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Abstract
Background: Fanconi anemia (FA) is an inherited bone marrow failure syndrome as-
sociated with characteristic dysmorphology primarily caused by biallelic pathogenic 
germline variants in any of 22 different DNA repair genes. There are limited data on 
the specific molecular causes of FA in different ethnic groups.
Methods: We performed exome sequencing and copy number variant analyses on 
19 patients with FA from 17 families undergoing hematopoietic cell transplantation 
evaluation in Pakistan. The scientific literature was reviewed, and we curated ger-
mline variants reported in patients with FA from South Asia and the Middle East.
Results: The genetic causes of FA were identified in 14 of the 17 families: seven 
FANCA, two FANCC, one FANCF, two FANCG, and two FANCL. Homozygous and 
compound heterozygous variants were present in 12 and two families, respectively. 
Nine families carried variants previously reported as pathogenic, including two fami-
lies with the South Asian FANCL founder variant. We also identified five novel likely 
deleterious variants in FANCA, FANCF, and FANCG in affected patients.
Conclusions: Our study supports the importance of determining the genomic land-
scape of FA in diverse populations, in order to improve understanding of FA etiology 
and assist in the counseling of families.
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1 |  INTRODUCTION

Fanconi anemia (FA, MIM:227650) is a cancer- prone inher-
ited bone marrow failure syndrome associated with radial ray 
abnormalities, characteristic facies, and other medical prob-
lems (Fiesco- Roa et al., 2019; Kottemann & Smogorzewska, 
2013). Approximately 5% of patients with FA have the 
VACTERL- H phenotype (Vertebral anomalies, Anal atresia, 
Cardiac anomalies, Tracheoesophageal fistula, Esophageal 
atresia, Renal structural anomalies, Limb anomalies [pri-
marily radii and/or thumbs], and Hydrocephalus; Alter & 
Rosenberg, 2013). Additional FA phenotypic findings are 
associated with Pigmentation of the skin, small Head, small 
Eyes, central Nervous system anomalies (excluding hydro-
cephalus), Otologic anomalies, and Short stature (PHENOS; 
Alter & Giri, 2016). Patients with FA have exceedingly high 
risks of head and neck squamous cell carcinoma (HNSCC) 
and leukemia compared with the general population (Alter 
et al., 2018). FA- associated bone marrow failure (BMF) fre-
quently requires hematopoietic cell transplantation (HCT).

The laboratory diagnosis of FA is based on increased chro-
mosome breakage in lymphocytes or fibroblasts after culture 
with clastogens such as mitomycin C (MMC) or diepoxybutane 
(DEB) and can be confirmed by germline genetic testing (Fargo 
et al., 2014). The majority of individuals with FA have auto-
somal recessive inheritance of pathogenic germline variants in 
specific DNA repair genes (Fiesco- Roa et al., 2019; Knies et al., 
2017). FANCB and FANCO/RAD51C are the exceptions, inher-
ited in an X- linked and autosomal dominant pattern, respec-
tively. FANCA accounts for approximately 65% of cases, while 
FANCC and FANCG account for an additional 20% of cases 
in individuals of European ancestry (Wang & Smogorzewska, 
2015). FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, 
FANCL, and FANCM comprise the core FA complex (up-
stream) in conjunction with FANCT/UBE2T, which is respon-
sible for recognizing interstrand crosslinks and activating the 
FA DNA repair pathway through interaction with FANCD2 
and FANCI (the ID complex). The downstream pathway facili-
tates DNA repair by homologous recombination performed by 
FANCD1/BRCA2, FANCJ/BRIP1, FANCN/PALB2, FANCO/
RAD51C, FANCP/SLX4, FANCQ/ERCC4, FANCR/RAD51, 
FANCS/BRCA1, FANCU/XRCC1, FANCV/REV7, and 
FANCW/RFWD3 (Inano et al., 2017; Kitao & Takata, 2011; 
Rodriguez & D'Andrea, 2017).

There have been a limited number of reports on the genetic 
etiology of FA in populations from South Asia and the Middle 
East. Such studies have identified several novel disease- 
causing germline genetic variants, including the first reports 
of FA caused by pathogenic variants in FANCO/RAD51C or 
FANCE (Aftab et al., 2017; Aslan et al., 2015; Aymun et al., 
2017; Balta et al., 2000; Castella et al., 2011; de Winter et al., 
2000; Donovan et al., 2019; Dorsman et al., 2007; Esmail 
Nia et al., 2016; Ghazwani et al., 2016; Gille et al., 2012; 

Kalb et al., 2007; Koc et al., 1999; Levran et al., 1997; 
Moghadam et al., 2016; Salem et al., 2014; Shahid et al., 
2019; Shamseldin et al., 2012; Shukla et al., 2013; Solanki 
et al., ,2016, 2017; Tamary et al., ,2000, 2004; Vaz et al., 
2010; Vundinti, 2014; Waisfisz et al., 1999; Wegner et al., 
1996; Wijker et al., 1999; Zareifar et al., 2019) as well as 
discovery of a founder mutation in FANCL (Donovan et al., 
2019), highlighting the importance of germline genetic stud-
ies of FA in underrepresented regions. In this report, we 
evaluated the genetic causes of FA in 19 patients from 17 
unrelated families being considered for HCT in Pakistan and 
conducted a detail review of the causes of FA in South Asia 
and the Middle East.

2 |  METHODS

2.1 | Editorial policies and ethical 
compliance

This project was approved by the ethical review committee of 
the Institute of Biomedical and Genetic Engineering (IBGE, 
Islamabad, Pakistan). Written informed consent was ob-
tained from all study participants or the parent or guardian of 
participants who were under the age of 18 years old. Consent 
for the publication of identifying images or other personal or 
clinical details of participants that have the potential to com-
promise anonymity was obtained from all study participants 
or the parent or guardian of participants who were under the 
age of 18 years old.

2.2 | Study subjects

Individuals with FA and their first- degree relatives were eval-
uated by their referring physicians. Chromosome breakage 
using MMC on primary lymphocytes was performed at the 
Armed Forces Institute of Bone Marrow Transplant Center 
(ABMTC, Rawalpindi, Pakistan; Cervenka et al., 1981). All 
affected individuals had chromosome breakage results con-
sistent with FA and severe BMF necessitating evaluation for 
HCT. De- identified blood- derived DNA samples from 17 
unrelated families, including 19 individuals with FA and 33 
relatives, were sent to the National Cancer Institute's Cancer 
Genomics Research Laboratory (NCI CGR, Gaithersburg, 
MD, USA) for sequencing and genotyping; a list of all study 
participants and their disease status is in Table S1.

2.3 | Sequence analysis

Exome sequencing was performed at NCI CGR as previously 
described (Ballew et al., 2013). Variants were filtered based 
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on their presence as homozygous or biallelic in previously 
identified FA- associated genes. Data from family mem-
bers was evaluated when available. Variant annotation was 
performed using ANNOVAR (Wang et al., 2010) and the 
computational resources of the National Institutes of Health 
(NIH) High Performance Computing (HPC) Biowulf clus-
ter (http://hpc.nih.gov). Additional filters applied include a 
Genome Aggregation Database (gnomAD) minor allele fre-
quency (MAF) <1% in all populations, bioinformatic predic-
tion tools (criteria for deleterious variants: MetaSVM >0, 
REVEL ≥0.5, and CADD phred >20), and clinical signifi-
cance indicators (ClinVar and InterVar; Ioannidis et al., 2016; 
Karczewski et al., 2019; Kim et al., 2017; Kircher et al., 2014; 
Landrum et al., 2018; Li & Wang, 2017). Potential splice 
site variants were assessed using Human Splicing Finder 
(Desmet et al., 2009). We used BAM- matcher and vcftools 
to assess potential consanguinity as described (Manichaikul 
et al., 2010; Wang et al., 2016; Yang et al., 2010).

Copy number variations (CNV) were detected using 
VarSeq™ v2.1 (VS- CNV), which analyzes changes in WES 
coverage between the sample and controls (Fortier et al., 
2018), and the detected CNVs were visually evaluated using 
GenomeBrowse® (Golden Helix, Inc.; Golden Helix, 2018a, 
2018b). Homozygous or heterozygous deletions were filtered 
based on p- values (< 0.001) and annotated using ClinVar 
(Landrum et al., 2018). Z- scores and ratio values were as-
sessed when validating genotypes. Suspected CNV events 
underwent validation using targeted whole gene sequencing 
as described (Chandrasekharappa et al., 2013).

DNA from families 3- FA, 8- FA, 9- FA, 12- FA, 14- FA, and 
16- FA was also sequenced using a targeted custom capture de-
sign (Roche, Inc.) for next generation sequencing (NGS) de-
signed to include all known FA genes and FA candidate genes, 
including all intronic regions and 5 kb upstream and downstream 
of each gene, as previously described (Chandrasekharappa et al., 
2013). Sequence reads were aligned to human genome build 19 
(GRCh37) using Burrows- Wheeler Alignment tool and variants 
were called using HaplotypeCaller and the GATK best prac-
tices pipeline for germline variants (DePristo et al., 2011; H. Li 
& Durbin, 2009; Van der Auwera et al., 2013). SNVs and indels 
were annotated using ANNOVAR (K. Wang et al., 2010) CNVs 
were detected from the targeted NGS reads and annotated using 
Nexus Copy Number version 10.0 (BioDiscovery, Inc.).

Additionally, DNA from family 17- FA was sequenced 
using PacBio® long- range sequencing technology with cus-
tom IDT xGen® Lockdown® Probes designed to capture all 
intronic and exonic regions of FANCA. The manufacturer's 
PacBio® protocols were followed for shearing genomic DNA, 
end repair, ligation of linear barcoded adapters, amplification, 
sample pooling, and capturing using IDT xGen® Lockdown® 
Probes. Libraries were prepared using SMRTbell® protocol 
for primer annealing, polymerase binding, and sequencing on 
the Sequel system. Circular consensus reads were generated 

using default parameters (3 passes, 0.99 accuracy) and de-
multiplexed according to parameters for symmetrical bar-
codes. Sequence reads were aligned to human genome build 
19 (GRCh37) and structural variants were called using pbsv 
default parameters.

2.4 | Compilation of FA gene variants 
reported in South Asia and the Middle East

A comprehensive literature review was performed using 
the The National Library of Medicine's PubMed database 
using the following search terms combined with countries 
in South Asia and the Middle East, (e.g. “Fanconi anemia 
and Pakistan” or “Fanconi and India”) to curate previously 
published FA gene variants reported in patients from the 
following regions (accessed July 10, 2020): Afghanistan, 
Bangladesh, Egypt, India, Iran, Iraq, Israel, Jordan, Lebanon, 
Nepal, Oman, Pakistan, Saudi Arabia, Syria, Turkey, and 
Yemen. Large cohort studies and case reports which only 
consisted of phenotypic data and did not report patients’ 
specific genotypes were excluded. Studies which only re-
ported FA subtypes by complementation testing were also 
excluded unless further sequencing efforts revealed the spe-
cific variant(s) in the patient(s).

3 |  RESULTS

3.1 | Participant characteristics

There were 19 patients with FA (16 males and 3 females) 
from 17 unrelated families evaluated in this study (Figure 1). 
The majority of families (12/17, 70%) were from Northern or 
Central Punjab. Other families were from Southern Punjab, 
Islamabad, Khyber Pakhtunkhwa, and Azad Kashmir. The 
median age at FA diagnosis was 7 years (range 4– 12), and 
while all were evaluated for HCT, only 5 patients under-
went matched sibling HCT. Eight of the 19 participants 
were deceased at the time of this study. The median age at 
death was 8.5  years (range 4– 13). Pathogenic variants rel-
evant to FA were identified in 14 families with FANCA 
being the most common (7/14, 50%). Homozygous variants 
in FA- associated genes were identified in 12 of the 14 solved 
families (86%) and 2 probands had compound heterozygous 
variants. Physical and genetic findings for all participants are 
listed in Tables 1 and 2, respectively.

3.2 | FANCA variants and phenotypes

Individual 1- FA presented at age 7 years with aplastic anemia 
which progressed to severe BMF. He had ectopic kidneys, 

http://hpc.nih.gov
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but no other phenotypic features were reported. We identi-
fied a homozygous in- frame deletion in exon 38 of FANCA 
(c.3788_3790delTCT, p.Phe1263del, NC_000016.9:g.89807
250_89807252delAGA, rs397507553, ClinVar:41003). Both 
parents were heterozygous carriers and his sibling was wild- 
type. The c.3788_3790delTCT variant is the most frequently 
reported FANCA variant and has been observed in multiple 
populations throughout the world, including FA patients from 
Pakistan (Castella et al., 2011; Kimble et al., 2018; Shahid 
et al., 2019). This in- frame deletion variant has particularly 
high prevalence in Spain and Brazil at an allele frequency of 
0.01696% and 0.01633% in Latino/Admixed American and 
non- Finnish European populations, respectively (Castella 
et al., 2011; Levran et al., 1997).

Individual 3- FA had an abnormal thumb (Figure 2a) and 
café au lait spots noted at birth, as well as short stature and 
low gonadotrophin hormone levels. FA was diagnosed by 

chromosome breakage on primary lymphocytes after he pre-
sented at 5 years of age with neutropenia that progressed to 
severe BMF. He underwent successful HLA- matched sibling 
donor HCT at the age of 6 years. 3- FA had two deletions in 
FANCA (NC_000016.9:g.89871674_89880557del, and NC_
000016.9:89861527_89863726del) affecting exons 4– 7 and 
11, respectively. These two deletions have been previously 
reported in an Indian FA patient (Solanki et al., 2016). The 
exon 11 deletion was paternally inherited, while the deletion 
of exons 4– 7 was maternally inherited. Validation by targeted 
sequencing methods determined that one unaffected sibling 
did not carry either deletion. Another unaffected sibling was 
predicted to be a carrier of the exon 4– 7 deletion by VS- CNV 
but there was insufficient DNA for sequencing validation.

Severe BMF developed at 7 years of age in individual 4- 
FA. Hemophagocytosis was reported on his bone marrow 
biopsy but no other phenotypic information was available. 

F I G U R E  1  A flowchart of the genetic 
findings in 19 patients with FA from 17 
unrelated families evaluated in this study
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He underwent successful HLA- matched sibling HCT. A ho-
mozygous FANCA frameshift variant in exon 1 (c.37dupC, 
p.Gln13Profs*24, NC_000016.9:g.89882986dupG) was 
identified by exome sequencing. One unaffected sibling was 
wild- type and the other was a carrier, but parental DNA was 
not available for analysis.

Individual 9- FA presented with neutropenia which pro-
gressed to severe BMF and was diagnosed with FA at 
10 years of age. Exome sequencing identified and targeted 
whole gene sequencing validated a large homozygous dele-
tion of exons 7– 14 (NC_000016.9:g.89856782_89874222
del). Her unaffected sister was a heterozygous carrier. This 
specific deletion has not been previously reported, but simi-
lar large deletions in FANCA have been reported (Ameziane 
et al., 2012).

Affected brothers 17_01- FA and 17_02- FA both presented 
with abnormal thumbs at birth (Figure 2b). Small ear canals 
were also noted in 17_01- FA (Figure 2c). At the ages of 6 and 
10 years, respectively, they presented with severe BMF and a 
non- specific immunodeficiency leading to an FA diagnosis. 
Biallelic variants in FANCA were identified in both siblings 
(c.2749C>T, p.Arg917*, NC_000016.9:g.89831327G>A, 
and NC_000016.9:g.89847600- 89853759del). Exome se-
quencing also revealed a maternally inherited nonsense vari-
ant in exon 28 which has been previously identified in an 
Indian patient with FA and other populations (rs1060501880, 
ClinVar:408188; Kimble et al., 2018; Solanki et al., 2016). 
A large deletion of exons 15– 17 (NC_000016.9:g.89847600- 
89853759del) was detected by targeted PacBio® long- range 

sequencing in both affected siblings and has been previously 
reported in other patients with FA (Gille et al., 2012). This 
deletion was not detected in DNA from father's peripheral 
blood, but relatedness analyses confirmed paternity with 
large regions of homozygosity being consistent with offspring 
from a consanguineous relationship between third- degree 
relatives. Additionally, analyses of single nucleotide poly-
morphisms (SNP) in the FANCA locus provided evidence for 
a possible genotypic reversion in the paternal hematopoietic 
stem cells or paternal inheritance as a result of gonadal mosa-
icism. Both such occurrences have been previously reported 
in patients with FA (Fargo et al., 2014; Gregory et al., 2001; 
Gross et al., 2002; Krausz et al., 2019).

Neutropenia developed at 8 years of age and progressed 
over the next year to severe BMF in individual 19- FA. A ho-
mozygous FANCA missense variant in exon 41 (c.4070C>A, 
p.Ala1357Asp, NC_000016.9:g.89805638G>T) was identi-
fied by exome sequencing. Her unaffected brother is a hetero-
zygous carrier, but parental DNA was not available. FANCA 
p Ala1357Asp is not present in gnomAD and is predicted 
deleterious by in silico tools (MetaSVM score  =  0.915, 
REVEL = 0.702, CADD phred = 24.1).

Individual 20- FA presented with moderate aplas-
tic anemia that progressed to severe BMF by 
5  years of age. We identified a homozygous mis-
sense variant in FANCA (c.1541C>A, p.Ala514Asp, 
NC_000016.9:g.89849440G>T, rs1432656621). His unaf-
fected sibling is a heterozygous carrier. Although not pre-
viously reported, this missense variant is rare in gnomAD 

F I G U R E  2  (a) An abnormal right thumb noted at birth in 3- FA, (b) an absent left thumb and abnormal right thumb in patient 17_01- FA, and 
(c) a small ear canal seen in Patient 17_01- FA
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at a MAF of 0.0003977% and is predicted deleterious by 
in silico tools (MetaSVM score = 0.876, REVEL = 0.851, 
CADD phred = 27.1).

3.3 | FANCC homozygous 
variant and phenotypes

Two unrelated probands, 5- FA and 8- FA, were homozy-
gous for the same FANCC variant (c.1642C>T, p.Arg548*, 
NC_000009.11:g.97864024G>A). Relatedness analyses 
determined that these probands were from distinct families. 
FANCC p.Arg548* (rs104886457, ClinVar:12047) has been 
previously reported in two FA patients from Pakistan (Aftab 
et al., 2017).

The clinical features of 5- FA included moderate aplastic 
anemia progressing to severe BMF at age11 years. He also 
had short stature and abnormal left leg growth. He had two 
brothers and one sister who died due to similar complications 
but without a diagnosis. His two surviving unaffected sib-
lings and parents are all heterozygous carriers.

Individual 8- FA presented with moderate aplastic anemia 
that also progressed to severe BMF by 4 years of age. Skin 
hyperpigmentation, bone deformities including the absence 
of metacarpals, thumbs, and radii, and a high arched palate 
were also reported. He died at the age of 4 years due to a 
brain hemorrhage before HLA- matched sibling HCT could 
be performed. One unaffected sibling is a carrier, but parental 
DNA was not available.

3.4 | FANCF homozygous 
variant and phenotype

Individual 10- FA was homozygous for non-
sense variant in FANCF (c.785  T>G, p.Leu262*, 
NC_000011.9:g.22646572A>C, rs368067979). He was 
diagnosed with FA at 6 years of age when aplastic anemia 
progressed to severe BMF. He also had polydactyly and died 
from a hemorrhagic stroke shortly after his FA diagnosis. 
Parental DNA was not available and the sibling available for 
testing was not a carrier.

3.5 | FANCG variants and phenotypes

Individual 18- FA had an extra digit, a small right hand, short 
stature, and ectopic kidneys. He was diagnosed with FA 
at 5  years of age and underwent successful HCT from his 
HLA- matched sibling for severe BMF. A homozygous non-
sense variant in exon 6 of FANCG was identified by WES 
(c.710C>G, p.Ser237*, NC_000009.11:g.35077035G>C). 
His sibling is wild- type at this locus. The only parent who 

was available for testing was heterozygous for this loss of 
function variant.

Proband 21_01- FA and his brother 21_02- FA were di-
agnosed with FA at the ages of 8 and 5 years, respectively. 
21_01- FA had pancytopenia that progressed rapidly follow-
ing his diagnosis with FA and he died due to a brain hemor-
rhage. Currently, 21_02- FA does not have cytopenias. The 
bone marrow of both FA- affected brothers was reported to 
have numerous rosettes with central eosinophilic material 
surrounded by small cells seen in a background of fibrosis. 
The affected brothers have a homozygous frameshift variant 
in exon 11 of FANCG (c.1471_1473delAAAinsG, p.Lys-
491Glyfs*9, NC_000009.11:g.35075283_35075285delTTT
insC, rs1018027137). One of their unaffected siblings was 
heterozygous for this variant. This variant has been previ-
ously reported in a heterozygous patient with FA (Gille et al., 
2012).

3.6 | FANCL variants and phenotypes

Unrelated probands 6- FA and 7- FA were both homozygous 
for a recently identified FANCL South Asian founder vari-
ant. Donovan et al. established this single nucleotide vari-
ation (NC_000002.11:g.58387243C>T) induces aberrant 
mRNA splicing to skip exon 13 (c.1021_1092del, p.Trp341_
Lys364del, rs577063114), resulting in a 24 amino acid de-
letion from the RING domain of FANCL (Donovan et al., 
2019). The gnomAD MAF of this variant is 0.001994% in 
all populations and 0.01634% in South Asian populations. 
A pairwise comparison between cases 6- FA and 7- FA was 
performed to assess potential relationships. A genotype com-
parison on approximately 7300 common SNPs between the 
probands and their siblings showed no indication of related-
ness between families 6- FA and 7- FA. Parental sequencing 
data was not available.

Individual 6- FA had an extra thumb and areas of skin 
hyperpigmentation. He presented with aplastic anemia pro-
gressing to severe BMF at the age of 9 years. Although he 
was treated with androgens while awaiting an HLA sibling 
matched HCT, he died at 10 years of age due to an unspec-
ified hemorrhage. Individual 7- FA was diagnosed with FA 
after presenting with severe BMF at 7 years of age. He died 
shortly after his diagnosis at the age of 8 years due to an un-
reported cause.

3.7 | Unsolved probands

Rare heterozygous variants in the 22 FA pathway genes were 
not identified in individual 12- FA, who was diagnosed with 
FA by chromosome breakage at the age of 11 years after pre-
senting with BMF. He underwent a successful HLA- matched 
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sibling HCT and had no reported dysmorphology. Family 
member DNA was not available to aid in further study.

Variants of potential interest but of uncertain signifi-
cance were identified in individuals 14- FA and 16- FA and 
are reported in Table S2. FA was diagnosed in proband 14- 
FA at 12 year of age and he died 1 year after diagnosis due 
to an unreported cause. He was a heterozygous carrier for 
a variant of uncertain significance (VUS) c.583A>G, p.Ile-
195Val in FANCN and a likely benign FANCO variant c.- 
48C>A. Bilateral thumb malformations were noted at birth 
in proband 16- FA who was diagnosed with aplastic anemia 
at age 9 and underwent a successful HLA- matched sibling 
HCT. Heterozygous VUS were present in FANCA, FANCD2, 
FANCI, and FANCP. The FANCP variant (c.2209C>T, p.Ar-
g737Cys, NC_000016.9:g.3642818G>A, rs140706384) may 

be deleterious as it has a REVEL score of 0.449 and a CADD 
score of 26.2, but the MetaSVM score was predicted as toler-
ated; additional functional studies are required to determine 
potential pathogenicity. There were no other deleterious vari-
ants or large CNV events detected in FANCP.

3.8 | Variants reported in individuals with 
FA from South Asia and the Middle East

We identified 29 published reports with data on gene variants 
in individuals with FA from South Asia and the Middle East. 
Reports from Turkey, India, and Pakistan were the most com-
mon, followed by Iran and Saudi Arabia (Figure 3a). Tables S3– 
S5 list the specific large deletions, single nucleotide variants, 

F I G U R E  3  (a) A heat map showing the distribution of studies published from South Asia and the Middle East on the genetic etiology of FA. 
This heat map was generated by the primary author using a tool available in Microsoft PowerPoint(v16.40). (b) The variants reported to cause FA 
in multiple populations in South Asia and the Middle East. MAF, minor allele frequency; NR, not reported
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and small insertions and deletions, respectively, along with the 
relevant references. Ten of the 29 publications reported on tar-
geted sequencing of only the FANCA gene. The other publi-
cations performed a combination of hotspot variant analysis, 
targeted gene sequencing, Sanger sequencing, RNA sequenc-
ing, other next generation sequencing methods, and multiplex 
ligation- dependent probe amplification analysis. Variants re-
ported in more than one population are noted in Figure 3b.

The majority of reported variants occurred in FANCA 
(78%) and were private to their respective populations. 
Variants reported in FANCG, FANCC, and FANCE accounted 
for 7.8%, 2.8%, and 2.8% of the total variants reported. The 
only large deletions reported were in FANCA, similar to our 
findings and consistent with others. Donovan et al recently 
identified a FANCL founder variant in South Asian popu-
lations (c.1092G>A, p.Trp341_Lys364del; Donovan et al., 
2019). We identified this same founder variant in two, unre-
lated families from Pakistan in our cohort.

4 |  DISCUSSION

The identification of the genetic causes of rare diseases 
such as FA is important to verify diagnoses, improve clini-
cal management, allow for appropriate genetic counseling, 
and understand their underlying pathobiology. The genetic 
cause of FA was identified in 16 patients from 14 families in 
this study; three families remain molecularly undiagnosed. 
FANCA was the most commonly affected gene with patho-
genic FANCA variants present in 50% of the families. The 
other pathogenic variants were present in FANCC, FANCG, 
or FANCL (2 families each), and FANCF (1 family). Only 
6 of the 14 variants identified in our study were present in 
any gnomAD population and 3 of these were solely in South 
Asian populations (Table 2).

Homozygosity for pathogenic variants was present in 12 
of the 14 families. Only two families had compound hetero-
zygous inheritance (both in FANCA). Two families from the 
Central Punjab region of Pakistan were homozygous for the 
FANCL founder variant (Donovan et al., 2019). We were un-
able to evaluate consanguinity in 14 of the families in this 
study due to lack of parental DNA samples. However, the pres-
ence of homozygous pathogenic variants in our data is con-
sistent with prior studies reporting an approximately 70% rate 
of consanguineous marriages in Pakistan (Hussain & Bittles, 
1998; Mobarak et al., 2019; National Institute of Population, 
2013). Nine of the 14 pathogenic variants identified in this 
study have been previously reported (Table  2; Aftab et al., 
2017; Castella et al., 2011; Donovan et al., 2019; Esmail Nia 
et al., 2016; Gille et al., 2012; Solanki et al., 2016).

While our study is limited to individuals with FA and BMF 
severe enough to warrant HCT evaluation, it is one of a very 
few studies seeking to understand the type and frequencies 

of FA- associated germline variants in the Pakistani popula-
tion. We expect that the individuals included in this study 
represent a small subset of FA cases in Pakistan. It is possible 
that in the absence of overt dysmorphology, the diagnosis of 
FA may be delayed or missed because chronic malnutrition 
could confound diagnoses such as anemia and even overt 
BMF (National Institute of Population, 2013).

The majority of studies published, to date, on the genetics 
of FA in South Asia and the Middle East focused primarily on 
targeted sequencing of FANCA, with FANCC, FANCG, and 
FANCE being evaluated but less frequently. FANCA, FANCC, 
and FANCG account for upwards of 85% of FA cases in indi-
viduals of northern European ancestry but the relatively small 
number of studies from other ethnic groups limits our under-
standing of the population genetics of FA- associated genes 
and the full scope of FA around the world. A limited number 
of FA genotype- phenotype studies suggest there may be phe-
notypic differences based on the associated genetic etiology 
(Fiesco- Roa et al., 2019). The presence of founder mutations 
in FANCA, FANCG, and FANCL warrants additional study in 
the context of biology and clinical manifestations.

Large genotype- phenotype studies of patients with FA 
around the world as well as population- based sequencing efforts 
are required to better understand the genetic variation of the FA- 
associated DNA repair genes in diverse populations in order to 
uncover disease etiology, improve diagnostics and patient man-
agement, and to provide appropriate genetic counseling.
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