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Many complex networks depend upon biological entities for
their preservation. Such entities, from human cognition to evo-
lution, must first encode and then replicate those networks under
marked resource constraints. Networks that survive are those
that are amenable to constrained encoding—or, in other words,
are compressible. But how compressible is a network? And what
features make one network more compressible than another?
Here, we answer these questions by modeling networks as infor-
mation sources before compressing them using rate-distortion
theory. Each network yields a unique rate-distortion curve, which
specifies the minimal amount of information that remains at a
given scale of description. A natural definition then emerges
for the compressibility of a network: the amount of informa-
tion that can be removed via compression, averaged across all
scales. Analyzing an array of real and model networks, we
demonstrate that compressibility increases with two common
network properties: transitivity (or clustering) and degree het-
erogeneity. These results indicate that hierarchical organization—
which is characterized by modular structure and heterogeneous
degrees—facilitates compression in complex networks. Generally,
our framework sheds light on the interplay between a net-
work’s structure and its capacity to be compressed, enabling
investigations into the role of compression in shaping real-world
networks.
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Complex networks are often encoded in biology and, thereby,
utilized and replicated by biological systems. The brain

encodes language (1), knowledge (2), music (3), social (4, 5), and
transportation networks (6); the human mind uses these inter-
nal representations to engage in linguistic communication, build
on existing understanding, sing a victorious melody, strengthen
a valuable friendship, and walk the covered holloways (7). Simi-
larly, biological networks among molecular and cellular compo-
nents are encoded at various scales in genetic material (8–11),
and evolution uses these encodings to propagate network topolo-
gies in a surviving species. From brains to genes, the biological
materials that encode complex networks operate under marked
constraints on time, energy, metabolism, and physical extent,
among others. Such constraints determine which networks per-
sist into the future—in particular, those whose topology can
be efficiently encoded. These shared constraints raise a funda-
mental question: How does the structure of a network facilitate
efficient encodings?

Encoding a network (indeed, encoding any piece of infor-
mation) involves a natural trade-off between simplicity and
accuracy. One could construct a simple representation that
omits the fine-scale details of a network. Or one could build
a representation that captures a network’s intricate structure,
but is complicated and unwieldy. An efficient encoding strikes
an optimal balance between simplicity and accuracy; that is,
it is a compression (12, 13). In fact, compression—a founda-
tional branch of information theory—has provided key insights

into optimal network representations, yielding principled algo-
rithms for constructing coarse-grained maps of complex systems
(14–16).

Building upon this progress, here, we investigate how the
structure of complex networks facilitates compression. Intu-
itively, just as natural images are easier to compress than white
noise due to their visual patterns and regularities, so, too, should
networks with strong structural regularities be more compress-
ible than random networks. But do homogeneous topologies,
such as those found in lattice-like networks, make systems more
compressible, or is compression facilitated by the hierarchical
organization found in many real networks? To answer these
questions, here, we develop a framework for quantifying the
compressibility of complex networks. Applying our framework
to several real and model networks, we identify specific network
features that facilitate compression. Together, these results elu-
cidate how a network’s topology impacts its compressibility and
suggest that many real-world networks may be shaped by the
pressure to be compressed.

Rate-Distortion Theory of Network Clustering
In compression (13), one begins with an information source,
a sequence of items that defines the object of interest. For
networks, the details of information flow often vary from one
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context to another. Therefore, a logical choice for the informa-
tion source is a random walk, which contains all of the details
about the structure of a network and nothing more (14).

One then seeks to reduce the amount of information in the
sequence, which can be accomplished in two complementary,
yet distinct, ways. In lossless compression, one removes statistical
redundancy in the sequence while maintaining an exact descrip-
tion of the network. This approach has provided important
information-theoretic perspectives on the problem of community
detection, wherein one constructs a coarse-grained representa-
tion at a specific scale of description (14). By contrast, here, we
seek to quantify the compressibility of a network itself, without
selecting a desired scale. To do so, we employ rate-distortion the-
ory, the foundation of lossy compression. In lossy compression,
rather than removing statistical redundancy in the sequence,
one instead removes redundant features of the network directly.
As we will see, directly coarse-graining the network will enable
tractable strategies for compressing networks across all scales
and, in doing so, will allow us to develop an intuitive definition
for network compressibility.

Compressing Random Walks. To see how compression unfolds in
practice, consider the network in Fig. 1A. A random walk on the
network defines a sequence of nodes x = (x1, x2, . . .), with each
node transitioning to one of its four neighbors uniformly at ran-
dom. The rate at which this sequence generates information is
given by the entropy H (x), which (because there are four possi-
ble nodes at each step) equals 2 bits (see Materials and Methods
for a definition of H (x)). To reduce the amount of information in
the sequence, we can construct a coarse-grained representation
by clustering nodes together (14–16). This clustering yields a new
sequence y = (y1, y2, . . .), where yt is the cluster containing node
xt (Fig. 1B), which communicates information at a rate equal to
the mutual information I (x, y) =H (y)−H (y|x) (12, 13, 15, 16).
If the clusters are chosen deterministically, as is common (4, 14,
17), then the conditional entropy H (y|x) vanishes, and the infor-

mation rate simplifies to the entropy of the clustered sequence,
I (x, y) =H (y).

Consider, for example, a trivial clustering in which each node
belongs to its own cluster (Fig. 1 B, Top). In this case, we
maintain a complete description of the network, but we have
not reduced the information rate, since I (x, y) =H (x) = 2 bits.
By contrast, consider the opposite setting in which all nodes
belong to the same large cluster (Fig. 1 B, Bottom). Now, we
have reduced the information rate to zero (I (x, y) = 0 bits),
but all details about the network structure have been lost.
Between these two extremes lies a range of clusterings (such
as that in Fig. 1 B, Middle), each inducing its own infor-
mation rate and yielding a unique distortion of the network
structure.

Scale as a Measure of Distortion. Building representations that
strike an optimal balance between minimizing information rate
while also minimizing distortion is precisely the purview of rate-
distortion theory (12, 13). As in any rate-distortion problem, one
must choose a specific definition for the distortion of the object
of interest. When clustering a network, a natural choice for the
distortion presents itself: the scale of description. Specifically,
for a network with N nodes and a clustering with n clusters, we
define the scale to be S = 1− n−1

N
. For example, if n =N , then

we have an exact fine-grained description of the network at a
scale S = 1/N (Fig. 1 B, Top), whereas if n = 1, then one cluster
encloses the entire network and S = 1 (Fig. 1 B, Bottom).

At each scale S (equivalently, for each number of clusters n),
we seek to identify the clustering that minimizes the informa-
tion rate I (x, y). This optimal information rate, denoted R(S),
defines a unique rate-distortion curve for each network (Fig. 1C).
If a network is easier to compress, then at each scale S , one
should be able to find a clustering that is more efficient, thereby
reducing the information rate R (Fig. 1C, vertical line); similarly,
for a given information rate R, one should be able to construct
a more fine-grained clustering, thereby decreasing the scale S
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Fig. 1. Rate-distortion theory of random walks on networks. (A) A simple network with N = 15 nodes, each with constant degree k = 4. A random walk x
generates information at a rate of H(x) = 2 bits. (B) Network clusterings across various scales of description. (B, Top) For n = 15 clusters, each containing its
own node, the sequence communicates I(x, y) = H(x) = 2 bits of information. (B, Middle) For n = 3 clusters, each corresponding to one of the three modules
in the original network, the information rate is I(x, y) = 0.52 bits. (B, Bottom) For n = 1 cluster containing the entire network, the sequence no longer
communicates information. (C) Schematic of the optimal information rate R as a function of the scale of description S for networks that are either more
compressible (black) or less compressible (gray). For more compressible networks, one can achieve a lower information rate at a given scale of description
(vertical line), and one can achieve a more fine-grained description for a given information rate (horizontal line).
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(Fig. 1C, horizontal line). Thus, in order to quantify the com-
pressibility of a network, we must first be able to compute its
rate-distortion curve.

Computing the Rate-Distortion Curve of a Network
Computing the rate-distortion curve R(S) of a network—in
particular, doing so efficiently to enable applications to large
systems—poses two distinct challenges. First, we must esti-
mate the mutual information I (x, y) for different clusterings;
and second, we must identify the clusterings that minimize this
information rate across all scales.

Although estimating mutual information is generally difficult
(18), the simplicity of our setup allows for tractable upper and
lower bounds (Materials and Methods). Of particular interest is
the upper bound Ī (x, y)≥ I (x, y), which follows by approximat-
ing the clustered sequence y as Markovian [a property that we
note is not guaranteed, even though the original random walk
x is Markovian (13)]. Rather than minimizing the information
rate I (x, y) directly, we instead minimize the upper bound Ī (x, y),
thereby yielding an upper bound R̄(S) on the rate-distortion
curve. For simplicity, in what follows, we often refer to Ī (x, y)
as the information rate and R̄(S) as the rate-distortion curve.

To compute R̄(S)—that is, to find clusterings that mini-
mize the information rate Ī (x, y)—we employ a greedy clus-

tering algorithm. Beginning with n =N clusters, each contain-
ing its own node, we combine the pair of clusters that yields
the largest reduction in the information rate Ī (x, y). Repeat-
ing this agglomerative process across all scales S (until only
one cluster remains), we arrive at an estimate for the rate-
distortion curve R̄(S). To speed up the calculation, rather
than searching through all

(
n
2

)
pairs of clusters at each step,

we only consider a limited number of pairs chosen via prin-
cipled heuristics (Materials and Methods). Importantly, these
heuristics do not affect the definitions of information-theoretic
quantities, such as the rate I (x, y) and upper bound Ī (x, y). In
practice, not only do these heuristics enable applications to net-
works of approximately 103 nodes, they also improve the accu-
racy of the rate-distortion estimates themselves (SI Appendix,
Fig. S1).

We are now prepared to compute the rate-distortion curve for
a specific system. In Fig. 2A, we plot the upper and lower bounds
on the rate-distortion curve R(S) for Zachary’s karate club net-
work (19). As is true for all networks (Materials and Methods),
the two bounds are exact at both the minimum scale S = 1/N
(when the information rate simply equals the entropy of random
walks H (x)) and the maximum scale S = 1 (when the informa-
tion rate is zero). Moreover, the two bounds remain close across
all intermediate scales (Fig. 2A), demonstrating that the upper
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Fig. 2. Properties of optimal clusterings. (A, Left) Upper bound (solid line) and lower bound (dashed line) on the optimal information rate R(S) as a function
of the scale of description S for Zachary’s karate club network (19). (A, Right) Across all scales, the optimal compression includes one large cluster, which
we illustrate for S = 0.25, 0.5, and 0.75. (B) Size of the largest cluster in a compression, normalized by the size of the network N, as a function of the scale
S for the real networks in SI Appendix, Table S1 (20–23). The median over real networks (solid line) matches the largest possible normalized cluster size,
(N− n + 1)/N = S, indicating that (across all scales) most networks admit one large cluster of maximal size. (C) Illustration of edges within the one large
cluster (blue), on the boundary of the cluster (purple), and outside the cluster (red). (D) Fraction of the kc edges emanating from the large cluster that either
connect to nodes outside the cluster 1−Gcc/kc (purple) or remain within the cluster Gcc/kc (blue) as a function of the scale S. (E) Average degree of nodes
inside (blue) and outside (red) the large cluster, normalized by the average degree of the network, as a function of the scale S. In D and E, solid lines and
shaded regions represent averages and one-SD error bars, respectively, over the real networks (SI Appendix, Table S1) (20–23), and dashed lines correspond
to clusters with nodes selected at random.
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bound R̄(S) provides a good approximation to the true rate-
distortion curve R(S). To understand how the rate-distortion
curve depends on the structure of a network, however, it helps
to examine the properties of optimal compressions themselves.

Properties of Optimal Compressions
Using the framework developed above, we are ultimately inter-
ested in studying compression in real systems. The networks cho-
sen for analysis span from communication networks (including
semantic, language, and music networks) and information net-
works (including hyperlinks on the web and citations in science)
to social networks, animal and protein interactions, transporta-
tion networks, and structural and functional connections in the
brain (Materials and Methods; SI Appendix, Table S1) (20–23).
Although these networks encompass a wide range of systems
bridging several orders of magnitude in size, they are all encoded
biologically, either in genetic material or in the neural code.

Emergence of One Large Cluster. To begin, we compute the rate-
distortion curve R̄(S) for each of the above networks, and
we confirm that these upper bounds provide good approxima-
tions to the true rate-distortion curves R(S) (SI Appendix, Fig.
S2). In the process of computing R̄(S), our compression algo-
rithm also provides estimates for the optimal clusterings over
all scales. Examining the structure of these compressions, we
find a striking consistency across different networks. As can be
observed in Zachary’s karate club (Fig. 2 A, Right), rather than
dividing the network into multiple clusters of moderate size, opti-
mal compressions tend to comprise one large cluster containing
N −n + 1 =SN nodes and n − 1 minimal clusters each contain-
ing one node. In fact, among the networks studied, this tendency
to form one large cluster is a nearly ubiquitous feature of optimal
compressions (Fig. 2B).

We remark that the clustering that minimizes the information
rate need not (and, indeed, does not) provide a faithful char-
acterization of a network’s community structure, as is the goal
in community detection (14–16). Instead, we find that optimal
compressions seek to identify the group of nodes that can be
combined to maximally reduce the information rate. By dividing
the network into two parts—one inside the large cluster and the
other outside—the challenge of compressing random walks thus
resembles the graph-partitioning problem (24), which has gener-
ated key insights about the modular structure of networks across
scales (17). This simplification, in turn, allows us to develop ana-
lytic predictions about the properties of optimal compressions
and the structures of compressible networks.

Information Rate of Optimal Compressions. Although our frame-
work is general, applying to any weighted, directed network
(Materials and Methods), in order to make analytic progress,
here, we focus on the special case of an unweighted, undi-
rected network with adjacency matrix Gij . For such a network,
the entropy of random walks takes the simple form H (x) =
1
2E

∑
i ki log ki , where ki =

∑
j Gij is the degree of node i , E =

1
2

∑
ij Gij is the number of edges in the network, and log(·) is

base two such that information is measured in bits.
Now consider forming one large cluster c. One can show

(Materials and Methods) that the information rate of the
clustered network is given by

Ī (x, y) =
1

2E

[∑
i /∈c

ki log ki + kc log kc [1]

−2
∑
i /∈c

Gic logGic −Gcc logGcc

]
,

where kc =
∑

i∈c ki is the sum of the degrees of the nodes in c,
Gic =

∑
j∈c Gij is the number of edges connecting nodes in c

to a given node i , and Gcc =
∑

ij∈c Gij is the number of edges
connecting nodes within c.

Information Content of Different Edges. Using Eq. 1, can we pre-
dict the properties of the optimal cluster c? More broadly,
can we anticipate the types of network topologies that facil-
itate compression? To answer these questions, it helps to
group the edges in a network into three distinct categories
(Fig. 2C): those connecting nodes within c, those connecting
nodes outside of c, and those on the boundary of c (con-
necting nodes within c to nodes outside of c). We can gauge
which type of edge is preferred over the others by compar-
ing their contributions to the information rate (Eq. 1). An
optimal compression will maximize the number of edges that
are informationally preferred (contributing only weakly to the
information rate), while limiting edges that are informationally
costly.

For example, adding an edge within c increases the infor-
mation rate by ∆Ī within≈ 1

2E
(2 log kc − 2 logGcc). By contrast,

adding an edge on the boundary of c (say, connecting c to a
node i /∈ c) yields an increase of roughly ∆Ī boundary≈ 1

2E
(log ki +

log kc − 2 logGic). For a large cluster c, we have kc ,Gcc�
ki ,Gic , from which one can show that ∆Ī within .∆Ī boundary (SI
Appendix). Thus, edges within the large cluster are information-
ally preferred to those on the boundary, suggesting that the large
cluster will seek to combine groups of nodes that are tightly
connected to one another and sparsely connected to the rest
of the network. Indeed, in real networks, we find that among
the kc edges emanating from the large cluster, the proportion
1−Gcc/kc that connects to the rest of the network is much
smaller than chance (Fig. 2D). This proportion of edges leaving
the cluster is a well-studied quantity, known as the conductance
or Cheeger constant of a network (17). Thus, networks with low
conductance—such as those with modular structure and strong
transitivity (the tendency for nodes to form triangles, also known
as clustering)—should be highly compressible (17, 25). This is
our first hypothesis about the impact of network structure on
compressibility.

We now consider an edge connecting two nodes i and j
outside of c, which increases the information rate by approxi-
mately ∆Ī outside≈ 1

2E
(log ki + log kj ). As before, one can show

that ∆Ī within .∆Ī outside (SI Appendix), hence demonstrating that
edges within the large cluster are informationally preferred
to those outside the cluster. In turn, this preference for the
large cluster to include as many edges as possible suggests
that c will favor high-degree nodes over low-degree nodes,
which we confirm in real networks (Fig. 2E). This result leads
to our second hypothesis: Networks should be more com-
pressible if they have heterogeneous degrees (or heavy-tailed
degree distributions), containing “rich clubs” of high-degree
hub nodes (26, 27). Given the predictions that modular and
heterogeneous topologies facilitate compression, we now pro-
pose a quantitative definition for the compressibility of a
network.

Quantifying Network Compressibility
Intuitively, a network should be compressible if one can achieve a
large reduction in the information rate at a given scale (Fig. 1C).
However, rather than choosing a specific scale S (equivalently,
a specific number of clusters n), we would like our definition of
compressibility to be a property of the network itself. We there-
fore define the compressibility of a network to be the amount
of information that can be removed via compression, averaged
across all scales,
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C =H (x)− 1

N

∑
S

R(S). [2]

Visually, the compressibility represents the area above a net-
work’s rate-distortion curve (Fig. 3A). In practice, plugging our
tractable upper bound on the rate-distortion curve R̄(S) into Eq.
2 yields a lower bound C , which (for simplicity) we will refer to
as compressibility.

To make the notion of compressibility concrete, consider the
class of random k -regular networks (Fig. 3B). On average, these
networks have no structure (besides the requirement that nodes
have uniform degree k), which allows us to derive an analytic
approximation for the rate-distortion curve (SI Appendix),

R̄(S)≈ (1−S)2 log k +S(1−S) logN −S log S . [3]

Each individual network, however, contains small structural vari-
ations, such as groups of nodes that are more tightly connected
than expected. Generating random k -regular networks and com-
puting their rate-distortion curves directly, we find that optimal
compressions are able to capitalize on these structural variations
(SI Appendix, Fig. S3), thereby achieving lower information rates
than the approximation in Eq. 3 (Fig. 3C). By contrast, as the
degree k increases, the networks become uniform in structure,
and the analytic approximation becomes exact (Fig. 3C).

Using Eq. 3, one can predict the compressibility of k -regular
networks. Specifically, noting that the entropy of k -regular net-
works is log k (Materials and Methods), and approximating the
average in Eq. 2 by an integral over S , we arrive at the analytic
form

C ≈ 2

3
log k − 1

6
logN − 1

4 ln 2
, [4]

which we verify numerically (Fig. 3D). We note that the com-
pressibility grows logarithmically with the degree k , reflecting
the fact that networks with larger degrees have more informa-
tion to be removed via compression (Materials and Methods).
Indeed, computing the compressibility of the real networks in
SI Appendix, Table S1 (20–23), we find precisely the same
logarithmic dependence on the average degree (Fig. 3E). Fur-
thermore, we verify that this logarithmic dependence generalizes
to directed versions of the networks (SI Appendix, Fig. S5) and

is not simply due to our clustering heuristics (SI Appendix, Fig.
S6). These results demonstrate that the compressibility of a net-
work increases predictably with average degree. But how does
compressibility depend on the topology of a complex network?

Impact of Network Structure on Compressibility
Based on the properties of optimal compressions (Fig. 2),
we hypothesized that the compressibility of a network should
increase with both 1) transitivity and 2) degree heterogeneity.
To investigate the impact of transitivity on compressibility, we
consider a class of stochastic block networks (Fig. 4A), wherein
nodes are grouped into modules of equal size, and a spec-
ified fraction f of the edges in the network connect nodes
within the same module. We find that optimal compressions
take advantage of this modular structure by clustering together
nodes within the same module (SI Appendix, Fig. S3). Indeed,
strengthening the modular structure—that is, increasing the frac-
tion f of within-module edges—decreases the rate-distortion
curve R̄(S) (Fig. 4B). We therefore find that compressibil-
ity increases with both modularity (Fig. 4C) and transitivity
(Fig. 4D). Importantly, these results on stochastic block net-
works generalize to real networks, with increases in transitivity
yielding significant improvements in network compressibility
(Fig. 4E).

To examine the dependence of compressibility on degree het-
erogeneity, we study scale-free networks (Fig. 4F), which have
heavy-tailed degree distributions P(k)∼ k−γ characterized by
a power-law exponent γ (27). Optimal compressions exploit
this heterogeneous structure by clustering together high-degree
hub nodes (SI Appendix, Fig. S3). As γ decreases, accentuat-
ing the heterogeneity in node degrees, the rate-distortion curve
R̄(S) increases at small scales and decreases at intermediate
and large scales (Fig. 4G). Both of these rate-distortion effects
serve to improve the compressibility of scale-free networks (Fig.
4H). Moreover, rather than indirectly investigating the impact
of heavy-tailed structure via the scale-free exponent γ, we can
directly quantify the degree heterogeneity of a given network
h = 〈|ki − kj |〉 / 〈k〉, where 〈|ki − kj |〉 is the absolute difference
in degrees averaged over all pairs of nodes and 〈k〉 is the average
degree. We find that the compressibility of scale-free networks
grows linearly with degree heterogeneity (Fig. 4I), a result that
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Fig. 4. Compressibility increases with transitivity and degree heterogeneity. (A) Stochastic block network, characterized by dense connectivity within
modules and sparse connectivity between modules. (B) Rate-distortion curves R̄(S) for Erdös-Rényi (ER) networks (black line) and stochastic block networks
(colored lines) with 10 modules and different fractions f of within-module edges. Undulations in the rate-distortion curves result from compressing each of
the 10 modules (SI Appendix, Fig. S3). (C) Compressibility C of stochastic block networks versus the fraction of within-module edges f . (D) Compressibility C of
stochastic block networks (colored points) and Erdös-Rényi networks (black point) versus transitivity (quantified by the average clustering coefficient). In B–
D, data reflect averages over 50 randomly generated networks, each of size N = 103 and average degree 〈k〉= 100. (E) Compressibility C versus transitivity
for the real networks in SI Appendix, Table S1 (20–23) with a linear best fit (dashed line). (F) Scale-free network, characterized by a power-law degree
distribution and the presence of high-degree hubs. (G) Rate-distortion curves R̄(S) for Erdös-Rényi networks (black line) and scale-free networks (colored
lines) with different scale-free exponents γ. (H) Compressibility C of scale-free networks versus the scale-free exponent γ. (I) Compressibility C of scale-free
networks (colored points) and Erdös-Rényi networks (black point) versus degree heterogeneity h. In G–I, data reflect averages over 50 networks generated
by using the static model (28), each of size N = 103 and average degree 〈k〉= 100. (J) Compressibility C versus degree heterogeneity for the real networks
in SI Appendix, Table S1 (20–23) with a linear best fit (dashed line). In E and J, for networks of size N> 103, data points and error bars represent means and
SDs over 50 randomly sampled subnetworks of 103 nodes each (Materials and Methods).

generalizes to real networks (Fig. 4J). Furthermore, we confirm
that the dependencies of compressibility on both transitivity and
degree heterogeneity extend to directed networks (SI Appendix,
Fig. S5) and are robust to our choice of clustering heuristics (SI
Appendix, Fig. S6).

The above results demonstrate that network compressibility
increases with both transitivity and degree heterogeneity, the
two defining features of hierarchical structure (29). Indeed, in
networks with explicit hierarchical organization (such as those
examined in ref. 29), we verify that optimal compressions cap-
italize on both modular structure and heterogeneous degrees
in order to reduce the information rate (SI Appendix, Fig. S3).
The high compressibility of hierarchical networks highlights a
key distinction between lossy and lossless compression. In loss-
less compression, a network is more compressible if it has lower
entropy H (x), thereby admitting a more concise exact encoding

(12, 13). The networks with the lowest entropies (and there-
fore the highest compressibilities from a lossless perspective) are
those with homogeneous structure, such as Erdös-Rényi and k -
regular networks (30). By contrast, lossy compression exploits
structural regularities to remove redundant features of a network
(Fig. 2), much like real-space renormalization (31). This direct
coarse-graining renders hierarchical networks, which have strong
structural regularities, highly compressible; similarly, it renders
homogeneous networks, which have little to no structure, highly
incompressible (Fig. 4 and SI Appendix, Fig. S3).

Finally, by focusing on specific families of networks, we dis-
cover variations in compressibility that reflect a network’s spe-
cific function. Road networks, for example, exhibit the lowest
transitivity and degree heterogeneity, and therefore the lowest
compressibility, among the networks studied. This low compress-
ibility is likely due to the fact that, unlike the other networks,
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road networks are confined to exist in two dimensions, severely
constraining their topology (32). Besides road networks, we find
that protein interactions have the lowest transitivity and brain
networks have the lowest degree heterogeneity, leading both
classes of networks to be relatively incompressible. Interestingly,
these two families are unique among the networks studied in that
they are only encoded genetically and need not be represented
cognitively by a human or animal. By contrast, language networks
are highly compressible, perhaps reflecting the primary function
of language as a means for encoding and communicating infor-
mation. Thus, although many networks are encoded biologically,
the pressure for these encodings to be efficient manifests to vary-
ing degrees in different families of networks, yielding a spectrum
of compressibilities.

Discussion
Complex networks perform an astonishing array of functions,
which are supported by a multitude of topological structures.
Many networks, however, are unified by a common constraint:
that they rely on biological entities to encode them and pass
them on. Encoding a network efficiently—that is, striking an
optimal balance between simplicity and accuracy—requires com-
pression, an insight that has provided information-theoretic
perspectives on network structure (14–16). Naturally, some net-
works should be more compressible than others, with structural
regularities enabling efficient representations across multiple
scales. To investigate this hypothesis, here, we introduce a rate-
distortion theory of network compression (Fig. 1) and propose
a quantitative definition for the compressibility of a network
(Eq. 2; Fig. 3A).

Applying our framework to a number of real and model net-
works, we demonstrate that network compressibility increases
with both transitivity and degree heterogeneity (Fig. 4). Impor-
tantly, these two features are frequently observed across an array
of real-world networks, from social, scientific, and biological
interactions (29, 33, 34) to the internet (2), language (29), music
(35), and the brain (36). Moreover, the combination of transitiv-
ity (with tightly connected modules) and heterogeneous degrees
(with well-connected hubs) defines hierarchical organization
(29), which has been shown to support multiscale representations
of complex networks (37, 38) and enable efficient information
processing in neural and communication systems (30, 39). In
fact, when encoding information about the world, the brain itself
often employs hierarchical representations (40–42). Our results
lend to these perspectives an additional outlook on the role of
hierarchical structure: that it supports the efficient compression
of complex networks.

The interplay between network structure and compressibil-
ity opens the door for a number of future directions. For
example, given that transitivity and heterogeneous degrees are
nearly ubiquitous features of information, social, and biolog-
ical networks (2, 29, 33–36), it is tempting to suspect that
these networks have been shaped, at least in part, by the pres-
sure to be compressed. Future work could directly address
this hypothesis by investigating whether real-world networks,
from language and music to protein interactions and the inter-
net, have evolved over time to become more compressible.
From a complementary perspective, one could develop meth-
ods for designing artificial networks that are optimally com-
pressible. What might such optimally compressible networks
look like? And how close to optimal are the networks that
we observe in nature and society? The framework presented
here provides the quantitative tools to begin answering these
questions.

Materials and Methods
Entropy of Random Walks. Given a (possibly weighted, directed) network
with adjacency matrix Gij , the probability of one node i transitioning to

another node j in a random walk is Pij = Gij/ki , where ki =
∑

j Gij is the (out)
degree of node i (Fig. 1A). The entropy of random walks is given by

H(x) =−
∑

i

πi

∑
j

Pij log Pij , [5]

where πi is the stationary distribution defined by the condition π = PTπ

(which we note is uniquely defined if the network is strongly connected
and aperiodic). For undirected networks, Eq. 5 simplifies significantly. In this
case, the stationary distribution is proportional to the node degrees πi =

ki/2E, where E = 1
2

∑
ij Gij is the number of edges in the network, and, thus,

the entropy takes the form

H(x) =
1

2E

∑
i

ki log ki. [6]

If, in addition, the nodes have uniform degree k (as in the k-regular net-
works in Fig. 3), then the entropy equals log k. For example, in the simple
network in Fig. 1, the nodes have uniform degree four, and thus the entropy
is 2 bits.

Bounding the Information Rate. After clustering a network, a random walk
x = (x1, x2, . . .) gives rise to a new sequence y = (y1, y2, . . .), where yt is the
cluster containing node xt (Fig. 1B). The information rate of this sequence is
given by the mutual information I(x, y), which for deterministic clusterings
(such as those considered here) is equivalent to the entropy H(y). However,
even though the random walk x is Markovian (yielding a simple form for
the entropy [Eq. 5]), the clustered sequence y need not be (13), and, thus, it
is generally difficult to derive an analytic form for H(y).

Despite this hurdle, there exist simple bounds on the information rate
I(x, y) = H(y), summarized by the inequalities

H(yt+1 | xt)≤H(y)≤H(yt+1 | yt), [7]

where H(yt+1 | xt) and H(yt+1 | yt) are the conditional entropies of yt+1 on
xt and yt , respectively (13). These bounds are tight at the minimum scale S =

1/N, when each cluster contains one node, and so H(y) = H(x) = H(xt+1 | xt).
The bounds are also tight at the maximum scale S = 1, when there is one
cluster, and so H(y) = H(yt+1 | xt) = H(yt+1 | yt) = 0.

To compute the lower bound at intermediate scales, we begin with the
conditional probability of node i in the random walk x transitioning to clus-
ter c in the clustered sequence y, Pic =

∑
j∈c Pij . Then, the lower bound is

given by

I(x, y)≥ I(x, y) = H(yt+1 | xt) =−
∑

i

πi

∑
c

Pic log Pic, [8]

where the second sum runs over all clusters c. Similarly, to compute the
upper bound, we consider the probability of one cluster c transitioning to
another cluster c′,

Pcc′ =
1

πc

∑
i∈c

πi

∑
j∈c′

Pij , [9]

where πc =
∑

i∈c πi is the stationary distribution over clusters. We then
arrive at the following upper bound,

I(x, y)≤ Ī(x, y) = H(yt+1 | yt) =−
∑

c

πc

∑
c′

Pcc′ log Pcc′ , [10]

which is exact if the clustered sequence y is Markovian. In practice, when
estimating the optimal information rate for a network, we minimize the
upper bound in Eq. 10 over clusterings, resulting in an upper bound R̄(S) on
the rate-distortion curve.

The upper bound Ī(x, y) simplifies significantly for unweighted, undi-
rected networks. In this case, the cluster transition probabilities take the
form Pcc′ = Gcc′/kc, where Gcc′ =

∑
i∈c

∑
j∈c′ Gij is the induced network

of clusters and kc =
∑

i∈c ki is the sum of the degrees of the nodes in c.
Recalling that the stationary distribution simplifies to πi = ki/2E, one can
manipulate Eq. 10 into the form

Ī(x, y) =
1

2E

∑
c

kc log kc −
∑
cc′

Gcc′ log Gcc′

. [11]
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Under the further simplification of a clustering with one large cluster c and
n− 1 minimal clusters of one node each (Fig. 2), this upper bound can be
fashioned into Eq. 1.

Clustering Algorithm. To compute the rate-distortion curve R̄(S), we use an
agglomerative clustering algorithm. Beginning with n = N clusters (corre-
sponding to the minimum scale S = 1/N), each containing an individual
node, we iteratively combine pairs of clusters until we eventually arrive
at one large cluster containing the entire network (corresponding to the
maximum scale S = 1). At each step, we greedily select the pair of clusters
to combine that minimizes the information rate Ī(x, y) (Eq. 10). However,
rather than searching through all

(n
2

)
pairs of clusters at each iteration

(which would limit applications to small networks), we instead focus on a
subset of m pairs chosen through one of two heuristics.

The first heuristic, motivated by the observation that optimal clusterings
tend to combine clusters with large degrees (Fig. 2E), selects the m pairs of
clusters c and c′ with the largest combined stationary probabilities πc +πc′ .
For unweighted, undirected networks, we note that this choice is equivalent
to selecting the pairs of clusters with the largest combined degrees, since
πc +πc′ = 1

2E (kc + kc′ ). The second heuristic, motivated by the fact that
optimal compressions tend to form clusters with tight intracluster connec-
tivity (Fig. 2D), selects the pairs of clusters c and c′ with the largest combined
joint transition probabilities πcPcc′ +πc′Pc′c. For unweighted, undirected
networks, we remark that this second heuristic is equivalent to selecting
the pairs of clusters with the largest number of connecting edges, since
πcPcc′ +πc′Pc′c = 1

2E (Gcc′ + Gc′c). In practice, we consider m = 100 pairs of
clusters at each iteration. In SI Appendix, Fig. S1, we compare these two
heuristics to the brute-force approach that searches through all pairs of
clusters at each iteration of the clustering algorithm. In addition to signifi-
cantly speeding up the algorithm, we find that these two heuristics often
yield more accurate estimates of the rate-distortion curve R(S) than the
brute-force implementation.

Network Datasets. The networks analyzed in this paper are listed and
described in SI Appendix, Table S1 (20–23). While we study unweighted,
undirected versions of the networks in Figs. 2, 3E, and 4 E and J, similar
results hold for directed versions of the networks (SI Appendix, Figs. S2
and S3). For networks of size N≤ 103, we perform analyses directly. For
larger networks with N> 103, we analyze 50 subnetworks of 103 nodes
each. Each subnetwork is generated by performing a random walk begin-
ning at a randomly selected node until 103 nodes have been reached. This
sampling method has been shown to give accurate estimates of network
statistics (43).

Data and Code Availability. The data analyzed in this paper and the
code used to perform the analyses are openly available at GitHub
(https://github.com/ChrisWLynn/Network compressibility).

Citation Diversity Statement. Recent work in several fields of science has
identified a bias in citation practices such that papers from women and
other minorities are undercited relative to the number of such papers in the
field (44–49). Here, we sought to proactively consider choosing references
that reflect the diversity of the field in thought, form of contribution, gen-
der, and other factors. We obtained predicted gender of the first and last
author of each reference by using databases that store the probability of
a name being carried by a woman (48, 50). By this measure (and exclud-
ing self-citations to the first and last authors of our current paper), our
references contain 16% woman(first)/woman(last), 17% man/woman, 18%

woman/man, and 50% man/man. This method is limited in that 1) names,
pronouns, and social media profiles used to construct the databases may
not, in every case, be indicative of gender identity; and 2) it cannot account
for intersex, nonbinary, or transgender people. Second, we obtained the
predicted racial/ethnic category of the first and last author of each reference
by databases that store the probability of a first and last name being carried
by an author of color (51, 52). By this measure (and excluding self-citations),
our references contain 9% author of color(first)/author of color(last), 14%

white author/author of color, 15% author of color/white author, and 62%

white author/white author. This method is limited in that 1) names, Cen-
sus entries, and Wikipedia profiles used to make the predictions may not
be indicative of racial/ethnic identity; and 2) it cannot account for Indige-
nous and mixed-race authors, or those who may face differential biases due
to the ambiguous racialization or ethnicization of their names. We look for-
ward to future work that could help us to better understand how to support
equitable practices in science.
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