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Antibody-dependent cellular phagocytosis (ADCP) has potential in breast cancer (BRCA) treatment, 
but the prognostic significance of ADCP-associated regulators (PRs) in BRCA remains unclear, 
necessitating this study. Firstly, candidate genes were identified by crossing differentially expressed 
genes (DEGs) with PRs, and prognostic genes were selected from these. A risk model based on SIAH2 
and PIGR was constructed and validated in the GSE42568 cohort. We also assessed the relationship 
between expression of prognostic genes and clinical characteristics. From these, independent 
prognostic factors were selected and a nomogram was constructed to predict survival in BRCA 
patients. Immune microenvironment analysis revealed that PIGR had the strongest positive correlation 
with naive B cells, while SIAH2 showed the strongest negative correlation with activated memory CD4 
T cells. Moreover, drug sensitivity analysis revealed that 109 drugs differed between high- and low-risk 
groups. Meanwhile, single-cell analysis identified epithelial cells (EPCs) as key cells, with PIGR highly 
expressed in the middle stage and SIAH2 in the early stage of cell differentiation. Finally, reverse 
transcription quantitative polymerase chain reaction (RT-qPCR) confirmed the up-regulation of SIAH2 
and down-regulation of PIGR in BRCA. These findings suggest that SIAH2 and PIGR are potential 
prognostic genes and novel therapeutic targets for BRCA management.
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Breast cancer (BRCA) is a prevalent malignancy in women, representing a significant health concern. As of 
the 2020 global cancer statistics, BRCA has overtaken lung cancer to become the most frequently diagnosed 
cancer type1. BRCA is categorized into Luminal A type, Luminal B type, HER2 positive type, and triple 
negative type based on variations in targeted receptor expressions2. The occurrence of breast cancer is usually 
attributed to mutations in BRCA susceptibility gene, TP53 tumor suppressor genes, abnormal mismatch repair, 
and the activation of classic cancer promoting pathways, such as PI3K/AKT/mTOR, Wnt/β-catenin, and the 
progesterone-induced RANKL/RANK system. At present, the treatment methods for BRCA mainly encompass 
surgical resection, endocrine therapy, chemotherapy, molecular targeted therapy and radiation therapy, 
Trastuzumab, known to bind to HER2 and impede the PI3K/AKT pathway activation, has demonstrated broad 
clinical utility in managing BRCA3. However, the mortality rate associated with BRCA remains very high. In 
recent years, many new biomarkers have emerged for BRCA, for example, serum LRG14, BUBR15, etc. Given the 
considerable heterogeneity across different BRCA subtypes, integrating other significant factors is imperative for 
enhancing the analysis and prognostication of BRCA outcomes.

Antibody dependent cellular phagocytosis (ADCP) refers to the activation of monocytes, macrophages, 
neutrophils, and dendritic cells for engulfing diseased cells by binding to corresponding antibodies6. Cellular 
phagocytosis is an important component of the immune system’s immune regulation. By activating the cellular 
phagocytosis function in cancer tissue has shown promise for effectively eliminated while preserving normal 
tissue. This plays an important role in cancer treatment. However, existing research predominantly concentrates 
on ADCP and its application in cancer treatment, with limited attention given to the prognostic value of ADCP-
related regulators (PRs) in cancer. In this study, we combined with single cell analysis to deeply explore the 
potential role of PRs in breast cancer, providing a new theoretical basis for their application in cancer prognosis 
evaluation.
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Based on the vital role of ADCP in the occurrence and evolution of BRCA, we will further understand the 
role of ADCP related genes in regulating immune cell and immune microenvironment progression, thereby 
providing certain reference value for the pathogenesis and prognosis of BRCA. This study is based on the BRCA 
related datasets from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) 
database. Through bioinformatics methods, the prognostic value of PRs in BRCA was revealed and analyzed, 
and their potential molecular regulatory mechanisms in BRCA were explored, providing theoretical support for 
the development of new treatment methods and drugs in clinical experience.

Results
The 133 candidate genes were mainly related to BRCA immune-related functions
Through conducting differential expression analysis between the BRCA and normal groups, we identified a 
total of 5870 DEGs. Among these DEGs, 3336 genes were found to be up-regulated in BRCA while 2534 genes 
were down-regulated (Supplementary Fig. S1a,b). A sum of 133 candidate genes were acquired by intersecting 
5870 DEGs and 730 PRs (Supplementary Fig. S1c). Subsequently, enrichment analysis was conducted for these 
candidate genes to facilitate the understanding of their potential biological functions. These candidate genes 
were significantly enriched to 507 GO entries, containing 435 biological processes (BPs), 27 cellular components 
(CCs), and 45 molecular functions (MFs). Specifically, the signaling pathways significantly enriched for candidate 
genes included lymphocyte differentiation, B cell differentiation, B cell proliferation, and so on (Supplementary 
Fig. S1d). At the same time, the 133 candidate genes were also significantly enriched in 9 KEGG pathways, such 
as FoxO signaling pathway, AMPK signaling pathway and B cell receptor signaling pathway, etc. (Supplementary 
Fig. S1e). These results suggested that candidate genes might influence BRCA progression by affecting the 
function of B cells, lymphocytes, etc.

Prognostic gene expression correlated with survival in BRCA patients
SIAH2 and PIGR were identified as prognostic genes (Fig. 1a,b). The ROC curve demonstrated that the AUC 
values of SIAH2 and PIGR exceeded 0.8, indicating their excellent diagnostic potential for BRCA (Fig.  1c). 
Moreover, K–M survival curve revealed a notable disparity in the survival rates of BRCA patients based on the 
expression levels of SIAH2 and PIGR. Notably, individuals with low expression of PIGR exhibited comparatively 
shorter survival periods (Fig. 1d,e).

Risk model displayed strong proficiency in assessing the risk of BRCA patients
A risk model was constructed based on SIAH2 and PIGR. The risk score was calculated as: riskScore = (− 0.308) 
× SIAH2 expression level + (− 0.203) × PIGR expression level + (− 0.295). Figure 2a,b displayed the risk curves 
of the TCGA-BRCA cohort and GSE42568 cohort, respectively. K–M survival curve data showed that, in these 
two cohorts, survival time was significantly shorter in high risk patients than in low risk patients (Fig. 2c,d). 

Fig. 1.  Prognostic genes and survival analysis of BRCA patients. (a,b) Identification of BRCA prognostic 
genes. (c) ROC curves of BRCA. (d,e) K–M curve analysis of BRCA.

 

Scientific Reports |        (2025) 15:18916 2| https://doi.org/10.1038/s41598-025-03825-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 2.  Nomogram development and validation. (a,b) A risk modell was constructed based on SIAH2 and 
PIGR. (c,d) K–M survival curves in high- and low-risk patients. (e) ROC curves of high- and low-risk patients 
at 1, 3, and 5 years in the TCGA-BRCA dataset. (f) ROC curves for high and low risk patients in the GSE42568 
group at 1, 3 and 5 years.
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Additionally, the AUC values for 1-, 3-, and 5-year in the TCGA-BRCA cohort were 0.646, 0.601, and 0.617, 
respectively (Fig. 2e), while the AUC values for the same time period in the GSE42568 cohort were 0.754, 0.645, 
and 0.718, respectively (Fig.  2f), indicating a certain degree of predictive capacity in the risk model. These 
findings suggested that risk models constructed from prognostic genes had a certain predictive ability for BRCA 
and has been verified in another cohort.

The prognostic genes were related to clinical features
We further explored the relationship between prognostic genes and clinical features in TCGA-BRCA cohort. We 
observed that PIGR was significantly different between age, N-stage, stage, and T-stage (Fig. 3a), whereas SIAH2 
was significantly different only in age (Fig. 3b).

A nomogram could effectively predict patients with BRCA
Screening in the TCGA BRCA cohort found that age, N stage and M stage were independent prognostic factors 
(Fig. 4a,b). A nomogram was developed to estimate the survival rates of BRCA patients at 1-, 3-, and 5-year 
intervals (Fig. 4c). The calibration curve demonstrated a high level of accuracy for the nomogram model with a 
slope close to 1 (Fig. 4d).

Association between immune microenvironment and risk score in patients with BRCA
In TCGA-BRCA cohort, we observed variations in the levels of 22 immune cell infiltrations across different 
risk groups (Supplementary Fig. S2a). Specifically, memory B cells, resting dendritic cells, naive B cells, resting 
mast cells, resting memory CD4 T cells, monocytes, plasma cells, and CD8 T cells exhibited significantly higher 
infiltration levels in the low-risk group. Resting NK cells, M0 macrophages, and activated memory CD4 T cells 
were the opposite (Supplementary Fig. S2b). Moreover, analysis of correlations indicated a significant positive 
association between PIGR and naive B cells (correlation coefficient (cor) = 0.32). Conversely, SIAH2 displayed a 
notable negative link with activated memory CD4 T cells (cor = − 0.21) (Supplementary Fig. S2c). In addition, 
we observed three immune checkpoints (CTLA4, IDO1, and PVR) were significantly higher in the high risk 
group (Supplementary Fig. S2d). Similarly, the correlation analysis between prognostic genes and immune 
checkpoints revealed that PIGR exhibited the strongest positive association with CD226 (cor = 0.27), whereas 
SIAH2 demonstrated the strongest negative correlation with PVR (cor = −  0.28) (Supplementary Fig. S2e). 
Moreover, Immunophenotype Score (IPS) analysis showed significant differences in all four components of PD1 
and CTLA4 in both high and low risk groups, suggesting that the expression status of CTLA4 and PD1 may be 
significantly associated with the level of risk to which patients were exposed (p < 0.05) (Supplementary Fig. S2f).

109 Drugs differed between high and low-risk groups, with missense mutation being the 
most common gene mutation
To understand the drugs associated with prognostic genes, predictive analysis was performed, which showed 
that SIAH2 predicted 42 drugs and PIGR predicted 37 drugs. The prognostic genes-drug network was shown 
in Supplementary Fig. S3a. In addition, the rank sum test found 109 drugs differed between high and low risk 
groups, and the top 20 drugs with the smallest p-values were selected for presentation (p < 0.05) (Supplementary 
Fig. S3b). Next, mutation analysis was performed to understand the mutation profiles of the genes. The results 
showed that the highest mutation frequency in the low-risk group was TP53 and in the high-risk group was 
PIK3CA. The type of mutation with the highest mutation frequency in these genes was missense_mutation 
(Supplementary Fig. S3c,d). Moreover, Tumor Mutational Burden (TMB) scores differed between high and low 
risk groups, with higher TMB scores in the high risk group (Supplementary Fig. S3e).

A total of 7 cell types were annotated
After identifying prognostic genes through transcriptome analysis, we conducted further investigation into the 
expression distribution of these prognostic genes at the single-cell level. The data from the single-cell dataset 
GSE176078 were quality controlled (Supplementary Fig. S4), followed by normalisation of the data to screen 
for top 2000 highly variable genes (Fig. 5a), and principal component analysis (PCA) of the first 30 principal 
components of the highly variable genes (p < 0.05) yielded 21 cell clusters (Fig. 5b,c). Finally, 7 cell types were 
identified (Fig.  5d), which were visualized by Uniform Manifold Approximation and Projection (UMAP) 
and showed the expression of marker genes (Fig.  5e). Cellular functional enrichment analyses revealed that 
the different types of cell clusters were associated with a variety of biological pathways, including Reuptake 
of GABA, Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2, Ficolins bind to repetitive 
carbohydrate structures on the target cell surface and so on (Fig. 5f).

The strongest interaction was between endothelial cells and monocyte
To further screen key cells, the distribution of prognostic genes expression in different cell types was demonstrated 
by bubble plot (Fig.  6a). The results showed that SIAH2 and PIGR were highly expressed in Epithelial cells 
(EPCs), thus defining EPCs as key cells. Moreover, the results of intercellular communication network analysis 
showed that the strongest interaction was between Endothelial cells and Monocyte (Fig. 6b,c). Subsequently, 
bubble diagram demonstrated receptor-ligand interactions between different cells (Fig. 6d).

PIGR was highly expressed during the middle stage, while SIAH2 was highly expressed in the 
early stage
In order to understand the trajectories of EPCs, cell trajectory analysis was performed, which determined the 
starting point of the proposed temporal trajectory for EPCs development. This analysis indicated that as the cells 
progressed away from this starting point, they underwent maturation in their development (Fig. 7a). Based on 
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their developmental stage, EPCs were divided into 7 periods, each represented by different colors. According 
to gene expression patterns, the samples were classified into cell populations at various differentiation states 
(Fig. 7b). Furthermore, during cell differentiation, the PIGR gene was highly expressed at the mid-differentiation 
stage, while the SIAH2 gene was highly expressed at the early differentiation stage (Fig. 7c).

Fig. 3.  The prognostic genes were related to clinical features. (a,b) The relationship between prognostic genes 
and clinical features.
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Differentially expressed genes in epithelial tumor cells were mainly enriched in 
Immunoglobulin complex and cell cycle pathways
Subsequently, we analyzed the differentially expressed genes in the high and low risk groups of epithelial cells. 
Firstly, 20,862 epithelial cells and 6900 endothelial cells were extracted from the single-cell dataset GSE176078, 
and the Copy Number Variation (CNV) Score of each cell was calculated based on the copy number quantitative 
analysis formula. As shown in Fig. 8a, cluster 2 represented endothelial cells, and the rest of the clusters were 

Fig. 4.  Nomogram model construction. (a,b) Univariate and multivariate Cox regression analyses of risk 
scores and clinical characteristics in the training set. (c) Column line graph of independent prognostic factors 
for BRCA. (d) The BRCA column chart correction curve.
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epithelial cells. Next, the significance of the difference in CNV Score between epithelial and endothelial cells 
was calculated, and the results showed that there was a significant difference in CNV Score between them 
(Supplementary Fig. S5). Then, the epithelial cells were categorized into high and low risk groups based on 
the median risk score, and Fig. 8b demonstrated the clustering results in UMAP. Moreover, 445 differentially 
expressed genes were screened by differential expression analysis. And 228 significant GO pathways were 
enriched based on adj p < 0.05, covering 182 BPs, 28 CCs, and 18 MFs, of which the Top5 pathways were shown 
in Fig. 8c. In addition, 8 significant KEGG pathways were also derived from the enrichment analysis (adj p < 0.05) 
(Fig. 8d).

Expression evaluation of prognostic genes was implemented
The expression of prognostic genes was detected via qRT-PCR. The findings demonstrated a significant up-
regulation of SIAH2 in BRCA compared to the control group, while PIGR exhibited a substantial down-
regulation (Fig. 9).

Fig. 5.  A total of 7 cell types were annotated. (a) Screening for highly variable genes. (b) Jackstraw plot and 
Elbow Plot for principal component analysis. (c) UMAP clustering map for 21 clusters. (d) UMAP clustering 
map for 7 cell types. (e) Expression map of marker genes in clusters of cells. The size of the circle indicated 
the number of cells, the larger the circle, the higher the number of cells in the cluster; the yellower the colour, 
the higher the expression level of the marker genes. (f) The results of functional enrichment for cell clusters. 
The colours represented the degree of enrichment, with blue being a negative correlation and red a positive 
correlation.
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Discussion
BRCA is the most prevalent malignant tumour in women worldwide, and is also the second major factor in 
cancer related deaths. Immunotherapy has become increasingly important in many treatments for BRCA. ADCP 
is an immune elimination mechanism that is currently considered an important mechanism of monoclonal 
antibody therapy for cancer7. PRs have been confirmed to play a major role in the treatment of ADCP, but no 
research has reported the value of PRs in the prognosis of BRCA.

By taking the intersection of 5870 DEGs and 730 PRs, 133 candidate genes were ultimately obtained. 
Enrichment analysis of 133 candidate genes revealed that the regulation of monocyte differentiation, lymphocyte 
differentiation, white blood cell differentiation, regulation of the immune response by signaling pathways of cell 
surface receptors, cell cycle processes, B cell receptor signaling pathways, and primary immunodeficiency were 
associated with these candidate genes. This indicated a significant relationship between these candidate genes 
and the immune microenvironment.

Immune microenvironment is a hot topic in current tumor treatment. Among these, the PD-1/PD-L1 
monoclonal antibody immune checkpoints inhibitor therapy for T cells has become the first-line treatment plan 
for BRCA. However, the significance and role of B cells in the anti-tumor immune process are rarely reported. 

Fig. 6.  The strongest interaction was between Endothelial cells and Monocyte. (a) Expression of prognostic 
genes in different cells. The gradual change in colour from green to yellow indicated a gradual increase in 
gene expression. (b) Cellular communication between all cell types. The thickness of the line represented the 
strength of the cellular interaction. (c) Heatmap of cellular communication between all cell types. The colour 
gradient from blue to red indicated an increase in the number of interactions. (d) Diagram of receptor-ligand 
communication between different cell types. The colours were graduated from blue to red, with redder colours 
indicating stronger interactions between the receptor and the ligand.
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Fig. 7.  PIGR was highly expressed during the middle stage, while SIAH2 was highly expressed in the early 
stage. (a) The cell trajectory plot displayed the changes in cell progression during the pseudotime process. 
(b) Divided into 7 periods according to the state of cell development, corresponding to different colours. (c) 
Dynamic expression profiles of prognostic genes. The vertical coordinate was the relative expression and the 
horizontal coordinate was the expression of prognostic genes under different time stages.
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Fig. 8.  Differentially expressed genes in epithelial tumor cells were mainly enriched in immunoglobulin 
complex and cell cycle pathways. (a) CNV Score distribution of epithelial and endothelial cells. (b) UMAP 
clustering results of epithelial cells categorized into high and low risk groups based on the median risk score. 
(c) Top 5 significant GO pathways enriched based on adj p < 0.05. (d) Top 8 significant KEGG pathways 
enriched based on adj p < 0.05.
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When faced with tumor antigen stimulation, B cells can secrete tumor specific antibodies and control tumor 
progression through mechanisms such as complement dependent cytotoxicity (CDC), antibody dependent cell-
mediated cytotoxicity (ADCC), and ADCP8,9. The role of B cells in BRCA and its prognosis are still controversial. 
Some studies have found that a high level of invasion of B cells indicates a better prognosis of patients10,11, while 
other studies have also shown that a high level of B cells invasion can lead to a worse prognosis of patients12. 
Therefore, the role and molecular mechanism of B cells in BRCA needs to be further investigated.

Univariate and multivariate Cox regression analyses of the 133 candidate genes in the TCGA dataset 
suggested that SIAH2 and PIGR play a critical role in the prognosis of BRCA patients. SIAH2 (Siah E3 Ubiquitin 
Protein Ligase 2) was a protein coding gene, and the translated SIAH2 protein functions as a ubiquitin ligase, 
adapting to hypoxic environments, regulating DNA damage, cell apoptosis, angiogenesis, and cell proliferation13. 
Therefore, SIAH2 plays an essential biological role in tumor occurrence and evolution, but the specific 
molecular mechanism is not fully understood. Studies have shown that overexpression of SIAH2 plays a role in 
promoting tumor progression in tissues such as prostate cancer14, lung cancer15, and liver cancer16. Similarly, 
SIAH2 also has a role in the promotion of breast cancer initiation, development and drug resistance17–22. This 
is the same as the conclusion of this study that high SIAH2 expression is associated with increased invasion of 
breast cancer and decreased overall survival rate of patients, and there are significant differences in the age of 
clinical characteristics. However, some studies have shown that SIAH2 plays a protective role in Luminal breast 
cancer23,24. This may be due to the inherent heterogeneity of breast cancer. In addition, studies have found that 
SIAH2 regulates the Hippo pathway in Triple negative breast cancer (TNBC) cells, affecting cell proliferation, 
stemness, chemotherapy sensitivity, and drug resistance. It is an important molecule in the mechanism of TNBC 
chemotherapy resistance25. In another study, SIAH2 also promoted the survival, apoptosis and invasion of 
breast cancer cells by regulating ERK and PI3K signaling pathways, thus playing a key role in the malignant 
transformation of breast cancer26. It was also found that SIAH2 promotes the sensitivity of breast cancer cells 
to tamoxifen by regulating the expression of ER - α in estrogen receptor (ER) positive breast cancer cells. Its 
low expression may be a mechanism leading to tamoxifen resistance27. Therefore, we need to further study the 
mechanism of SIAH2 in different breast cancer subtypes.

The Polymeric Immunoglobulin Receptor (PIGR) can be translated to produce the PIGR protein, which 
is a specific receptor for dimeric IgA (d IgA) and pentameric IgM (p IgM). It can mediate transmembrane 
transport and act as a bridge between innate and adaptive immunity28. The expression level of PIGR in different 
cancer tissues is different. Its high expression in liver cancer29 and colon cancer30promotes tumor growth and 
metastasis, but it is low expression in lung cancer31, ovarian cancer32 and endometrial cancer33. At present, the 
role of PIGR in breast cancer is not completely clear, and the regulation and expression of PIGR by immune 
cells in different subtypes of breast cancer are also different34,35. The study found that PIGR is one of the down 
regulated genes in breast cancer tissue, and its down-regulation may play an inhibitory role in the occurrence of 
breast cancer, and is related to immune response, cell adhesion and migration36. In addition, PIGR is considered 
to be the key PANoptosis related gene, and its expression decline may be related to the progress of breast cancer 
and changes in the immune microenvironment, thus helping to predict the prognosis of breast cancer patients37. 
At the same time, PIGR is considered to be an important part of the competing endogenous RNA (ceRNA) 
network in breast cancer, and its expression changes may become a potential marker for prognosis evaluation 
of breast cancer38. Therefore, Our hypothesis was that PIGRs had different roles in the development of different 
subtypes of breast cancer, and its specific role and regulatory mechanism need further study. At the same time, 
through analysis in the TCGA dataset, the expression of PIGR gene was low in breast cancer, and there was 
significant difference among age, N stage, stage and T stage. the gene PIGR has significant differences between 
age, N stage, stage, and T stage.

Fig. 9.  The expression of prognostic genes was detected via qRT-PCR.
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This study constructed a risk model based on SIAH2 and PIGR, and the results showed that the model has 
a certain predictive ability for BRCA, which was validated in another cohort. Previous studies have shown that 
the risk model combining self-monitoring learning, data standardization and large-scale data sets can improve 
the diagnostic accuracy of pancreatic cancer and breast cancer, thus providing support for clinical decision-
making, optimizing treatment plans, and improving patient prognosis39. Jacqueline C Stocking et al.‘s research 
also suggests that risk models can help doctors make precise decisions, improve postoperative care, enhance 
patient outcomes, and optimize hospital resource allocation40. In addition, the risk model combining machine 
learning and clinical data can predict the risk of distant metastasis of breast cancer, improve the early diagnosis 
rate, improve the prognosis, and support the rational allocation of medical resources41. Our research results also 
show that by evaluating gene expression and clinical characteristics, risk models can help clinicians to conduct 
accurate stratification and prognosis assessment, provide basis for personalized treatment, and thus improve the 
survival rate and quality of life of breast cancer patients. However, this model still needs further validation in 
future clinical practice.

Through analysis of the intercellular communication network, we found that the interaction between 
endothelial cells and monocytes is the strongest. At the same time, the risk model based on SIAH2 and PIGR in 
this study shows potential value in predicting the prognosis of breast cancer. Therefore, we propose a hypothesis 
that PRs may affect the development and prognosis of tumors through cellular communication networks. Studies 
have found that SIAH2, as a protective gene, may play an inhibitory role in the progression of breast cancer 
by regulating cell communication and immune response, thus affecting the risk prediction in the prognosis 
model. This makes SIAH2 have important clinical significance in the prognosis evaluation of different breast 
cancer subtypes, especially Luminal BC subtype42. These findings further support our hypothesis. However, 
there are currently no research reports indicating that PIGR directly affects tumor development and prognosis 
through cellular communication networks. Therefore, future research can further explore the role of PIGR in cell 
communication and provide new insights and references for the treatment of breast cancer.

By further conducting immune microenvironment analysis, we discovered that there were significant 
differences in 11 different types of immune cells between the two groups at risk. Among them, PIGR showed 
a significant positive correlation with naive B cells, while SIAH2 displayed a notable negative connection with 
activated memory CD4 T cells. At present, there is little research on the relationship between PIGR and human 
B cells. It is only understood that overexpression of PIGR may lead to abnormal B cell receptor signaling, 
but the corresponding regulatory mechanism has not been elucidated43, which requires further exploration. 
Similarly, previous report44 has shown that high expression of SIAH2 promotes tumor growth by enhancing 
the proliferation and recruitment of regulatory T cells within tumors. This indicates that SIAH2 can affect the 
activation of immune cells, thereby altering the tumor immune microenvironment. However, the intrinsic 
relationship and mechanism between SIAH2 and activated memory CD4 T cells are still not fully understood.

In addition, immune checkpoints molecules such as CTLA-4, IDO1, and PVR exhibited relatively higher 
expressed levels in the high risk group. Currently, the targeted immunotherapy against CTLA-4 and PD-L1/PD-1 
immune checkpoints has been recognized45, igniting interest in exploring alternative immunotherapeutic targets. 
In BRCA, SIAH2 has a significant negative correlation with the PVR immune checkpoint. PVR, predominantly 
expressed on epithelial and myeloid cells is frequently upregulated in tumor cells. Patients with elevated PVR 
expression demonstrate reduced responsiveness to PD-1 monotherapy or combination therapy of PD-1 and 
CTLA-446. Therefore, PVR immune checkpoints are poised to emerge as pivotal targets for immunotherapy in 
BRCA.

Conclusions
This study preliminarily explored the role of PRs in the prognosis of BRCA through multiple datasets from 
multiple databases. Subsequently, clinical specimens were collected for qRT-PCR and IHC validation. There 
are still some shortcomings in this study. Firstly, the small sample size of BRCA organizations may lead to 
insufficient statistical power and representativeness, thereby affecting the broad applicability of research results. 
Secondly, in the process of bioinformatics analysis, algorithm and parameter selection may introduce potential 
biases. Finally, this study mainly focuses on the prognostic significance and recurrence risk of PRs in BRCA. 
Therefore, in the future, the sample size should be expanded for validation, and multi center studies should be 
conducted to improve sample diversity and representativeness of results. In addition, although multiple methods 
were used for mutual verification in this study, potential biases in bioinformatics analysis can still be further 
reduced in the future by improving algorithms, optimizing parameters, and strengthening data quality control. 
In addition, more experimental studies are needed in the future to explore the specific molecular mechanisms 
underlying BRCA occurrence.

Materials and methods
Data acquisition
TCGA (https://portal.gdc.cancer.gov/) database offered RNA-seq data and survival information for the ​T​C​
G​A​-​B​R​C​A cohort. This cohort contained 1171 samples, including 99 normal tissue samples and 1072 BRCA 
tissue samples, which was used as a training set. The cohort GSE42568, which contained survival information, 
was obtained from GEO (https://www.ncbi.nlm.nih.gov/) database using the sequencing platform GPL570. 
This validation set comprised 17 normal tissue samples and 104 BRCA tissue samples. The single-cell dataset 
GSE176078 (sequencing platform: GPL18573), also from the GEO database, contained a total of 26 tumour 
tissue samples and was sequenced using high-throughput sequencing for analysing the expression distribution 
of prognostic genes in the single-cell data. Additionally, a sum of 730 ADCP-related regulators (PRs) were gained 
from the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system47,48.
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Identification of differentially expressed genes (DEGs) in TCGA-BRCA cohort
The DESeq2 package (v 1.36.0)49 was used for differential expression analysis to identify DEGs between 
normal and BRCA samples in the TCGA-BRCA cohort. The conditions for screening were adj.p < 0.05 
& |log2FoldChange(FC)| > 1. The ggplot2 package (v 3.3.6)50 was employed to plot volcano map, while the 
pheatmap package (v 1.0.12)51 was utilized to create heat map, both of which were employed to illustrate the 
expression of DEGs. Importantly, only up- and down-regulated top40 genes were selected as shown by heat map.

Recognition of candidate genes and functional enrichment analysis
Differentially expressed PRs were obtained by taking intersections of DEGs with PRs via VennDiagram package 
(v 1.7.3)52, which were recorded as candidate genes. To deeply explore the biological functions involved in 
the candidate genes, enrichment analysis was performed in TCGA-BRCA cohort based on the clusterProfiler 
package (v 4.4.4)53, containing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(p < 0.05). The enrichment results were visualized by drawing a treemap via treemap package (v 2.4-4).

Confirmation of prognostic genes and survival analysis
Candidate genes were sequentially integrated into univariate Cox regression analysis (p < 0.05), proportional 
hazards (PH) hypothesis test (p > 0.05), and multivariate Cox stepwise regression analysis (p < 0.05) to screen for 
prognostic genes conjunction with BRCA. Subsequently, the diagnostic performance of prognostic genes was 
evaluated by generating receiver operating characteristic (ROC) curves using timeROC package (v 0.4)54. In 
the same time, BRCA patients were categorised into two groups, high and low expression, based on the optimal 
threshold of gene expression levels that predict prognosis. To establish the difference in survival rates between 
these groups, we employed the survminer package (v 0.4.9)55 to conduct Kaplan–Meier (K–M) survival curve 
analysis.

Development and validation of a risk model
In the TCGA-BRCA cohort, prognostic genes found in the previously stated analysis were used to build a risk 
model with risk scores calculated as follows: riskScore = 

∑ n

i=1(β i × Expri). Among them, βi and Expri 
represented the multivariate Cox stepwise regression coefficient and relative expression of prognostic gene i, 
respectively. Based on the risk score’s median value, patients with BRCA were categorized into two distinct 
groups, a high-risk group and a low-risk group, based on their level of risk. The risk curve was employed to 
analyze the survival outcomes of patients across different risk groups. Afterwords, K–M survival curve analysis 
was implemented to investigate the survival differences between two risk groups. Meanwhile, ROC curves were 
presented through timeROC package, which facilitated the calculation of the area under curve (AUC) at 1-, 3-, 
and 5-year. A higher AUC value indicated a stronger predictive power of the risk model for BRCA. Furthermore, 
we implemented the validation of the risk model in GSE42568 cohort through the same analysis as in TCGA-
BRCA cohort.

Clinical characteristics analysis
To further assess the correlation between the expression of prognostic genes and clinical features (including age, 
N stage, T stage, M stage, and stage), the expression of prognostic genes was analyzed between different groups 
with different clinical features in the TCGA-BRCA cohort (p < 0.05).

Construction and evaluation of nomogram
In the TCGA-BRCA cohort, to investigate independent prognostic factors, we performed univariate and 
multivariate Cox regression analyses (p < 0.05) by sequentially incorporating risk scores and various clinical 
features. Additionally, a PH hypothesis test was carried out to assess the proportional hazards assumption 
(p > 0.05). Based on the independent prognostic factors obtained from the above screening, a nomogram was 
constructed through rms package (v 6.3-0)56. A score was assigned to each independent prognostic factor, which 
was then added to the corresponding total score. Survival rates for BRCA patients at 1-, 3-, and 5-year intervals 
were estimated using the cumulative score. A higher score indicated a lower survival rate. Furthermore, the 
calibration curve was used to assess the precision of the nomogram’s predictive ability.

Immune microenvironment analysis
The CIBERSORT algorithm was used to identify the infiltration frequency of 22 immune cells in different risk 
groups in the TCGA-BRCA cohort. A stacking histogram was plotted to present the results. Relevant risk groups 
were compared using the Wilcoxon test to assess variances in levels of immune cell infiltration (p < 0.05). What’s 
more, Spearman correlation analysis was implemented to evaluate the correlation between prognostic genes and 
differential immune cell. At the same time, we also compared the differences in the expression of the immune 
checkpoints. (CTLA4, TIGIT, PVR, CD28, CD226, and IDO1)57,58 between different risk groups (p < 0.05). 
Similarly, Spearman correlation analysis was implemented between prognostic genes and immune checkpoints. 
In addition, to assess the relationship between risk scores and immunotherapy, an IPS analysis was performed59. 
The IPS was a good predictor of response to checkpoint blockers, and the analysis included both PD1 and 
CTLA4 and was divided into four sections: ips_ctla4_neg_pd1_neg (CTLA4-negative, PD1-negative response), 
ips_ctla4_neg_pd1_pos (CTLA4-negative, PD1-positive reaction), ips_ctla4_pos_pd1_neg (CTLA4-positive, 
PD1-negative reaction) and ips_ctla4_pos_pd1_pos (CTLA4-positive, PD1-positive reaction). Differences in 
distribution of these four sections between high and low risk groups were analysed by Wilcoxon.

Scientific Reports |        (2025) 15:18916 13| https://doi.org/10.1038/s41598-025-03825-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Drug prediction and mutation analysis
To explore the possibility of mitigating or treating the disease by targeting prognostic genes, prognostic genes 
were imported into the Comparative Toxicogenomics Database (CTD) database (https://ctdbase.org), drugs 
interacting with them were predicted, and prognostic genes-drug network was constructed by Cytoscape software 
(v 3.10.2)60. Subsequently, to assess the difference in response to chemotherapy between patients in high and low 
risk groups, 198 common chemotherapeutic drugs were obtained from the Genomics of Cancer Drug Sensitivity 
(GDSC) database (http://www.cancerrxgene.org/). And the pRRophetic R package (v 0.5)61 was used to calculate 
the Inhibitory Concentration 50% (IC50) values of common chemotherapy and molecular targeted drugs in the 
TCGA-BRCA dataset. Then, a rank-sum test was performed to compare the IC50 differences between the high-
risk and low-risk groups. In addition, in order to explore the mutation status between the high- and low-risk 
groups, the TCGAplot R package (v 0.3.0) was used to download the somatic mutation information of TCGA-
BRCA, and the waterfall plots of the top 20 genes with the highest mutation frequencies were drawn. At the same 
time, to understand the mutation load of the tumours in the high- and low-risk groups, the TMB scores of each 
patient were calculated using the tmb function of the maftools R package (v 2.14.0)62, and the differences in TMB 
scores between the two groups were compared by the Wilcoxon test.

Single-cell analysis
The single-cell dataset GSE176078 underwent rigorous data quality control using the Seurat R package (v 5.0.1)63 
to ensure compliance with the defined criteria. Cells were eliminated based on specific criteria: cells with fewer 
than 200 genes or fewer than 3 genes covered by cells, cells with fewer than 200 or more than 5000 expressed 
genes, genes with counts less than 500 or greater than 30,000, and cells with mitochondrial proportions exceeding 
15%. The data were then normalised using the NormalizeData function in the Seurat R package (v 5.0.1)63, and 
the genes with high variability were filtered by Analysis of Variance (ANOVA) using the FindVariableFeatures 
function. Finally, the LabelPoints function in the plotrix R package (v 3.8.2)64 was used to visualise the results 
and indicate the top 10 genes with the highest variability in expression levels. After identifying highly variable 
genes, PCA was performed using the RunPCA function to reduce the dimensionality of the Single-Cell RNA 
Sequencing (scRNA-seq) data (p < 0.05) and the results of the dimensionality reduction were visualised by the 
ElbowPlot function. To further identify cell clusters, the UMAP algorithm (dims = 1:3, resolution = 0.1) was 
applied to perform a full dimensionality reduction analysis of the filtered principal components.

Subsequently, the FindAllMarkers function in the Seurat R package (v 5.0.1)63 was used to identify marker 
genes specific to each cell cluster (logfc.threshold = 0.5, min.pct = 0.25, return. 0.25, return.thresh = 0.01). Next, 
these marker genes were used for type classification of cell clusters using SingleR R package (v 1.4.1)65 and the 
CellMarker database (http://yikedaxue.slwshop.cn/). Finally, UMAP plot was created using the umap R package 
(v 0.2.10.0)66 to show the annotated cell types. The expression of marker genes in different cell clusters was 
visualised by bubble plot. In addition, in order to explore the biological pathways of different cellular roles, 
the annotated cells were functionally enriched in the single-cell dataset using the ReactomeGSA R package 
(v 1.12.0)67 (p < 0.05). To obtain key cells, the distribution of prognostic genes expression in each cell type 
was demonstrated using the UMAP method and the result was visualised using the theme function of the 
ggplot2 R package (v 3.3.6)68. Subsequently, the communication network between cells was analysed using the 
CellChat R package (v 1.6.1)69(p < 0.05), and cell communication maps were created. More, bubble diagram 
was drawn to demonstrate the receptor-ligand interactions between different cells, and cell trajectories were 
constructed using the Monocle R package (v 2.30.1)70 to analyse the proposed time series of key cells. Next, 
the Branched Expression Analysis Modeling (BEAM) method from the Monocle R package (v 2.30.1)70 was 
used to analyze the pseudotime-ordered cell data and specified nodes. The plot_pseudo_time_heatmap function 
was then employed to generate a dynamic heatmap, illustrating the expression changes of prognostic genes 
across different pseudotimes. Finally, the relative expression profiles of prognostic genes in key cells along the 
pseudotime trajectory were plotted.

Classification of tumor cells in the epithelium into high and low risk groups based on risk 
scores
Next, epithelial tumor cells were classified into high-risk and low-risk groups based on the risk score, in order 
to explore the biological processes and signaling pathways that the differentially expressed genes between the 
two groups might be involved in. Firstly, epithelial and endothelial cells from the breast cancer single-cell 
dataset GSE176078 were extracted, and endothelial cells were used as a reference to calculate the copy number 
variation of epithelial cells. The CNV Score of the genes was calculated by reading the result file of infercnv (run.
final.infercnv_obj) and based on the copy number results of each gene on each cell. Specifically, copy number 
quantification was performed based on the following formula:

	 down = mean(rowMeans (tmp)) − 2 ∗ mean(apply(tmp, 1, sd))

	 up = mean(rowMeans (tmp)) + 2 ∗ mean(apply(tmp, 1, sd))

where rowMeans represents the mean of the number of copies of each gene in all cells, tmp represents the result 
file of infercnv, rows represent genes, and columns represent samples. Next, the significance of the difference 
between epithelial cell clusters and endothelial cells on the CNV Score was calculated using the Wilcox test 
(p < 0.05). A corresponding risk score was calculated for each cell based on the riskScore formula: riskScore 
= (− 0.308) * SIAH2 expression level + (− 0.203) * PIGR expression level + (− 0.295), and epithelial cells were 
categorized into high-risk and low-risk groups by median. Subsequently, the FindMarkers function was used 
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to calculate the DEGs 1 between the high and low risk groups (avg_log2FC > 0.5, adj p < 0.05). Finally, GO and 
KEGG enrichment analyses were performed on the DEGs 1.

Expression evaluation of prognostic genes
To investigate prognostic gene expression, we collected 10 paired BRCA and NC samples from Shandong 
Provincial Third Hospital. This study had the approval of the Ethics Committee of the Third Hospital of 
Shandong Province. Informed consent forms were completed by all participants. Total RNA from 20 samples 
was isolated with TRIzol (Ambion, Austin, USA) according to the manufacturer’s instructions. Total RNA was 
reverse transcribed to cDNA via the SureScript First strand cDNA synthesis kit (Servicebio, Wuhan, China) 
according to the manufacturer’s instructions. Then, qPCR was performed using the 2xUniversal Blue SYBR 
Green qPCR Master Mix (Servicebio, Wuhan, China) according to the instructions in the manual. PCR primer 
sequences were shown in (Supplementary Table S1). Expression was in accordance with the internal reference 
GAPDH and calculated using the 2-ΔΔCT method71.

Ethics declarations
The research study has been approved by the relevant ethics committee or institutional review board. The 
approval number and date of approval are as follows: [KYLL-2024067] and [2024-8-19].

Consent to participate/consent to publish
Informed consent forms were completed by all participants.

Statistical analysis
Data processing and analyses were performed using R software (version 4.2.1) and differences between groups 
were examined using the Wilcoxon test. P < 0.05 was defined as statistically significant.
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