider proteins that have multiple pairwise

interactors which themselves do not interact with each other to

contextualize our observations. To investigate this scenario and its

effect on phylogenetic profiles, we systematically analyzed the

patterns found among profile triplets. Specifically, we investigated

the patterns among what we call ‘‘open triangles’’, where a protein

A interacts with both B and C, but B and C are independent of

each other (i.e. do not interact, see Figure 1 B for a visualization).

In the context of protein complexes, this means that A is a shared

subunit of the two complexes containing B and C, respectively.

Since A would still be able to perform part of its function if

either B or C were lost, the phylogenetic profiles of open triplets

are expected to have the features described by the complemen-

tarity score (see above and Figure 1) B, namely that B and C show

little co-occurrence, but that both are subsets of A. This means

that if we performed only pairwise analysis, the pairs A–B and A–

C are, although interacting, expected to have non-matching

profiles.

In a first step of the triplet-based analysis, we try to establish if

open triangles in the protein complexes and protein interaction

data correspond to the expected phylogenetic pattern described

above. To this end, we analyzed all triplets of the proteins from the

complexes and interaction data sets, and from that collected all

open and closed triangles, as well as a random selection of

approximately 10 million triplets of proteins that do not interact

with each other. All these triplets were scored with the

complementarity score as described in the Methods and ranked

by that score. Finally, the triplets were divided into equally large

bins ranging from the lowest to the highest complementarity score.

For each bin, we counted the occurrences of open and closed

triangles.

The results are summarized as stacked histograms in Figure 3.

Each bar represents the distribution of triplet types within a bin,

with the left-most bin corresponding to the lowest complementar-

ity score and the right-most bin to the highest score. The bins are

of equal size, but the vast majority of triplets are trios of non-

interacting proteins (which make up the white space above the

colored bars). The graphs show a clear correspondence between

complementarity score and the frequency of open triangles (dark

blue), indicating that the pattern described by this score often

implies, as expected, open triangles. In fact the Spearman r for the

increase in the fraction of open triangles over bins of increasing

score is between 0.92 and 0.99 for all three data sets with p,10e-5

(Figures S5, S6, S7). The bars in light blue also correspond to open

triangles, but there are cases where B or C are taxonomic subsets

of A and thus a different mechanism is probably at work. This is

reflected by the fact that especially low-scoring triplets fall into this

category. There is also an enrichment among high-scoring triplets

of open triangles with two in-paralogs in A (orange bars). This is

expected, since this scenario (recent duplication in A and then

Figure 2. Distribution of the profile relationships of (A) co-complex protein pairs in the two complex data sets and (B) yeast
interactions. The 4 differently colored slices correspond to the types of similarities between profiles as described in Methods.
doi:10.1371/journal.pcbi.1003124.g002

Shared Proteins and Disrupted Co-occurrence

PLOS Computational Biology | www.ploscompbiol.org 5 July 2013 | Volume 9 | Issue 7 | e1003124



possibly sub-functionalization of the two in-paralogs) is likely to

result in similar phylogenetic patterns to when A did not duplicate.

Interestingly, and possibly an indication of the robustness of the

results, these features are very similar among the three data sets

that we analyzed. The main difference between the data sets is the

much larger fraction of closed triangles between the complex data

and BioGRID, mainly reflecting the difference in definition of

protein pairs. Moreover, the human complex data (green bars) also

has a higher fraction of closed triangles compared to the yeast

complexes, which is due to the different network structures of the

interaction data sets (see Table 1). Closed triangles are also

enriched among triplets with a high complementarity score, albeit

to a somewhat lesser degree.

It follows from this analysis that open triangles often correspond

to the complementary pattern of phylogenetic profiles. Thus,

proteins involved in such triangles will be part of interactions

where the phylogenetic profiles do not match. In particular the

pairs A–B and A–C of open triangles are interacting, but will often

have mismatching profiles. Such disrupted co-occurrence would

seem unexplainable in pairwise analysis, but when triplets are

considered, an explanation can often be found.

Using triplet information in the pairwise analysis
Having established the impact of shared sub-complexes or

proteins with multiple distinct interactions on triplets of phyloge-

netic profiles, we quantified their effect on the disrupted co-

occurrence of co-complex pairs reported above. For this we

considered all open triangles with a positive complementarity score

and extracted all co-complex pairs involved in these triangles. For

these pairs we then determined the categories of profile pattern

pairs that we also used in Figure 2, i.e. whether they are matching,

a subset, taxonomic or undefined (‘‘other’’). The result is visualized

in Figure 4, where the dark parts of the bars indicate the number

of pairs from positive-scoring triangles among all co-complex pairs

in the respective category.

In the human data set, 4,123 (15%) of 19,198 co-complex pairs

are found in positively scoring triangles, while among the yeast

complex data 14,452 (33%) of 43,338 co-complex pairs are part of

positively scoring triangles. In correspondence with Figure 3, there

are more positive scoring open triangles among the yeast

complexes due to the different network structure.

This analysis shows that the majority of pairs from positively

scoring triplets fall into the ‘‘other’’ category (3,042 or 74% in

human and 11,791 or 82% in yeast). Compared to the expectation

under random assignment, this is an over-representation in this

category of 40% in yeast and 29% in human, which is modest, but

because of the large numbers, highly significant (both p,1e-10).

There is also a small fraction of triplet-pairs that are classified as

‘‘matching’’, as this category also includes profile pairs that are not

perfectly equal. In the yeast data set, there are also a few triplet-

pairs among the subset and taxonomic categories.

Figure 3. Frequency of open triangles as a function of the
triplet score for (A) co-complex protein pairs and (B) yeast
interactions. Each bar corresponds to an equally-sized bin, with the
right-most bar belonging to the best scoring triplets. The three small
plots on the right side of the figures displays ratios between different
categories.
doi:10.1371/journal.pcbi.1003124.g003

Figure 4. Distribution of profile-pair types among co-complex
proteins and yeast interactions. The pairs are divided into the the
same categories as in the pie charts of Figure 2. The dark part of each
bar corresponds to the number of co-complex protein pairs or yeast
interactions that are part of a positive-scoring triplet.
doi:10.1371/journal.pcbi.1003124.g004

Shared Proteins and Disrupted Co-occurrence
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This analysis confirms that for a substantial fraction of co-complex

pairs with mismatching profiles, the disrupted co-occurrence can be

explained by considering triplet relationships among proteins.

In order to visualize and understand the relation between profile

pair similarity (partial correlation), triplet-based complementarity

score and interaction probability, we created heat maps that show

the enrichment of co-complex pairs or interactions as a function of

the two types of scores (Figure 5). Although also a remarkable

number of pairs with low pairwise similarity and triplet scores

share complex membership or interact, there is a clear trend in all

data sets for both measures to correlate with higher enrichments of

interactions: The fields with the highest enrichment of co-complex

pairs (orange and yellow) tend to be at the top (high pairwise

similarity) and right-hand side (high triplet score) of the maps. For

the yeast complex data set, the highest complementarity score

seems to be a very good indicator for co-complex membership,

whereas for the human complexes set, the combination of very

high pair similarity and high complementarity score seems to

correlate best with the enrichment of co-complex pairs, but also

the complementarity score alone is a good predictor of interaction.

This confirms that, as implied by Figure 2, the prediction of

interacting pairs based on only pairwise profile similarity will

produce many false negatives. Many more co-complex pairs can

be predicted by considering also higher-order scenarios, such as

the one presented here based on open triangles.

Examples
A previously studied example of multi-functional protein sub-

complexes is the evolution of the target of rapamycin (TOR)

complex, a major regulator of growth in eukaryotes. It has been

shown that TOR consists of two sub-complexes, but not both of

them are present in all eukaryotes. This is reflected in the

phylogenetic profiles of the associated proteins, which lead to

patterns similar to what we intend to capture with the

complementarity score [16]. It is thus of great interest to

investigate how TOR behaves in our fully automated large-scale

analysis, both in terms of complementarity score as well as

accuracy of the phylogenetic profiles.

TOR complex 1 consists of MTOR, MLST8 and RPTOR, while

TOR complex 2 also contains MTOR and MLST8, but combined

with RICTOR and MAPKAP1. In Table 2 we show the profiles of

the triplet MTOR–RPTOR–RICTOR using our data and orthologs.

The phylogenetic profiles indicate that these 3 proteins also show

the typical pattern, with RICTOR missing in 11 species where TOR

and RPTOR are present. However, RPTOR is almost ubiquitous,

only missing in 3 species that have both of the other proteins.

Together with 4 species violating the complementarity pattern,

this results in a slightly negative complementarity score of 21

(which is still among the 10% highest-scoring triplets).

Since these profiles stem from large-scale and uncurated

analyses, it is possible that the violations of the pattern are

mistakes in the data rather than biologically meaningful. Possible

error sources include incompletely sequenced or annotated

genomes (leading to missing gene predictions), failure to detect

weak homology, or problems with the clustering of orthologs. With

detailed manual analysis, the fate of some ‘‘suspicious’’ absences

might be discovered. But also using just the data from large-scale

analysis, the complementarity pattern can be observed in this

previously studied example from the TOR complex.

Among the highest scoring open triangles in our data set, the

emerin-related complexes 25 and 52 (named on the basis of their

S300 elution fraction number, see [30]) were found several times.

Emerin-related complexes have been shown to be involved in a

variety of different functions. This is achieved via several multi-protein

complexes with a small set of proteins that participate in multiple

complexes. Since apparently not all functions of these emerin-

related complexes are needed in all organisms, the shared subunits

are expected to be present in many species, while some of the other

proteins are not always needed, and thus can potentially be lost in

some species. This is exactly the scenario on which this study

focuses and the complementarity score is aimed at revealing cases

like those found in emerin-related complexes. The complexes 25

and 52 share a number of proteins, such as ACTB, EMD, HNRNPK

or NAAA38, while both contain also other proteins. In our example,

HNRNPK (heterogeneous nuclear ribonucleoprotein K) takes the

role of the protein A that is common to both complexes, while

Figure 5. Heat maps showing the enrichment of (A) co-complex
pairs or (B) yeast interactions as a function of pairwise profile
similarity scores and triplet-based complementarity scores. The
color intensity corresponds to the log2-enrichment of protein pairs that
are part of the same complex or interact, among all protein pairs inside
a pair- and triplet-based bin.
doi:10.1371/journal.pcbi.1003124.g005
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PDCD4 (programmed cell death protein 4) is only part of complex

52 and CDC37 (cell division cycle 37) is only part of complex 25

[30].

The phylogenetic profiles of these 3 proteins are shown on the

right-hand side of Table 2. From only comparing two profiles at a

time, interactions among these profile would seem quite unlikely,

as they do not seem to be correlated. However, when the whole

triplet is considered, we can observe the complementarity pattern

as proposed in this study: PDCD4 and CDC37 are almost perfect

subsets of HNRNPK, while normally at least one of the two is

present if also HNRNPK is found in a genome. According to the

genome annotations and the ortholog predictions used here,

PDCD4 is missing in 13 species (among them all fungi) that all have

HNRNPK and CDC37. On the other hand, CDC37 is missing in 12

species where the other two proteins are present, mostly in plants

and chromalveolates. The complementarity criterion is only

violated in 4 species, thus this results in a high overall score of 8.

This shows that the proposed scenario of multi-functional

protein sub-complexes leaving traces in the phylogenetic profiles is

not only a signal found in large-scale comparisons, but that the

patterns can be confirmed by well-studied and biologically mean-

ingful examples.

Duplications of proteins in shared sub-complexes
Not only gene loss and invention shape the content of a genome,

but also duplications are important factors. In the context of

shared sub-complexes, it has been shown that multi-functional

proteins have a larger chance of being retained subsequent to

duplications in order to specialize in the different roles they

perform in the different complexes [11,31,32]. One such example

is the above-mentioned TOR complex, where the MTOR ortholog

was found to be duplicated in several species [16]. In the analysis

of the complementary score (Figure 3), the orange parts of the bars

show the enrichments of open triangles where gene A is duplicated

and the two inparalogs take the different roles in the interaction.

Just as the normal open triangles, there is also a strong enrichments

of triangles with duplications among the high-scoring triplets.

Our data set allows for a more explicit, large-scale test of the

hypothesis that multi-functional proteins tend to be retained after

Table 2. Examples of triplet profiles.

TOR complex Emerin-related

MTOR RPTOR RICTOR HNRNPK PDCD4 CDC37

Homo sapiens & & & & & &

Mus musculus & & & & & &

Takifugu rubripes & % & & & &

Danio rerio & & & & & &

Ciona intestinalis & & & & & &

Branchiostoma floridae & & & & & &

Caenorhabditis elegans & & & & % &

Drosophila melanogaster & & & & & &

Anopheles gambiae & & & & & &

Nematostella vectensis & & & & & &

Trichoplax adhaerens & & & & & &

Monosiga brevicollis & & & & & %

Batrachochytrium
dendrobatidis

& & & & % &

Neurospora crassa & & & & % &

Yarrowia lipolytica & & & & % &

Debaryomyces hansenii & & & & % &

Kluyveromyces lactis & & & & % &

Candida glabrata & & & & % &

Saccharomyces cerevisiae & & & & % &

Schizosaccharomyces
pombe

& & & & % &

Cryptococcus neoformans & & & & % &

Ustilago maydis & & & & % &

Phycomyces blakesleeanus & & & & % &

Rhizopus oryzae & & & & % &

Encephalitozoon cuniculi % % % % % %

Entamoeba histolytica & & & % % &

Dictyostelium discoideum & & & & % %

Plasmodium falciparum % % % & & %

Cryptosporidium parvum % % % & & %

Toxoplasma gondii & % % & & %

Tetrahymena thermophila & % & & % %

Paramecium tetraurelia & % & & % %

Phytophthora infestans & & & & & %

Phytophthora sojae & & & & & %

Phaeodactylum
tricornutum

& & % & & &

Thalassiosira pseudonana & & % & & &

Emiliania huxleyi & & % & & &

Physcomitrella patens & & % & & %

Arabidopsis thaliana & & % & & %

Oryza sativa & & % & & %

Selaginella moellendorffii & & % & & %

Chlamydomonas reinhardtii& % % & & %

Volvox carteri & % % & & %

Micromonas pusilla & & % & & &

Table 2. Cont.

TOR complex Emerin-related

MTOR RPTOR RICTOR HNRNPK PDCD4 CDC37

Ostreococcus tauri & & % & & &

Cyanidioschyzon merolae & & % % % %

Leishmania major & & & % % %

Trypanosoma brucei & & & % % %

Giardia intestinalis & % % % % %

Naegleria gruberi & & % % % %

Trichomonas vaginalis & & & % % %

nGood min(3,11) min(13,12)

nBad 4 4

Complementarity
score

-1 8

Left: a protein triplet from the TOR complex, right: a triplet from emerin-related
complexes. The computation of the complementarity score is explained in
Figure 1 B.
doi:10.1371/journal.pcbi.1003124.t002
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duplication to a higher extent. To this end, we analyzed the rate of

which duplications are retained (‘duplication rate’) of the proteins

with different roles among the various triplet types of this study.

This rates were computed from the number of proteins with

duplications (defined as having in-paralogs in at least 5 species)

among all proteins of which at least 5 species have only one copy.

This filter excludes some proteins from the analysis, but reduces

the chance of including clusters with out-paralogs or accidental

duplication calls because of misannotations.

The results are shown in Table 3 for various classes of proteins,

computed using the human complexes (using the yeast complexes

yielded very similar results, data thus not shown). For open

triangles, the clear difference between the A protein, which is

shared among both complexes, and the B and C proteins, which

are only in one complex, can be observed: 88.4% of the A’s are

duplicated, but only 66.3% of B and C underwent duplication.

Because of the very large numbers of proteins involved, this

difference is highly significant (p,1e-50, x2-test). Also, the

duplication rate of B and C may seem high, but it is in accordance

with previous estimates of duplication rate (see e.g [33]), and also

very close to the ‘‘background’’ rate of 64.8% found in non-

connected triplets. Unsurprisingly, among the open triangles

where A is already known to be duplicated and specialized, 100%

of all A’s underwent duplications according to the above defini-

tion, while only 64.2% of the two other proteins have duplicated.

These results confirm previous observations that proteins shared

among complexes tend to be retained more often after duplication.

It also shows that in genome evolution, not only gene loss and

gain, but also duplications are significantly influenced by shared

complex subunits.

Discussion

In this study, we only analyzed the case of shared complex

subunits. This was sufficient to allow explanations for a considera-

ble fraction of the non-matching profile pairs. However, there are

likely other interaction scenarios, possibly even higher-order than

just triplets, that could explain even more of the seemingly unexpec-

ted profile pair relationships. Unfortunately, in higher-order analy-

ses, such as on quadruples, many of the problems like missing gene

predictions, imperfect orthology assignments etc, are magnified, mak-

ing it even harder to distinguish the true signal from noise or bias.

A complementarity pattern for a triplet of interacting genes

could be caused by technical reasons instead of shared subunits or

multifunctional proteins. Such technical reasons as failed gene

predictions or missed orthologs leading to complementary

absences can also cause a lower matching but a higher

complementarity score. We think that such technical errors are

an important potential reason why the number of closed triangles

increases with a high complementarity score. Conversely our open

triangle interaction patterns as derived from the protein complex

(and interaction) databases, can be interpreted in functional terms

in a more complicated manner. Firstly a single shared subunit

between two otherwise unrelated complexes forms just one side of

a possible continuum. At the other extreme would reside a

complex which functions in two so called ‘‘complex variants,’’

where A (together with other core proteins) attach either B or C to

a core complex. Our bioinformatic analyses treats both cases the

same, and thus the latter scenario is likely also present in our

analysis.

Our analysis adds to the growing list of scenarios where

disrupted co-evolution can be explained by biological processes.

One example outside protein complexes are asymmetric relation-

ships within metabolic pathways. It has been shown that if a

protein A depends somehow on another protein B, but not vice

versa, then phylogenetic patterns similar to the ‘‘subset’’ category

of our analyses can be found [19]. In this study, we focused on

protein complexes, where asymmetric relationships are expected

to a much lesser extent. However, the ‘‘subset’’ pattern is still

widespread among the involved proteins, and in many cases can be

explained by the presence of other complexes that share subunits.

We also found that a large fraction of the profiles of co-complex

pairs fall into the ‘‘taxonomic’’ category, which means that one of

the two proteins was invented later and thus has a taxonomically

more limited range. As these situations might lead to patterns

similar to those captured by the complementarity score (especially

if B and C were invented in different lineages), we had to treat

them separately in our analyses. Nonetheless, the high frequency

of these taxonomic additions is notable and would deserve some

explanation. An interesting recently proposed hypothesis is the

‘‘irremediable complexity’’ theory [29] that proposes a mechanism

by which complexes would increase in size during evolution: if a

new gene joins an existing complex in a nearly neutral fashion but

after accumulating correlated substitutions becomes inseparable

from the complex, it will have a high probability of being retained.

This is obviously a very different evolutionary process than the

scenario with shared subunits which we studied here.

Fundamental biological question such as why the human or any

other genome contains the combination of genes that it does, are

far from being answered. In this study, we tested a possible

explanation for a related problem, namely why some proteins are

retained in a genome despite the absence of their interaction

partner. Our findings show that proteins that participate in more

than one complex are often maintained in the genome even after a

co-complex protein has been lost. This effect plays an important

role in explaining disrupted co-occurrences or incomplete

complexes in sequenced but poorly studies genomes, where

analyses based on only a pair of proteins are not sufficient to

resolve the evolutionary mechanisms.

Supporting Information

Dataset S1 Orthologs. Definitions of the orthologous clusters

used in this analysis. The zip file contains two plain-text tables: the

cluster definitions using internal IDs (consisting of 4-letter species

code and gene number) and a mapping of the internal IDs to

various identifier formats as used in the source genome files.

(ZIP)

Table 3. Percentages of duplicated genes among different
categories.

percent duplicated

Category N A B or C

Open triangles 172,592 88.4 66.3

Open with 2 A’s 13,863 100.0 64.2

Closed triangles 346,401 75.9

Other triplets 7,937,367 64.8

Percentages of duplicated genes among different categories. N is the number
of triangles or triplets. Column ‘‘A’’ gives the percentage of genes with
duplications in gene A (the shared subunit), while column ‘‘B or C’’ gives the
percentage of duplications of the other two genes. For the closed triangles and
other triplets (with no direct interactions), there is no central gene A and thus
all 3 genes were counted as the same category.
doi:10.1371/journal.pcbi.1003124.t003
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Figure S1 Distribution of the profile relationships of co-complex

protein pairs in the two complex data sets (A–D) and yeast

interactions (E–F) for the OMA and MCL algorithm.

(EPS)

Figure S2 Frequency of open triangles as a function of the triplet

score for co-complex protein pairs (A–D) and yeast interactions

(E–F) for the OMA and the MCL algorithm.

(EPS)

Figure S3 Heat maps showing the enrichment of co-complex

pairs (A–D) or yeast interactions (E–F) as a function of pairwise

profile similarity scores and triplet-based complementarity scores

for the OMA and the MCL algorithm.

(EPS)

Figure S4 Distribution of profile-pair types among co-complex

proteins (A–B) and yeast interactions (C) for the OMA and the

MCL algorithm.

(EPS)

Figure S5 Spearman correlation (r and p-value) for the fraction

of different triangle types over bins for the yeast interactions.

(EPS)

Figure S6 Spearman correlation (r and p-value) for the fraction

of different triangle types over bins for the human complexes.

(EPS)

Figure S7 Spearman correlation (r and p-value) for the fraction

of different triangle types over bins for the yeast complexes.

(EPS)

Figure S8 Classification of pairwise profiles for the three

interaction data sets under different cutoffs using the OMA

algorithm.

(EPS)

Figure S9 Classification of pairwise profiles for the three

interaction data sets under different cutoffs using the MCL

algorithm.

(EPS)

Table S1 Genomes list. Complete list of all 51 genomes, with

species name, 4-letter abbreviation, data source and retrieval date.

(XLS)
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