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Abstract

Background: The cline of human genetic diversity observable across Europe is recapitulated at a micro-geographic
scale by variation within the Italian population. Besides resulting from extensive gene flow, this might be ascribable
also to local adaptations to diverse ecological contexts evolved by people who anciently spread along the Italian
Peninsula. Dissecting the evolutionary history of the ancestors of present-day Italians may thus improve the
understanding of demographic and biological processes that contributed to shape the gene pool of European
populations. However, previous SNP array-based studies failed to investigate the full spectrum of Italian variation,
generally neglecting low-frequency genetic variants and examining a limited set of small effect size alleles, which may
represent important determinants of population structure and complex adaptive traits. To overcome these issues, we
analyzed 38 high-coverage whole-genome sequences representative of population clusters at the opposite ends of the
cline of Italian variation, along with a large panel of modern and ancient Euro-Mediterranean genomes.

Results: We provided evidence for the early divergence of Italian groups dating back to the Late Glacial and for
Neolithic and distinct Bronze Age migrations having further differentiated their gene pools. We inferred adaptive
evolution at insulin-related loci in people from Italian regions with a temperate climate, while possible adaptations to
pathogens and ultraviolet radiation were observed in Mediterranean Italians. Some of these adaptive events may also
have secondarily modulated population disease or longevity predisposition.
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Conclusions: We disentangled the contribution of multiple migratory and adaptive events in shaping the
heterogeneous Italian genomic background, which exemplify population dynamics and gene-environment interactions
that played significant roles also in the formation of the Continental and Southern European genomic landscapes.

Keywords: Italian population, Whole-genome sequences, Demographic inference, Polygenic adaptation, Evolutionary
medicine

Background
To date, several studies aimed to elucidate the genetic
legacy of modern European populations, having accumu-
lated evidence that it has been shaped by complex pre-
historic and historical processes resulting from the
contact between groups with appreciably different ances-
tries [1–8]. In particular, the genetic makeup of the
current European meta-population was found to be
characterized by a clinal distribution of variation, with
subtle divergence observable especially between people
from Continental and Southern Europe [9, 10]. This pat-
tern is recapitulated uniquely by genetic variation dis-
tributed along the Italian Peninsula [11–13], suggesting
that the dissection of demographic and evolutionary
events occurred in this area may improve the under-
standing of key population dynamics and gene-
environment interactions having contributed to the for-
mation of the present-day European genomic landscape
[14–17].
Several studies relying on the analysis of uniparental

markers [11–14] or genome-wide autosomal polymor-
phisms [15–17] already drew a detailed picture of the
fine-scale genetic structure of the Italian population, as
well as of the linguistically and/or geographically isolated
communities present on the Italian territory [18–21].
These research efforts provided also intriguing clues about
the demographic history of the ancestors of present-day
Italians. For instance, small pre-Neolithic contributions
were proposed to have survived in the Italian Y chromo-
some and autosomal gene pools [13, 16, 17]. Nevertheless,
the appreciable frequency of some maternal lineages espe-
cially in Southern Italy suggested a link with populations
from the Caucasus and the Levant, which predates the
Neolithic and may support the role of this area as a refu-
gee during the Last Glacial Maximum (LGM) [14, 22].
Despite that, Neolithic and post-Neolithic population
movements are supposed to have predominantly shaped
modern patterns of Italian variation. In fact, the genetic
distinctiveness of Sardinians with respect to peninsular
Italians [23–25] was interpreted as a relic signature of an
Early Neolithic European genomic background that might
have been preserved especially in such a population due to
its isolation to subsequent large-scale migrations [16, 26,
27]. Moreover, the establishment of a north-west to
south-east cline of Y chromosome variation along the

peninsula was proposed to date back to two antiparallel
migration waves that brought the Neolithic in Southern
Italy and the Adriatic coasts earlier than in the northern
and Tyrrhenian regions [13, 28, 29]. A significant impact
of Late Neolithic and Bronze Age demic processes on Ital-
ian Y chromosome and autosomal gene pools was further
hypothesized [13, 17], along with subsequent influences
especially on people from Northern Italy that may be re-
lated to events that occurred during the Roman Empire
and the Middle Ages [15, 16]. Gene flow from the Near
East instead seems to have affected mainly Central Italy
and for a longer period than other regions of the peninsula
[16]. Finally, Southern Italians were found to present gen-
etic affinity with populations from the Eastern Mediterra-
nean and particularly from Crete, Cyprus, and the
Anatolian/Dodecanese islands [17], with people from Si-
cily also showing increased proportion of ancestry compo-
nents likely introduced during the Arab occupation of the
island [14, 16]. According to this picture, the ancestors of
present-day Italians are supposed to have experienced an
extraordinarily tangled history of migrations and gene
flow, which is the main factor underlying the well-
established cultural and genetic diversity of the Italian
population, some of the most outstanding among those
observable across the entire European continent [19].
Furthermore, due to the remarkable latitudinal range of

the peninsula, which spans from the Alps to the core of
the Mediterranean Sea, human groups who anciently
spread along it were likely forced to cope with consider-
ably different ecological, environmental, and climate con-
ditions. As a result, the heterogeneous Italian genomic
background may have represented a favorable substrate
for the action of natural selection enabling the evolution
of different local adaptations triggered by a variety of se-
lective pressures [16]. Accordingly, despite being largely
understudied, investigation of the adaptive history of the
Italian people promises to pinpoint a valuable compen-
dium of gene-environment interactions having played a
relevant role in the evolution of European populations.
Nevertheless, previous studies focused on the genetic

history of Italians mostly relied on inferences drawn
from the analysis of single genetic systems (i.e., mito-
chondrial DNA and Y chromosome) or of moderate-to-
high frequency autosomal single nucleotide polymor-
phisms (SNPs). This prevented to exhaustively
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investigate the full spectrum of variation observable in
the Italian gene pool particularly underestimating the in-
formation associated with low-frequency and/or small
effect size variants, which are insufficiently surveyed by
SNP arrays. However, these typologies of alleles have
been revealed as pivotal in determining patterns of fine-
scale population structure [30–32] and as important
genetic determinants of complex traits [33], including
adaptive ones if considering a polygenic adaptation
model that seems to be more realistic than those based
on hard/soft selective sweeps [34–38].
To overcome these issues and to provide the as exhaust-

ive as possible picture of the demographic and adaptive
history of the ancestors of present-day Italians, we took
advantage of high-coverage (90×) whole-genome sequence
(WGS) data generated for 38 subjects native from differ-
ent Italian regions. Building on the results from previous
studies, we selected individuals potentially representative
of the two genetically homogeneous population clusters
(i.e., the northern and southern ones, respectively referred
to as N_ITA and S_ITA) presenting the most distinct an-
cestry proportions and lying at the opposite ends of the
cline of genetic variation observable along the peninsula
[16]. This enabled us to infer dissimilar relationships of
these main Italian groups with a large panel of modern
and ancient Euro-Mediterranean populations providing
novel evidence for the demographic processes having pre-
dominately left indelible traces in their genomes. More-
over, this approach disclosed new knowledge on the
adaptive evolution of the ancestors of present-day Italians,
by paving the way to the identification of previously un-
detected events of positive and balancing selection having
mediated their biological adaptation to locally diverging
ecological, environmental, and cultural contexts.

Results
After the application of stringent quality control (QC)
procedures (see the “Methods” section), we assembled a
high-quality dataset including 38 Italian samples charac-
terized for more than 17 million single nucleotide vari-
ants (SNVs). To confirm their self-reported ancestry
from a genetic perspective, we performed a Procrustes
analysis on a dataset including also genome-wide geno-
type data already available for 737 Italian individuals
with known micro-geographical origins [16]. As
expected, the sequenced samples clustered within the
variability ranges of the previously identified N_ITA and
S_ITA Italian population clusters [16], occupying
diametrically opposed positions along the well-known
north-south cline of Italian variation (Additional file 1:
Figure S1) [16, 39–76].

Setting Italians into the Euro-Mediterranean genomic
landscape
To further test the membership of the sequenced indi-
viduals to distinguishable Italian population clusters and
to frame them within the broad genomic landscape of
populations from Continental and Southern Europe,
Near East, and North Africa, we used literature WGS
data [77] to create a “high-density Euro-Mediterranean
dataset” including around seven million SNVs and we
submitted it to the fineSTRUCTURE analysis.
By considering only clusters splitting with a posterior

probability above 80% (see the “Methods” section), Ital-
ian samples turned out to be located on two consider-
ably divergent branches (Fst = 0.0021; p value < 10−6) of
the dendrogram drawn from the obtained co-ancestry
matrix (Fig. 1a). In detail, S_ITA subjects clustered apart
from N_ITA ones and close to individuals from Crete,
branching out from the node originating also the North-
ern Caucasian (i.e., North Ossetians, Chechens, Adygei,
and Lezgins) and Southern Caucasian (i.e., Georgians,
Abkhasians, Armenians, and Turks) clusters. Moreover,
all of these groups further diverged from the node basal
to Near Eastern (i.e., Bedouins, Palestinians, and Jorda-
nians) and North African (i.e., Mozabites and Saharawi)
populations. N_ITA samples instead formed a cluster
that included also Iberian, Bulgarian, and Albanian indi-
viduals, branching out from the node leading also to Sar-
dinians and considerably diverging from the Basques, as
well as from the remaining European populations. These
latter groups formed two distinct clusters: one made up
of Central and Western Europeans (i.e., Hungarians,
Czechs, Polish, French, Orcadians, and British people)
and another one including populations from Eastern and
Northern Europe (i.e., Russians, Estonians, Finnish, Nor-
wegians, and Icelandic people) (Fig. 1a).

Depicting patterns of recent admixture between Italian
and Euro-Mediterranean populations
Sharing of chromosome chunks among individuals be-
longing to the identified population clusters was investi-
gated with CHROMOPAINTER. Accordingly, both Italian
groups were found to share similar proportions of DNA
segments with Sardinians (N_ITA, 48%; S_ITA, 43%) and
Northern Caucasian populations (~ 10%), which have
been previously supposed to be suggestive respectively of
Early Neolithic and Bronze Age contributions to the an-
cestral pan-European genetic background [7, 8], while pre-
senting considerably different painting profiles for the rest
of their genomes (Fig. 1b). In particular, S_ITA showed
substantial sharing (30%) with Near Eastern populations,
while this signature is completely absent in N_ITA. More-
over, S_ITA presented 17% of chromosome chunks in
common with Southern Caucasian groups in contrast to
the 9% observed for N_ITA, although this pattern might
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be influenced by the fact that populations from Southern
Caucasus are genetically close to those from the Near East
[77]. N_ITA finally turned out to share DNA segments
also with Eastern and Northern European groups (19%)
and the Basques (12%), differently from what was ob-
served for S_ITA (Fig. 1b).
CHROMOPAINTER painting profiles were then used

to infer admixture proportions of N_ITA and S_ITA with
respect to the other Euro-Mediterranean clusters by calcu-
lating co-ancestry curves with the GLOBETROTTER
method (see the “Methods” section). Admixture events in-
volving a Northern European (and Basque in the case of
N_ITA) gene pool and a Near Eastern/North African
source of gene flow were found to have affected both Ital-
ian population clusters (Fig. 1c, Additional file 1: Figure
S2). Nevertheless, N_ITA and S_ITA showed inverse pro-
portions of these admixture sources, with respectively 59%

and 32% of Northern European (and Basque in the case of
N_ITA) contribution, coupled with 41% and 68% of Near
Eastern and North African one (Fig. 1c, Additional file 1:
Table S1). By considering 95% confidence intervals of the
estimated admixture dates, these events of gene flow ap-
peared to be temporally overlapping and overall ranged
from 1.2 to 2 thousand years ago (kya), with those involv-
ing S_ITA being slightly shifted towards more recent
times (Additional file 1: Table S2). In particular, in agree-
ment with the results from previous studies [15, 16], we
inferred gene flow from continental Europe to N_ITA as
occurred especially at the end of the Roman Empire and
during the Middle Ages, while Middle Eastern and North
African contributions to the Italian gene pool were found
to be concomitant with the Byzantine and Arab expan-
sions in Central and Southern Italy. Nevertheless, rather
than contributing novel ancestry factions, these admixture

Fig. 1 Clustering analysis and inference of admixture proportions performed on the “high-density Euro-Mediterranean dataset”. a fineSTRUCTURE
hierarchical clustering reporting population clusters defined by collapsing branches of the obtained dendrogram that split with a posterior
probability lower than 80%. N_ITA formed a cluster with Iberians and continental Balkan individuals from Bulgaria and Albania (C_Balkans). b
Percentages of chromosome chunks shared between Italian and Euro-Mediterranean population clusters obtained with CHROMOPAINTER.
Painting profiles showed in the pie charts are color-coded according to the palette used for fineSTRUCTURE clusters. c Ancestry proportions of
the Italian population clusters inferred with the GLOBETROTTER pipeline from CHROMOPAINTER outputs. For each cluster, the bar on the left
represents the major source of admixture, while the bar on the right represents the minor one. For details on the different subcomponents of
these admixture sources, see Additional file 1: Table S1. To infer potentially different mixing proportions of N_ITA e S_ITA groups with respect to
the other identified population clusters, all Euro-Mediterranean individuals were considered as recipients, while the two Italian groups were
excluded from the donors. Admixture proportions showed in the bar charts are color-coded according to the palette used for the
fineSTRUCTURE clusters
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events may have played a role in reinforcing the differen-
tial distribution of ancient genetic components already
present in the Italian groups, thus additionally shaping
their differences in ancestry profiles.

Exploring the ancient genetic legacy of Italian population
clusters
To expand the inference of genetic ancestry shared be-
tween Italian population clusters and other Euro-
Mediterranean groups far beyond the relatively recent
timescale investigated by GLOBETROTTER analysis, we
took advantage of the genome-wide data for 559 ancient
DNA (aDNA) samples by assembling a “modern +
aDNA dataset” (see the “Methods” section).
Principal component analysis (PCA) projecting ancient

variation onto the genetic space defined by modern popu-
lations suggested appreciably different ancestral contribu-
tions to the N_ITA and S_ITA groups (Fig. 2a,
Additional file 1: Figure S3). In particular, N_ITA individ-
uals, which clustered close to people from the Iberian Pen-
insula (IBS) within the bulk of modern southwestern
Europeans, showed a particular affinity with Central Euro-
pean, Hungarian, and British Neolithic samples; Copper
Age subjects from Hungary and the Balkans; a Corded
Ware Czech remain; and Iberian and Hungarian individ-
uals belonging to the Bell Baker culture. Moreover, the
centroid of the N_ITA cluster lay in proximity to the Cop-
per Age Northern Italian Remedello sample. Conversely,
S_ITA subjects showed tight relatedness with modern
southeastern European populations (e.g., Cretans and
Greeks), along with Neolithic, Copper Age, and Bronze
Age Anatolian samples; Minoan remains from Crete, Neo-
lithic, and Bronze Age Levantine individuals; and Chalco-
lithic Iranians (Fig. 2a, Additional file 1: Figure S3).
Ancient samples were then grouped according to the

patterns of genetic clustering pointed out by PCA, as well
as by considering their archeological/temporal frame-
works, and used to formally measure the shared genetic
drift between them and present-day Italian population
clusters by computing outgroup f3 statistics. Moreover,
the obtained outgroup f3 scores were contrasted between
N_ITA and S_ITA to search for potentially relevant differ-
ences in their ancestral genetic contributions (see the
“Methods” section). Accordingly, the bulk of the calcu-
lated scores was found to be distributed along the diagonal
line of an outgroup f3 biplot indicating overall overlapping
of N_ITA and S_ITA genetic relationships with aDNA
samples (Additional file 1: Figure S4). However, some re-
markable differences (i.e., residuals) between N_ITA and
S_ITA outgroup f3 statistics were observed as concerns
specific ancient population groups (Fig. 2b). In particular,
negative residuals suggesting closer affinity of aDNA sam-
ples to the S_ITA cluster were found to exceed one stand-
ard deviation (SD) from the mean of the obtained

distribution when hunter-gatherers from the Caucasus,
Neolithic, and Chalcolithic/Bronze-Age samples from
Anatolia, Near East, Greece, and the Balkans were consid-
ered. Negative values even more outstanding (i.e., exceed-
ing two SDs) were then observed in relation to the Levant
and Iranian Neolithic samples. Conversely, positive resid-
uals suggesting closer affinity of ancient populations to
the N_ITA cluster and exceeding one SD were found by
taking into account especially Iberian individuals belong-
ing to the Bell Baker culture, the Copper Age Northern
Italian Remedello specimen, and hunter-gatherer and
Bronze Age samples from Central and Eastern Europe.
Moreover, the most outstanding positive values (i.e., ex-
ceeding two SDs) were obtained when modern Italians
were tested against hunter-gatherer groups from the Con-
tinental Europe and the Villabruna clusters (Fig. 2a).

Inferring Ne histories and divergence time between Italian
population clusters
To narrow down the time frame of the main population
dynamics having contributed to the observed differenti-
ation between N_ITA and S_ITA clusters, their popula-
tion size histories and genetic divergence were explicitly
modeled by means of the sequential Markov coalescent
+ plenty of unlabeled samples (SMC++) method.
Changes in N_ITA and S_ITA effective population sizes
(Ne) were thus inferred and compared to those observed
for a population of Northern and Western European an-
cestry (CEU). Accordingly, ancestors of all groups were
found to have experienced a steep decline in Ne since
approximately 130 kya and until 70–50 kya, which
plausibly reflects the strong bottleneck suffered by an-
cestral non-African populations during the Out-of-Africa
migrations of modern humans. The demographic expan-
sion that characterized all European groups since around
30 kya was then observed, with the ancestors of Italians
having maintained consistently higher Ne with respect to
those of CEU (Fig. 3) in agreement with what was previ-
ously observed when comparing the Southern and Con-
tinental European populations [78]. Moreover, when the
genetic distinction between Italian clusters was modeled
as a function of time according to an idealized two-
population split scenario with no post-divergence gene
flow, appreciable differentiation between N_ITA and S_
ITA was found to emerge since around 9 kya (Fig. 3).

Disentangling the action of positive and balancing
selection on the Italian genomes
Genomic signatures ascribable to the action of positive and
balancing selection on N_ITA and S_ITA ancestors were
detected by computing the derived intra-allelic nucleotide
diversity (DIND) and the number of segregating sites by
length (nSL) scores, as well as by applying the BALancing
selection LikElihood Test (BALLET). Genome-wide
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distributions obtained for these statistics were then used as
input for gene network analyses aimed at testing the adap-
tive evolution of the Italian population groups under a
model as close as possible to that of polygenic adaptation
(see the “Methods” section). To focus on local adaptations

that specifically characterize the ancestors of present-day
Italians, we replicated these analyses on WGS data for the
IBS and CEU populations, and we filtered out signatures of
natural selection shared between them and the Italian clus-
ters. In fact, although we cannot rule out the possibility that

Fig. 2 PCA and outgroup f3 analysis performed on the “modern + aDNA dataset”. a PCA projecting variation of 559 ancient samples onto the
genetic space defined by 239 individuals belonging to 40 modern Euro-Mediterranean populations. Modern samples are reported as gray dots,
with the exception of centroids calculated for the N_ITA and S_ITA clusters (black dot and black triangle, respectively), while the main ancient
groups are color-coded according to their temporal/cultural framework. For details on the populations of origin of ancient samples, see the
legends in Additional file 1: Figure S3. b Distribution of outgroup f3 residuals between N_ITA and S_ITA clusters. Residuals were calculated as the
difference in outgroup f3 scores computed in the form f3 (Han Chinese (CHB); X Italian population cluster, X ancient population cluster) to test in
turn the N_ITA and S_ITA clusters against each ancient population group (reported on the x-axis). Residuals are reported from the most negative
(i.e., suggesting closer affinity of ancient populations to S_ITA) to the most positive one (i.e., suggesting closer affinity of ancient populations to
N_ITA); those exceeding one or two standard deviations (SDs) (indicated by dashed lines) from the mean of the obtained distribution are color-
coded in white and black squares for N_ITA and in white and black triangles for S_ITA, respectively
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gene flow from other European and Mediterranean human
groups has contributed to the evolution of these biological
adaptations, this filtering approach enabled us to shortlist
those selective signatures that are more plausibly ascribable
to a combination of nature, duration, and intensity of the se-
lective pressures that was peculiar of the Italian Peninsula.
According to the DIND test, RIMS2 and PCLO genes

involved in insulin exocytosis (Additional file 1: Supple-
mentary Results) were found to be subjected to positive
selection in both N_ITA and S_ITA clusters (Add-
itional file 1: Figure S5, Table S3). A gene network belong-
ing to the Mucin type O-glycan biosynthesis pathway and
formed by loci encoding for mucins, a family of glycosyl-
ated proteins that constitute the main protective barrier
on mucosal surfaces and cellular membranes by prevent-
ing pathogens binding by steric hindrance [61], was in-
stead supposed to have adaptively evolved only in S_ITA
(Additional file 1: Figure S6, Table S3, Supplementary
Results).
According to the nSL test, a gene network ascribable

to the insulin secretion pathway, but made up of differ-
ent loci with respect to those pointed out by DIND
scores, characterized the N_ITA cluster (Additional file 1:
Figure S5, Table S4). Among these genes, ADCY2,

ADCY3, ADCY9, and GNAS are known to play a role in
the regulation of lipolysis at the level of the adipose tis-
sue, thermogenesis, and glucagon signaling (Add-
itional file 1: Supplementary Results), with especially
adenylate cyclase (ADCY) genes showing the largest
number of connections in the network and participating
to the longevity regulating pathway as well. Moreover,
variants at two loci belonging to such a network and en-
coding for components of calcium voltage-gated chan-
nels (i.e., CACNA1C and CACNA1D) were previously
reported to be involved in the development of type II
diabetes (T2D) (Additional file 1: Supplementary Re-
sults). nSL results obtained for S_ITA corroborated
those based on the DIND statistics as regards a gene
network belonging to the mucin type O-glycan biosyn-
thesis pathway (Additional file 1: Figure S6, Table S4)
and further indicated genes from the basal cell car-
cinoma pathway as subjected to positive selection
(Additional file 1: Figure S7, Table S4). Interestingly,
most of these latter loci encode for frizzled G
protein-coupled receptors (FZD) and Wnt glycopro-
teins that play a role in melanogenesis and participate
in the mTOR signaling pathway as well (Add-
itional file 1: Supplementary Results).

Fig. 3 Coalescent-based inference of population size histories and genetic split time by means of the SMC++ method. Population size trajectories
of N_ITA and S_ITA groups were estimated by setting 150 generations as the most recent time point for population size inference and 10 spline
knots to anchor the size history and were compared to that inferred for CEU. The shaded boxes indicate Upper Paleolithic, Mesolithic, and
Neolithic periods
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Events of balancing selection at two different gene net-
works were inferred for both the Italian population clus-
ters (Additional file 1: Table S5). In detail, a network
was found to be composed by several ADCY genes,
some of which (i.e., ADCY2 and ADCY9) were the same
putatively subjected also to positive selection in N_ITA,
as well as by mitogen-activated protein kinase (MAPK)
genes (i.e., MAPK1/ERK, MAPK8/JNK, and MAPK11/
P38). These loci are known to play a role especially in
the longevity regulating and FoxO signaling pathways
(Additional file 1: Supplementary Results). The second
network was instead made up of glycerol phosphate
acyltransferase (GPAT/AGPAT/MBOAT), diacylglycerol
kinase (DGKA), and lipid phosphatase (LPIN/PLPP)
genes regulating the metabolism of glycerolipids, along
with phospholipase (e.g., PLA2G/PLB) loci involved es-
pecially in the arachidonic acid metabolism (Add-
itional file 1: Supplementary Results). Two gene
networks were found to characterize exclusively the N_
ITA group, being composed of aldehyde dehydrogenase
(ALDH) genes important for glycolysis/gluconeogenesis
and of protein kinase C (PRKC) and phospholipase
(PLCG/PLCB) loci participating to the AGE-RAGE sig-
naling in diabetic complications, glucagon signaling, and
insulin resistance pathways (Additional file 1: Table S5).
Finally, a further network turned out to be subjected to
balancing selection in the S_ITA cluster, including
PLA2G genes involved in the metabolism of arachidonic
acid and MAPK1 and GRM1 loci that play a role in the
FoxO signaling pathway (Additional file 1: Table S5,
Supplementary Results).

Discussion
The clinal distribution of human genetic variation across
Europe and the subtle divergence between groups from
northern and southern regions of the continent are
uniquely recapitulated at a micro-geographic scale by
patterns of population structure observable along the
Italian Peninsula [11–13, 16, 21]. To date, remarkable ef-
forts have elucidated important aspects of the demog-
raphy of the ancestors of modern Italians, which have
contributed to their heterogeneous genetic background
[14–19, 21, 22]. However, constraints imposed by the
use of uniparental markers or of common autosomal
SNPs affected the inferences drawn by these researches.
Moreover, just a few studies attempted to complete the
picture of the Italian genetic history with the investiga-
tion of local adaptations evolved by ancestral popula-
tions distributed along the peninsula in response to a
wide range of environmental conditions [16, 23]. Add-
itionally, none of them relied on data useful to test a
model of polygenic adaptation mediated by natural se-
lection slightly affecting many genes involved in the
same biological function, but individually contributing a

limited phenotypic effect, which has recently emerged as
one of the predominant mechanisms of adaptive evolu-
tion of the human genome [35, 38].
In the attempt to overcome these issues, we aimed at

depicting the demographic and adaptive history of the
ancestors of present-day Italians by taking advantage of
high-coverage WGS data. For this purpose, we first com-
pared the examined genomes with genome-wide geno-
types already available for the overall Italian population
via a Procrustes analysis, demonstrating that they are
representative of the two genetically homogeneous clus-
ters (i.e., N_ITA and S_ITA) corresponding to the edges
of the cline of Italian variation (Additional file 1: Figure
S1). Moreover, fineSTRUCTURE clustering pointed to
an appreciable divergence of these Italian groups
(Fig. 1a), which is further supported by a low but highly
significant genome-wide estimate of genetic differenti-
ation (Fst = 0.0021; p value < 10−6). Previous studies have
proven that, with the exception of Sardinians, N_ITA
and S_ITA clusters encompass the most distinct ances-
try components detectable at a considerable frequency
in the Italian population and that, conversely, people
from Central Italy present variable degree of admixture
between them, but no additional private ancestry frac-
tions [13, 15–17]. Therefore, the assembled WGS data-
set enabled us to draw demographic and adaptive
inferences according to a reliable approximation of the
full spectrum of genetic components observable in the
entire Italian gene pool.

Late Glacial, Neolithic, and Bronze Age demographic
processes left indelible signatures in the Italian genomes
Our fineSTRUCTURE analysis further suggested that di-
vergence between Italian clusters was reflected by a wide
genetic Mediterranean “continuum” involving S_ITA
and populations from Crete and the Caucasus as op-
posed to the affinity of N_ITA with groups from Contin-
ental Balkans (e.g., Bulgaria and Albania) (Fig. 1a). As
for S_ITA, this peculiar pattern was recently proposed
to be ascribable to Neolithic and Bronze Age contribu-
tions to the local gene pool originating from the Near
East and the Caucasus. In particular, the Caucasus was
identified as the potential source of a Bronze Age popu-
lation movement that impacted Southern Italy approxi-
mately at the same time but independently from the
well-known steppe-related migrations that occurred in
Continental Europe. Clear marks of the latter demo-
graphic process were instead observed in Northern Italy,
as well as in Central and Northern Balkans [17]. The re-
sults from the analysis of residuals calculated by con-
trasting N_ITA and S_ITA outgroup f3 statistics and
using a large panel of aDNA samples are consistent with
the hypothesis mentioned above. In fact, increased
shared genetic ancestry with Chalcolithic/Bronze Age
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and, especially, Neolithic remains from Anatolia,
Armenia, Near East, and Greece was inferred for S_ITA
with respect to N_ITA, with the largest residuals point-
ing to the relationships of S_ITA with populations from
Iran and the Levant dating back to the Neolithic (Fig. 2b).
These findings confirm the early positioning of Southern
Italy at one of the westernmost edges of the extensive
Mediterranean corridor that mediated the diffusion of
farming from Southeastern Europe [5, 28, 79] and sug-
gested Neolithic processes having left some of the most
substantial traces (e.g., in terms of Anatolian-Neolithic-
related and Caucasus hunter-gatherer ancestries) in the
genetic background of S_ITA people. Moreover, they
suggested that subsequent Chalcolithic/Bronze Age
population movements having influenced the S_ITA
gene pool have plausibly originated from Southern Cau-
casus and Anatolia and reached the Italian Peninsula
through a Mediterranean route [7]. In addition to gene
flow that occurred during historic times along the same
path (Fig. 1c, Additional file 1: Tables S1-S2), this an-
cient connection contributes to explain also the patterns
of haplotype sharing with present-day populations from
the Near East and Southern Caucasus that were ob-
served predominantly for S_ITA (Fig. 1b).
On the contrary, a more substantial ancestry shared by

N_ITA with Western European remains dated to the
Copper Age or associated with the Bell Baker complex
was observed along with their increased affinity to the
Central and Eastern European Bronze Age samples.
Again, this is concordant with N_ITA chromosome
painting profiles and ancestry proportions shared with
modern groups such as the Basques and Eastern/North-
ern Europeans (Fig. 1b, c; Additional file 1: Table S1).
Interestingly, signatures ascribable to relationships with
considerably more ancient groups, including Eastern,
Western, and Scandinavian hunter-gatherers and sam-
ples belonging to the Late Glacial “El Miron Cluster”
also emerged, with the largest outgroup f3 residuals be-
ing associated with hunter-gatherer specimens from the
Balkans, Latvia, and Switzerland, as well as with the
post-Ice Age “Villabruna cluster” (Fig. 2a). Contrarily to
what is supposed for Sardinians [27], we speculate that
this pattern is only partially ascribable to a direct link of
present-day N_ITA with local Upper Paleolithic groups.
Instead, this is in line with the hypothesis that popula-
tion movements that involved the Italian Peninsula dur-
ing and after the Neolithic have replaced a great part of
local Paleolithic genetic backgrounds [13, 16, 17]. Ac-
cordingly, the observed affinity with hunter-gatherer
samples might be likely due to the resurgence of genetic
components proper of the early European founder popu-
lation because of demographic processes that occurred
during the Late Glacial and, particularly, the Bronze
Age. This is suggested by N_ITA affinity with “El Miron

Cluster,” which is dated to around 19–14 kya and was
found to attest a post-Ice Age re-expansion from south-
western European refugia of an ancestry fraction that
was widespread all over Europe between 34 and 26 kya
[4]. The close relationship with the “Villabruna Cluster”
might instead reflect the impact that the diffusion of the
Epigravettian culture exerted on the ancestral N_ITA
gene pool since the end of the LGM [4]. Finally, groups
migrated from the Eurasian Steppe during the Early
Bronze Age, such as Yamnaya pastoralists, have been
previously demonstrated to present substantial pre-
Neolithic ancestry fractions in addition to their peculiar
steppe-related genetic component [2, 3, 80] Conse-
quently, these population movements are supposed to
have contributed to raise again the Eastern hunter-
gatherer ancestry in Western Europeans since around
4.5 kya, as testified by several remains belonging to the
Bell Baker complex and including the Iberian ones that
showed increased shared genetic drift with N_ITA [8].
Overall, the distinct ancestry composition described

for N_ITA and S_ITA clusters fits well also with the
demographic scenario depicted by modeling their an-
cient and recent population history with the coalescent-
based SMC++ method (Fig. 3). The seemingly higher Ne

inferred for S_ITA with respect to N_ITA until the be-
ginning of the Late Glacial might be compatible with the
hypothesis of a refugee role played by Southern Italy
during the LGM (see also the paragraph below about
climate-mediated adaptations) [14, 22, 28]. However, it
is not possible to evaluate the actual statistical signifi-
cance of this subtle Ne difference, at least as concerns
the period that predates the inferred population split
time. Moreover, this pattern might be also ascribable to
the more substantial level of gene flow from diverse pop-
ulations experienced by S_ITA with respect to N_ITA,
as proposed to explain the differences in Ne observed be-
tween Southern and Continental European groups [78].
More interestingly, appreciable genetic differentiation
between N_ITA and S_ITA can be approximately dated
back to just after the end of the LGM (Fig. 3), if we con-
sider that the obtained population split time (i.e., 9 kya)
represents a rough underestimate due to a clear violation
of the assumption of negligible post-divergence gene
flow between clusters made by the SMC++ model. This
is thus in line with a scenario assuming that the Late
Glacial demographic processes described above have
represented the first step in the cascade of events that
differentially shaped the gene pool of present-day N_
ITA and S_ITA groups.

Climate-mediated adaptive evolution at insulin-related
genes especially in Northern Italy
Both selection scans performed to test for the occur-
rence of positive and balancing selection suggested a
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complex pattern of adaptive evolution at insulin-related
genes in the Italian people.
In detail, selective events able to modulate insulin exo-

cytosis from pancreatic beta cells were supposed to have
occurred in the common ancestors of N_ITA and S_ITA
clusters (Additional file 1: Figure S5, Table S3, Supple-
mentary Results). Events of positive selection presum-
ably more recent were instead found to characterize
exclusively people from N_ITA, being distributed among
ten genes that play a role at different levels of the signal-
ing cascade leading to insulin secretion and that regulate
key processes contributing to glucose homeostasis (Add-
itional file 1: Figure S5, Table S4, Supplementary Re-
sults). Interestingly, the most pervasive signature of
selection was observed at ADCY genes (especially
ADCY3), which are fundamental for controlling thermo-
genesis [45] and adiposity [46, 47] and have been proven
to modulate susceptibility to T2D and obesity (Add-
itional file 1: Supplementary Results). In line with these
findings, analyses testing for balancing selection pointed
to adaptive events specific of the N_ITA cluster and me-
diated by ALDH genes involved in glycolysis and gluco-
neogenesis or by PRKC and PLCG/PLCB loci playing a
role in pathological mechanisms underlying insulin re-
sistance and the onset of diabetic complications (Add-
itional file 1: Table S5).
According to this body of evidence, we can speculate

that climate- and tightly linked dietary-related selective
pressures have presumably played a role in determining
the described selection signatures (Fig. 4). The few ones
shared between N_ITA and S_ITA clusters might indeed
represent a legacy ascribable to the retreating of human
groups distributed along the peninsula towards Central/
Southern Italian refuge areas during the LGM [14, 22,
28]. There, northern and southern ancestral populations
likely admixed and lived in forest-steppe habitats for
around 10,000 years. This period was long enough to
have possibly triggered optimization of energy metabol-
ism in response to a cold environment in which animal-
based high-energy/high-fat diets represented the main
nutritional resource, as testified by isotope analyses on
archeological records ascribable to the Gravettian and
Epigravettian cultures [81]. This hypothesis is in agree-
ment with evidence pointing to most of the adaptive
events inferred so far for populations of Western Euro-
pean ancestry being dated to the LGM and correlating
with environmental variables that suggest climate cool-
ing and short-term temperature instability as some of
the main selective pressures [82, 83].
With progressive climate warming during the Late

Glacial, some groups moved back from refuge areas to
repopulate the Northern Italian regions and, differently
from populations expanding southwards who soon expe-
rienced again a Mediterranean climate, they continued

to be subjected to selective pressures similar, although
less extreme, to those acting during the LGM. For sev-
eral other millennia, these people had to cope with a
temperate climate characterized by cold winter seasons
and have been more affected than Southern Italian
groups by the climate changes that occurred in Contin-
ental Europe since the Bronze Age until recent historical
times [84–86]. Although we cannot rule out the possibil-
ity that recent and differential gene flow from popula-
tions exposed to diverse environmental conditions
contributed to exacerbate the differentiation of selection
signatures observed between N_ITA and S_ITA groups,
the climate picture described above has the potential to
have represented a non-negligible factor in the evolution
of more pervasive selective events by the ancestors of N_
ITA, which extend beyond the simple regulation of insu-
lin secretion to biological pathways able to modulate cell
sensitivity to it, along with the metabolism of the adi-
pose tissue and the expression of genes promoting
thermogenesis (Fig. 4). This adaptive scenario fits well
also with the picture of early differentiation between N_
ITA and S_ITA clusters revealed by the SMC++ analysis,
which become appreciable just since a few thousand
years after the end of the LGM (Fig. 3). Interestingly,
having targeted genes whose dysfunction is known to
play a role in the development of T2D and/or obesity,
most of the inferred N_ITA-specific signatures of posi-
tive and balancing selection seem to be ascribable to
evolutionary events with potential biomedical relevance.
For instance, adaptive evolution at these loci might have
contributed to make people from Northern Italy less
prone to develop such diseases even in the challenging
nutritional environment imposed by modern lifestyles
(Fig. 4). This is in line with the values of T2D incidence
almost reduced by half in N_ITA with respect to S_ITA
[87] and may further support recent attention drawn by
our best candidate gene (i.e., ADCY3) as a promising tar-
get for the development of anti-obesity drugs [88].

Pathogens and solar radiation may have triggered
adaptations peculiar to Southern Italy
When considering adaptive events specific to S_ITA, genes
encoding for mucins that prevent pathogens binding at the
level of mucosal surfaces and loci participating in melano-
genesis emerged as putative targets of positive selection
(Fig. 4, Additional file 1: Figure S6-S7, Tables S3-S4).
Among mucin genes, C1GALT1 represented the central

node of the two identified gene networks (Additional file 1:
Supplementary Results), and several genome-wide associ-
ation studies previously reported a correlation of some of
its variants to immunoglobulin-A nephropathy (IgAN),
which is the most common human kidney inflammation
[57]. Interestingly, epidemiologic data highlighted a con-
siderably higher IgAN prevalence in Northern Italian
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regions than in Southern Italy [58]. According to this pic-
ture, and because several microorganisms are known to
have evolved chemical strategies aimed at enzymatically
inactivating mucins to elude mucosal/cellular barriers
[57], we can hypothesize that some adaptive events that
possibly occurred in response to these pathogens may
have contributed to reduced S_ITA susceptibility to IgAN
(Fig. 4). Among microorganisms able to inactivate mucins,
Pseudomonas aeruginosa, the parasitic amoebozoan Ent-
amoeba histolytica, and the proteobacterium Burkholderia
cepacia present a geographical distribution that correlates
negatively to that of IgAN and positively to environmental
temperature (Additional file 1: Supplementary Results).
Therefore, we can speculate that infections by these path-
ogens or by closely related species might have been more
frequent in the past in Southern Italian regions than in
northern ones, having potentially represented selective
pressures able to trigger adaptive evolution of mucin
genes in the ancestors of S_ITA.
Environmental conditions characterized by a mean value

of annual solar radiation nearly double with respect to
Northern Italy [89] might have played a role in the evolu-
tion of S_ITA-specific selection signatures at FZD/Wnt
genes that are involved in melanogenesis (Fig. 4). In fact,
being responsible for basal and ultraviolet (UV)-induced

melanin production, melanocytes expressing these genes
represent a frontline defense against harmful UV-B radi-
ation. FZD genes found to have adaptively evolved in S_
ITA act as receptors of Wnt protein ligands that showed
comparable selection signatures and regulate the expres-
sion of the microphthalmia-associated transcription factor
(MITF) [90]. By controlling pigmentation genes (e.g., TYR,
TYRP1, and TYRP2), MITF is the main modulator of me-
lanogenesis in response to environmental stimuli and was
also proposed to exert an oncogenic role in several skin
cancers [91]. This might explain the involvement of the
identified FZD/Wnt genes under selection in the basal cell
carcinoma pathway. Overall, these selective events could
have mediated adaptations of S_ITA ancestors aimed at
preventing skin micronutrient photodegradation and/or
impairment of sweat gland-mediated thermoregulation
due to UV damage [92]. Because substantial UV exposure
represents the main risk factor for developing basal cell
carcinoma and other types of skin malignancies, these
adaptive mechanisms might have also indirectly contrib-
uted to reduce the predisposition of modern S_ITA to
such diseases (Fig. 4). This hypothesis seems to be in
agreement with the almost halved incidence of melanomas
reported for Southern Italian regions with respect to
northern ones [93].

Fig. 4 Adaptive events evolved by ancestors of N_ITA/S_ITA clusters and their health implications for present-day Italians. The putative selective
pressures having plausibly prompted local adaptations are displayed on the left, while biological processes subjected to natural selection are
reported on the map along with their impact on present-day disease susceptibility. Distribution of biological adaptations having the potential to
modulate the longevity phenotype (e.g., involving the mTOR signaling, arachidonic acid metabolism, and FoxO signaling pathways) in the overall
Italian population, but especially in people from Southern Italy, is represented by the arrow on the right. Putative selective pressures, biological
processes, and distribution of adaptations potentially modulating longevity are color-coded as follows: N_ITA, blue; S_ITA, red
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Pleiotropic adaptive events potentially modulating
longevity in the Italian population
Several selection signatures observed for the overall Ital-
ian population, but resulting more pronounced in S_
ITA, pointed to adaptive events mediated by biological
processes that are known to play a role also in the
achievement of the longevity phenotype (Fig. 4, Add-
itional file 1: Table S5). Interestingly, this is in line with
recent findings showing that Italian centenarians genet-
ically cluster with people from Central/Southern Italy re-
gardless of their micro-geographic origins [76]. Among
the most relevant signatures, we emphasize S_ITA-spe-
cific positive selection at FZD/Wnt genes that take part
in the mTOR signaling pathway as well. Overall, variants
at loci belonging to this pathway have been demon-
strated to be able to delay age-related diseases and/or to
directly influence longevity even in the human species
[67] (Additional file 1: Supplementary Results).
Identification of footprints of balancing selection at

genes involved in the metabolism of arachidonic acid
complements previous findings obtained for the general
Italian population and for centenarians from the penin-
sula [16, 76] (Additional file 1: Supplementary Results).
The emerging picture suggests that these adaptive events
may have evolved in response to specific pathogens and
secondarily maintained in the Italian gene pool alleles
useful to contrast the side effects of modern pro-
inflammatory diets, thus contributing to longevity [76].
Balancing selection was found to have targeted also sev-
eral genes involved in the FoxO signaling, which pro-
vides monitoring of stress stimuli, such as dietary
restriction, absence of insulin or insulin-like growth fac-
tors, and uptake of intracellular pathogens, being associ-
ated with exceptional longevity as well [71]
(Additional file 1: Supplementary Results). Accordingly,
both nutritional and pathogen-related selective pressures
might have triggered such adaptive events, which have
been observed so far only at the single-gene level for
FOXO3 [94].

Conclusions
By taking advantage from high-coverage WGS data, the
present study has had the opportunity to infer the demo-
graphic and adaptive history of the ancestors of modern
Italians with an unprecedented level of resolution. In
particular, we provided new evidence for early differenti-
ation dating back to the Late Glacial between population
clusters that represent the edges of the cline of Italian
variation, as well as for Neolithic and distinct (i.e.,
steppe-related versus Anatolian/Mediterranean) Bronze
Age demographic processes having then continued to
differentially shape the gene pool of groups distributed
along the peninsula. Moreover, we proposed climate-
related selective pressures as potential factors having

influenced adaptive evolution at insulin-related genes es-
pecially in the ancestors of Northern Italians. By regulat-
ing glucose homeostasis, adiposity, and thermogenesis in
response to high-calorie diets adopted to cope with en-
ergetically demanding environmental conditions, these
adaptive events might have also contributed to make
people from Northern Italy less prone to develop T2D
and obesity despite the challenging nutritional context
imposed by modern lifestyles. Conversely, possible adap-
tations against pathogens and modulation of melanogen-
esis in response to high UV radiation are supposed to
have played a role in reduced susceptibility of people
from Southern Italy respectively to immunoglobulin-A
nephropathy and skin cancers. Finally, multiple adaptive
processes evolved by the overall Italian population, but
having resulted more pronounced in people from the
southern regions of the peninsula, were found to have
the potential to secondarily modulate the longevity
phenotype. Therefore, by pinpointing genetic determi-
nants underlying biological adaptation of Italian popula-
tion clusters in response to locally diverging
environmental contexts, the present study succeeded in
disclosing also valuable biomedical implications of such
evolutionary events. Coupled with the identification of
the demographic processes having predominantly shaped
the present-day heterogeneous Italian genomic back-
ground, this supports once again the usefulness of an
evolutionary approach in the dissection of the deep
causes of human populations’ health and disease, and
highlighted important dynamics that contributed to the
formation of the Continental and Southern European
genomic landscapes.

Methods
Sequenced samples and data curation
A total of 38 unrelated individuals, three generations na-
tive (i.e., with all grandparents originating from the same
geographical area) from different Italian regions (i.e.,
Piedmont, Lombardy, Veneto, Emilia-Romagna, Apulia,
Calabria, Sicily), were selected among the healthy controls
sequenced for the whole genome within the framework of
a biomedical study and in order to be the representative of
the previously described Northern and Southern Italian
population clusters [16]. High-coverage (90×) WGS data
were generated by preparing sequencing libraries with the
TruSeq DNA PCR-Free Library Preparation Kit (Illumina
San Diego, CA, USA) using a 350-bp setting and following
the manufacturer’s instructions. The HiSeq X Ten Reagent
Kit v2.5 for 2 × 150 cycles and a HiSeq X Ten platform
(Illumina San Diego, CA, USA) were then used to carry
out sequencing experiments. The obtained sequence reads
were aligned against the human reference sequence hg19
(GRCh37) with the Isaac aligner (version 01.14.02.18) by
considering a minimum PHRED quality score threshold of
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20 from the 3′-end. They were then processed by means
of the Isaac Variant Caller (version 1.0.7) tool using default
parameters to call and filter high-quality genotypes accord-
ing to a framework that implements several steps, such as
noise filtration based on sequencing and alignment met-
rics, read realignment, filtration of base calls on the base of
mismatch density, heuristic adjustment of same-strand
base call quality to reflect potential error dependencies be-
tween calls, and calculation of genotype probabilities via a
Bayesian model [95]. This pipeline of analyses was chosen
because it has been demonstrated to be four to five times
faster than traditional approaches (e.g., those based on the
GATK tool) but showing comparable accuracy and sensi-
tivity [95]. The initial set of variants detected in the 38 ex-
amined individuals was further reduced to 20,075,710
SNVs by removing variants located in tandem repeats and
homopolymer regions, as well as those showing a call rate
lower than 98% [96]. A transition/transversion (Ts/Tv) ra-
tio of 2.071 was finally calculated, resulting within the 2.0–
2.1 range expected for genome-wide datasets [97] and thus
attesting the accuracy of the implemented variant calling
procedure.
The obtained genotypes were then submitted to the

following QC procedures using functions implemented
in the PLINK package. In particular, we filtered out
SNVs showing more than 5% of missing data and/or
characterized by significant deviations from the Hardy-
Weinberg equilibrium after Bonferroni correction for
multiple testing (p < 5.2 × 10−10). Moreover, we considered
only autosomal variants by removing SNVs located on sex
chromosomes and mitochondrial DNA, and we discarded
possible ambiguous SNVs (i.e., characterized by A/T or C/
G substitutions) when merging our dataset with already
published data. According to these QCs, we created a
“high-quality Italian dataset” including genotypes for 17,
495,290 SNVs from all the sequenced samples.
We next merged these WGS data with an Italian refer-

ence dataset made up of genome-wide genotypes from
737 samples with known micro-geographical origins (i.e.,
at the level of single administrative provinces) and repre-
sentative of the overall population distributed along the
Italian Peninsula [16]. This enabled us to create a “low-
density Italian dataset” including 251,648 SNVs, which
was submitted to the Procrustes analysis [98] to explore
the distribution of the sequenced N_ITA and S_ITA
population samples within the well-known north-to-
south cline of Italian genetic variation and to check for
possible mismatches between their genomic and geo-
graphic ancestry. For this purpose, the smartpca method
implemented in the EIGENSOFT package v6.0.1 [99]
was used to perform PCA, and individuals’ coordinates
for the most informative PCs were averaged within the
sampling provinces and projected from the PCA space
onto their geographic coordinates by using the R vegan

package. In order to implement PCA, the merged “low-
density Italian dataset” was further processed to pinpoint
potential genetic relatedness among subjects and to filter
for variants in high linkage disequilibrium (LD) with
each other. In more detail, identity by descent (IBD) esti-
mates were calculated for each pair of subjects as the
genome-wide proportion of shared alleles, and only indi-
viduals with an IBD kinship coefficient lower than 0.125
were considered. LD pruning was also performed by re-
moving a SNV for each pair showing r2 > 0.2 within win-
dows of 50 SNVs and advancing by five SNVs.
We also merged our “high-quality Italian dataset” with

data generated with the same Illumina sequencing tech-
nology for 69 individuals belonging to 35 European and
Mediterranean populations [77] to obtain a “high-density
Euro-Mediterranean dataset” including 6,993,871 SNVs
that was used for haplotype-based population structure
and aDNA-guided analyses. For the former purpose, the
dataset was phased to infer haplotypes with SHAPEIT2
v2.r790 [100] by using default parameters, HapMap
phase 3 recombination maps, and WGS data generated
by the 1000 Genomes Project [101] as a reference panel.
In order to perform analyses including aDNA samples,
the “high-density Euro-Mediterranean dataset” was fur-
ther pruned and merged with genome-wide genotypes
for a panel of 559 ancient samples assembled from lit-
erature [1, 3, 4, 6–8, 102]. This led to the creation of a
“modern + aDNA dataset” including 47,806 SNVs.
The “high-quality Italian dataset” was finally phased

with SHAPEIT2 v2.r790 according to the same approach
described for the “high-density Euro-Mediterranean data-
set” but using a reconstructed reference human genome
sequence as a guide for distinguishing between ancestral
and derived alleles. Ancestral/derived state of each allele
in such a reference sequence was previously assigned by
aligning it with the Ensembl Compara 6 primates EPO
genome sequences [103]. In particular, only alleles con-
served in all the compared genomes were considered as
ancestral. A “phased high-quality Italian dataset” including
13,381,038 SNVs with known ancestral/derived states was
thus obtained and used for selection scans.

Haplotype sharing clustering analyses
To formally test whether the generated WGSs were repre-
sentative of distinct genetically homogenous Italian popu-
lation clusters, we applied the haplotype-based methods
implemented in the CHROMOPAINTER/fineSTRUC-
TURE pipeline [104] to the phased “high-density Euro-
Mediterranean dataset”. CHROMOPAINTERv2 was run
to reconstruct patterns of haplotype sharing of each indi-
vidual by using all the other samples included in the data-
set as potential “donors” but excluding themselves (i.e.,
preventing self-copy). We thus estimated the mutation/
emission and recombination/switch rates using 10 steps of
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the expectation-maximization algorithm on a subset of
chromosomes {4,10,15,22}. The mean values calculated
across all autosomes/individuals and weighted by the
number of SNVs were then used to run the final CHRO-
MOPAINTER analysis on all chromosomes by using k =
100 as the number of expected haplotype chunks to define
a genomic region. The obtained matrix of counts of
shared haplotype chunks across all autosomes was then
used as input for fineSTRUCTURE version fs2.1 [104].
We ran the algorithm with 1,000,000 “burn-in” iterations
of MCMC, followed by another 1,000,000 iterations and
sampling the inferred clustering patterns every 10,000
runs. We then performed 100,000 additional hill-climbing
steps to improve posterior probability and to merge the
identified clusters in a step-wise fashion. The described
population clusters were finally defined by collapsing
branches of the obtained fineSTRUCTURE dendrogram
up to the second last splitting point to reduce the number
of small, closely related and scarcely supported clusters.
Moreover, also some clades observable at a higher level of
the fineSTRUCTURE tree, but splitting with a posterior
probability lower than 80%, were collapsed until reaching
the subsequent branching point showing a posterior prob-
ability above such a threshold.

Inferring and dating recent admixture events
The GLOBETROTTER pipeline [105] was applied to the
phased “high-density Euro-Mediterranean dataset” to
fine map and date relatively recent admixture events in-
volving the 12 Italian and Euro-Mediterranean popula-
tion clusters identified with fineSTRUCTURE.
Differently from the CHROMOPAINTER run previ-

ously described as concerns the clustering analysis, here,
the total length of haplotype chunks for each recipient
individual and copied from every other donor was
averaged over all samples belonging to a given cluster.
Moreover, to infer the potentially different mixing pro-
portions of N_ITA e S_ITA with respect to the other
population groups, we considered all the individuals as
recipients, but we excluded the two Italian clusters from
the donors. The obtained matrix was then submitted to
the GLOBETROTTER pipeline. Accordingly, we first in-
ferred N_ITA and S_ITA mixture proportions with the
nnls function, as previously described [105]. Then, we per-
formed the dating procedure by following recommenda-
tions indicated in [106] and by running computations first
with the null individual option. For this purpose, we tested
in turn each possible pair of parental groups chosen from
the 10 Euro-Mediterranean population clusters by per-
forming a first run to infer admixture proportions, dates
(assuming 29 years per generation [107]), and sources of
admixture. A second run was then performed according
to these results and by implementing 100 times bootstrap

resampling to infer confidence intervals around the ob-
tained estimates.

Exploring relationships between modern and ancient
populations
The “modern + aDNA dataset” was used to formally test
for differential genetic relationships of present-day Ital-
ian population clusters identified by the fineSTRUC-
TURE analysis with a large panel of ancient Eurasian
samples. For this purpose, PCA was first performed by
using the smartpca method implemented in the EIGEN-
SOFT package v6.0.1 [99] and by applying the lsqproject
option to overcome issues related to the potential high
rate of missing genotypes in aDNA data. Then, we com-
puted outgroup f3 statistics in the form of f3 (CHB; X
Italian population cluster, X ancient population cluster)
by using the ADMIXTOOLS qp3pop function [108] and
by grouping ancient samples according to their archeo-
logical/temporal frameworks and to the genetic cluster-
ing pointed out by PCA. We finally contrasted the two
present-day Italian population clusters according to their
levels of shared genetic drift with each ancient popula-
tion group. In particular, differences (i.e., residuals) in
their outgroup f3 scores were calculated and those ex-
ceeding ± 2 SDs from the mean of the obtained distribu-
tion were considered as significant.

Estimates of effective population sizes and split times
The SMC++ method [109] was used to explicitly model
the demographic histories of Italian population clusters
and to compare them with that of CEU by taking advan-
tage of both LD information provided by the coalescent
hidden Markov model and information derived from the
sample frequency spectrum. This enabled us to estimate
the changes in Ne over time for each group, as well as
their genetic split times. For this purpose, we set 150 gen-
erations as the most recent time point for population size
inference (T1) and 10 spline knots to anchor the size his-
tory according to ad hoc simulations of a model of popu-
lation growth for people of European ancestry [27]. The
obtained scaled estimates of Ne and split times were then
converted into real estimates by considering a mutation
rate of 1.25 × 10−8 mutations per nucleotide per gener-
ation [27] and a generation time of 29 years [107].

Detecting genomic signatures of natural selection
The “phased high-quality Italian dataset” was used to
infer adaptive evolution of the Italian population clusters
identified by the fineSTRUCTURE analysis. Two inde-
pendent and complementary statistics, such the DIND
and nSL, were computed to detect different typologies of
selective events due to positive selection. In particular,
with respect to other haplotype-based tests, the DIND
statistics provided robustness to variation in sequencing
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coverage and low sample sizes [110], while the nSL en-
abled to properly account for variation in recombination
rates and for the confounding effects due to demography
[111]. The BALLET pipeline [112] was further applied to
test for the occurrence of events of balancing selection.
For these purposes, we first filtered out SNVs showing
derived allele frequency lower than 0.2, as they were
proved to bias DIND results [113], and we calculated
DIND scores for each variant by using self-customized
Python scripts. The selscan v1.1.0b package [114] was in-
stead used to compute nSL scores for each SNV by con-
sidering windows of maximum 4500 consecutive loci. A
composite likelihood method requiring information
about an outgroup species (i.e., P. troglodytes) was then
used to calculate the probability of each nucleotide site to
be polymorphic under a model of balancing selection.
SNVs presenting only the ancestral allele (i.e., showing no
differences between the tested and outgroup species) were
removed, and the number of within-species polymor-
phisms and between-species substitutions for each site
was calculated. Such estimates, along with whole-genome
recombination maps and a coalescent time between
humans and chimpanzees of six million years ago, were
used as input for the BALLET pipeline. Finally, in order to
shortlist selection signatures specific of the Italian groups,
which are thus plausibly ascribable to a combination of
nature, duration, and intensity of selective pressures that
was peculiar of the Italian Peninsula, the analyses men-
tioned above were replicated on CEU, and IBS WGS data
generated by the 1000 Genomes Project [101] and signals
shared between Italians and the other populations of
Western European ancestry were filtered out.

Gene network analyses
Combinations of favorable variants in multiple adaptive
haplotypes at moderate frequency, rather than remark-
able increase in frequency of a single haplotype (as sup-
posed under the hard sweep model), represent the main
genomic footprint of polygenic adaptation [37, 38].
Therefore, traditional single gene-oriented selection
scans showed limited power in detecting this typology of
selective signatures, and data not affected by ascertain-
ment bias towards common SNPs are essential to detect
them. To test a model as close as possible to that of
polygenic adaptation, instead of considering SNV/gene-
level results from the abovementioned selection scans,
we used the signet algorithm implemented in the dedi-
cated R package [115] to analyze the obtained genome-
wide distributions of DIND, nSL, and BALLET scores to
identify gene networks enriched for weak but pervasive
signatures of natural selection. This approach enabled us
to explore the possibility that natural selection acted at a
functional pathway as a whole or, more likely, at circum-
scribed gene subnetworks involved in a given biological

function, rather than on single genes [38]. Information
about the gene/genes located up to 50 kb upstream and
downstream of each tested SNV was retrieved, and the
highest DIND, nSL, and BALLET scores within such a
range were considered as representatives of the gene of
interest. Functional pathways related to these input
genes were reconstructed according to the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
and used to test for significant shifts towards extreme
signet values in the distribution of scores observed
within annotated pathways as previously detailed [38].
Significant gene subnetworks (p < 0.05) were thus identi-
fied for each population cluster and according to each of
the computed selection statistics, being finally plotted
using Cytoscape v3.6.0 [116].
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