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ChatFFA: An ophthalmic chat system for unified
vision-language understanding and question
answering for fundus fluorescein angiography

Xiaolan Chen,1,6 Pusheng Xu,4,6 Yao Li,5 Weiyi Zhang,1 Fan Song,1 Mingguang He,1,2,3 and Danli Shi1,2,7,*
SUMMARY

Existing automatic analysis of fundus fluorescein angiography (FFA) images faces limitations, including a
predetermined set of possible image classifications and being confined to text-based question-answering
(QA) approaches. This study aims to address these limitations by developing an end-to-end unified model
that utilizes synthetic data to train a visual question-answering model for FFA images. To achieve this, we
employedChatGPT to generate 4,110,581QApairs for a large FFAdataset, which encompassed a total of
654,343 FFA images from 9,392 participants.We then fine-tuned the Bootstrapping Language-Image Pre-
training (BLIP) framework to enable simultaneous handling of vision and language. The performance of the
fine-tuned model (ChatFFA) was thoroughly evaluated through automated and manual assessments, as
well as case studies based on an external validation set, demonstrating satisfactory results. In conclusion,
our ChatFFA system paves the way for improved efficiency and feasibility in medical imaging analysis by
leveraging generative large language models.

INTRODUCTION

Ophthalmic images are vital for clinical decision-making as they offer essential diagnostic and prognostic insights regarding patient ocular

health.1 Among them, fundus fluorescein angiography (FFA) is a specialized modality for visualizing retinal vasculature, which can diagnose

and monitor eye conditions including retinal vascular occlusion, diabetic retinopathy, and central serous chorioretinopathy with the help of

fluorescent dyes.2 The interpretation of FFA images frequently prompts queries from patients, medical students, and general practitioners,

necessitating clarification from ophthalmic specialists for an enhanced understanding of these complex images. However, the scarcity of

expert ophthalmologists, coupled with their frequent overwhelming academic and clinical workloads, makes it challenging for them to offer

adequate support to patients or the educational needs of students.

Given the complexity of ophthalmic images, researchers have proposed various automated solutions to alleviate the burden on

ophthalmic specialists. For instance, Gao et al.3 proposed a deep learningmodel for FFA images that can help with prediagnosis assessment

and lesion multilevel classification. However, existing models of this kind are either limited to a predetermined set of possible image classi-

fications4 or confined to text-based question-answering,5 making it difficult to fully capture all the necessary semantic information about FFA

images and limit the expressiveness and quality of the output results.

Generative large language models (LLMs) offer a unique prospect to reconsider medical image interpretation, owing to their extensive

external knowledge andpowerful cognitive reasoning ability. Among them, ChatGenerative Pre-trained Transformers (ChatGPT) is especially

compelling.6 However, the existing state-of-the-art visual question-answering (VQA) model, GPT-4V, falls short in meeting the demands of

professional ophthalmic interpretation tasks.7 Therefore, this study aims to develop an end-to-end unified model that utilizes the power

of ChatGPT to significantly enhance semantic comprehension in image analysis and address various VQA tasks associated with FFA images.

RESULTS

We extracted data from FFA reports created by physicians and employed ChatGPT-3.5 to generate question-answering (QA) pairs. These

pairs were then utilized to perform fine-tuning and develop an interactive model for multi-tasks, including report generation, disease diag-

nosis, and VQA. The overview of the study is depicted in Figure 1.
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Figure 1. Overview of this study

FFA, fundus fluorescein angiography; CN, Chinese; EN, English; GPT, generative pre-trained transformer; QA, question answering; BLIP, Bootstrapping

Language-Image Pre-training; BERT, Bidirectional Encoder Representations from Transformers; ICGA, indocyanine green angiography.
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Data

Reports with null findings and images of pure indocyanine green angiography were excluded. The final dataset included 654,343 FFA images

alongside 9,392 reports; 38,231 (5.8%) of them were in the arterial phase, 7,888 (1.2%) were in the arterial-venous phase, 366,450 (56.0%) were

in the venous phase, and 241,774 (36.9%) were in the late phase. Themedian (interquartile range) age of the participants was 51 (36, 62) years,

and 5,190 (55.3%) were male. Detailed information about the dataset can be found in Table 1.

Most of the participants were diagnosed withmultiple retinal conditions, including hypopigmentation (6.0%), microaneurysm (5.0%), hem-

orrhage (3.3%), atrophy (2.9%), and laser spots (2.8%). There were a total of 172 conditions, and the number of images of these conditions is

presented in Figure 2. We generated a total of 4,110,581 QA pairs, with 1,998,359 (48.62%) report generation, 1,108,812 (26.97%) diagnosis,

724,908 (17.64%) open-set QA, 139,278 (3.39%) multiple-choice QA, and 139,224 (3.38%) binary-choice QA.

Figure 3 illustrates the characteristics of the generated questions and answers. Based on the initial words of the questions in both Chinese

and English, we conducted clustering and identified various question types. The Chinese question types mainly include inquiries such as

‘‘Is the retinal vasculature. ’’ and ‘‘What is the fluorescein angiography diagnosis for the left eye. ’’ and so on. The English question types

mainly encompass inquiries such as ‘‘What is the condition of. ’’ and ‘‘Is there any abnormality in. ’’ and so forth. Further analysis of word

frequency within the answers revealed that ‘‘retina’’ and ‘‘fluorescence’’ were among the most recurrent terms.

Model performance

Automatic assessment

The language-based and disease-based results of the model are shown in Table 2. Regarding language-based metrics, the Bilingual Evalu-

ation Understudy (BLEU) scores (1–4) were 0.42, 0.35, 0.30, and 0.26, respectively. The model attained a Consensus-based Image Description

Evaluation (CIDEr) score of 0.23 and a Recall-OrientedUnderstudy for Gisting Evaluation-Longest CommonSubsequence (ROUGE-L) score of

0.30. In terms of disease-based metrics, the model achieved accuracy of 0.60 and 0.68 and F1 scores of 0.44 and 0.35 in binary and multiple-

choice scenarios, respectively. For multi-class condition classification, keyword extraction of the eye conditions was conducted from English

report generation and open-set QA types. The top-3 identified conditions were ‘‘microaneurysm,’’ ‘‘diabetic retinopathy,’’ and ‘‘arterioscle-

rosis.’’ Remarkably, these conditions exhibited high accuracy values of 0.94, 0.94, and 0.87, respectively, indicating the excellent condition

recognition performance of the model. Given the naturally imbalanced and long-tailed distribution of medical datasets, the F1 score, which

combines precision and recall, is more suitable for comprehensive evaluation. Our model achieved satisfactory F1 scores, with the top three

values being 0.87, 0.84, and 0.72.

The investigation into the impact of the number of input images on the model’s performance revealed a remarkable improvement when

multiple images were used. However, this improvement plateaued when at least four images were provided for the BLEU and ROUGE-L
2 iScience 27, 110021, July 19, 2024



Table 1. Fundus fluorescein angiography dataset characteristics

Total Train Validation Test p value

Population

No. 9,392 5,761 1,603 2,028

Age, median (IQR) 51 (36, 62) 51 (37, 62) 50 (36, 61) 50 (33, 62) 0.009

Sex, n (%) 0.972

Female 4,202 (44.7) 2,583 (44.8) 714 (44.5) 905 (44.6)

Male 5,190 (55.3) 3,178 (55.2) 889 (55.5) 1,123 (55.4)

Year, n (%) <0.001

2016 622 (6.6) 622 (10.8) 0 (0) 0 (0)

2017 3,536 (37.6) 3,536 (61.4) 0 (0) 0 (0)

2019 5,234 (55.7) 1,603 (27.8) 1,603 (100) 2,028 (100)

FFA images

No. 654,343 382,621 116,195 155,527

Phasea, n (%) <0.001

Arterial 38,231 (5.8) 24,271 (6.3) 6,960 (6.0) 7,000 (4.5)

Arterial-venous 7,888 (1.2) 4,866 (1.3) 1,368 (1.2) 1,654 (1.1)

Venous 366,450 (56.0) 212,707 (55.6) 65,349 (56.2) 88,394 (56.8)

Late 241,774 (36.9) 140,777 (36.8) 42,518 (36.6) 58,479 (37.6)

IQR, interquartile range; FFA, fundus fluorescein angiography.
aArterial: 20 to 30 s; Arterial-venous: 30 to 60 s; Venous: 60 s to 5 min; Late: 5 to 10 min.
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metrics. As for the CIDErmetric, the performance of themodel continued to improvewhen usingmore than four images and reached a stable

level when 11 images were provided (Figure S1).

Human assessment

A total of 2,692 QA pairs generated by ChatFFA based on 100 images were evaluated by two ophthalmologists. The results of human assess-

ment are shown in Table 2. Rater 1 identified 94 (3.5%) QA pairs as unrelated information, 474 (17.6%) QA pairs with apparent factual errors,

109 (4.0%)QApairs with omissions, and 86 (3.2%)QApairs as lacking sufficient information for a conclusive answer. Rater 2 found 81 (3.0%)QA

pairs as unrelated information, 475 (17.6%) QA pairs with apparent factual errors, 80 (3.0%) QA pairs with omissions, and 77 (2.9%) QA pairs as

lacking sufficient information for a conclusive answer. Examples of different types of errors are presented in Table S1. The inter-rater reliability

as measured by kappa values was 0.746, 0.835, 0.743, and 0.741, respectively. After correcting the influence of the aforementioned errors, the

specificity, accuracy, precision, and sensitivity of the binary-choice QA types were 0.85, 0.76, 0.84, and 0.67, respectively. And it reached 0.41,

0.43, 0.42, and 0.58, respectively, for multiple-choice QA types. In addition, there was an improvement in the F1 scores for binary-choice and

multiple-choice QA pairs, which increased from 0.69 to 0.74 and 0.46 to 0.49, respectively. The model exhibits suboptimal performance in the

multiple-choice QA task, even after errors have been corrected. Further analysis indicates that the primary reason for this may be the limited

proficiency of the model in handling negation words, resulting in the occurrence of false negatives and false positives.

Case studies

We also performed a qualitative analysis of case studies using an external validation set, AngioReport.8 The findings demonstrate that our

model outperforms GPT-4V9 in the specific VQA tasks (Table S2). For the direct report generation task, while GPT-4V demonstrated the capa-

bility to discern leakage lesions in FFA images, the generated descriptions are generally imprecise and lack essential details. In contrast, our

model can mimic human physicians by generating standardized and detailed FFA reports, including accurate disease diagnoses in the

impression section. Regarding the diagnosis task, ourmodel successfully identifies pathologicmyopia, whereasGPT-4V only provides pattern

diagnoses based on general medical knowledge rather than candidate diagnoses specific to the input image. In the multiple-choice task,

GPT-4V offers incorrect options, whereas our model accurately identifies the location of the leakage. In the cases of open-ended and

true/false questions, both GPT-4V and our model generally provide consistent answers compared to those given by ophthalmologists.

DISCUSSION

In this study, we developed a Transformer-based system for multiple VQA tasks regarding FFA images. Our system demonstrates promising

performance, as assessed through both automated and human evaluation, as well as case studies using an external dataset. This proof-of-

concept model highlights the potential of ChatGPT in improving the interpretation of FFA images.
iScience 27, 110021, July 19, 2024 3



Figure 2. The number of images of various eye conditions

(A) Diseases with more than 100 patients; (B) Diseases with fewer than 100 patients.
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Figure 3. Characteristics of the generated questions and answers

(A) The distribution of English and Chinese-generated questions; (B) The English and Chinese answers’ word cloud.
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Medical VQA systems assist healthcare professionals in managing medical images by answering image-related questions. However, the

construction of large-scalemedical VQAdatasets is challenging due to the significant involvement of professionals required, including image

collection, quality control, and the generation of questions and answers.10 Recent studies have demonstrated the feasibility of automating the

generation of a substantial number of QA pairs through well-designed prompts, significantly enhancing the efficiency of database construc-

tion.11,12 Our study extends this approach to ophthalmic imaging. Specifically, we have devised various prompt strategies for different kinds

of questions based on FFA images. These strategies include generating direct report generation questions, closed-ended questions

regarding the presence of abnormalities, and open-ended questions that facilitate further exploration of abnormal conditions. Furthermore,

we have implemented a rigorous quality control process to ensure the reliability of the generated QA pairs. Our prompt-based approach

yields a diverse and highly controllable dataset for training and evaluating VQA models specifically tailored to FFA images, offering time ef-

ficiency and wide-ranging real-world applicability.

The VQAmodel is a classic cross-modal transfer system that combines computer vision and natural language processing (NLP) techniques,

providing an intuitive and natural way for human-computer interaction.13 Features from different modalities could be transferred and uti-

lized.14,15 Previous studies on optimizing VQA models have mainly focused on cross-modality fusion of visual and language.16 Among

them, Li et al.17 proposed the Bootstrapping Language-Image Pre-training (BLIP) framework for unifying visual language understanding

and generation. The recent advancements in generative LLMs have inspired us to further enhance the performance of VQA models from

the perspective of NLP.18 These models can be directly integrated into the cross-modal model to overcome the limitations in model output

and provide further interactive explanations.19,20 Additionally, they can serve as external sources of knowledge and semantic refiners to opti-

mize the fine-tuning process of cross-modal models. This enables the models to accurately capture details and semantic information in im-

ages, facilitating generalization to unseen objects or concepts and performingmore complex downstream tasks. Our research is based on the

latter approach, where we utilize ChatGPT as an external knowledge base. ChatGPT has been extensively tested and shown promising results

in answering ophthalmology questions, including standard ophthalmic exam questions21 and real-world eye care inquiries.22 By fine-tuning

the BLIP pre-training framework with the assistance of ChatGPT, we enable the model to interpret images and answer image-related ques-

tions, even outperforming GPT-4V in specific cases. This enhances the model’s image analysis capability, optimizing VQA performance, and

unlocking ChatGPT’s potential in solving medical problems.

ChatFFA offers a distinct advantage over existing FFA analysis systems in clinical settings. Firstly, it excels in handling vision and language

simultaneously and understanding free-form questions. Similar to dynamic and cross-modal brainstorming sessions focusing on FFA images,

ChatFFA may serve as a knowledge assistant for medical students or junior clinicians. Given that limited experience can lead to misunder-

standings, ChatFFA can support them in interpreting FFA images, thereby decreasing the risk of misdiagnosis.23 Secondly, ChatFFA can
iScience 27, 110021, July 19, 2024 5



Table 2. Model performance in the automatic assessment (57,601QApairs of 2,028 participants in the test set) andmanual assessment (2,692QApairs

of 100 participants sampled from the test set)

A. Automatic assessment: language-based metrics

BLEU_1 BLEU_2 BLEU_3 BLEU_4 CIDEr ROUGE-L

0.42 0.35 0.30 0.26 0.23 0.30

B. Automatic assessment: disease-based metrics

Specificity Accuracy Precision Sensitivity F1 score

Answer classification

Binary choice alla 0.56 0.60 0.75 0.31 0.44

Binary choice 100b before 0.81 0.70 0.80 0.61 0.69

Binary choice 100b after 0.85 0.76 0.84 0.67 0.74

Multiple choice alla 0.79 0.68 0.37 0.36 0.35

Multiple choice 100b before 0.39 0.39 0.39 0.55 0.46

Multiple choice 100b after 0.41 0.43 0.42 0.58 0.49

Condition classification

Microaneurysm 0.96 0.94 0.89 0.86 0.87

Diabetic retinopathy 0.98 0.94 0.79 0.90 0.84

Arteriosclerosis 0.94 0.87 0.68 0.77 0.72

C. Manual assessment: error types of QA assessed by ophthalmologists

Rater 1

N (%)

Rater 2

N (%) Kappa

Unrelated information 94 (3.5%) 81 (3.0%) 0.746

Factual error 474 (17.6%) 475 (17.6%) 0.835

Omission 109 (4.0%) 80 (3.0%) 0.743

Insufficient information 86 (3.2%) 77 (2.9%) 0.741

BLEU, bilingual evaluation understudy; CIDEr, consensus-based image description evaluation; ROUGE-L, recall-oriented understudy for gisting evaluation-

longest common subsequence.
aThe metrics were calculated using all the data from the test set.
bThe metrics were calculated using a randomly sampled subset of the test set, comprising 100 participants.
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explain the professional content of FFA reports to patients in simple language and provide basic knowledge about diagnostic results and

potential treatment options, empowering patients to actively engage in the clinical process and enhancing doctor-patient communication.

Thirdly, ChatFFA can operate offline and be deployed locally in healthcare centers, reducing the risks associated with network data transmis-

sion and ensuring data security and privacy.24 However, there are challenges to consider. Although our dataset includes a diverse range of

conditions, there is a lack of representativeness for certain rare diseases, including choroidal hemangioma, Stargardt disease, and others,

each with fewer than 10 cases. Additionally, imaging data sourced predominantly from specific manufacturers may limit variance in imaging

conditions. To achieve seamless future integration, efforts should be made to expand specific disease datasets, incorporate a broader range

of device-based images, and validate these images in diverse national and regional contexts, ensuring compatibility with various health in-

formation technology architectures. During the validation and integration process, we should prioritize data protection, patient privacy, and

user training to highlight the user-friendliness of the system. Additionally, it is important to emphasize that while ChatFFA provides valuable

support and explanations, the ultimate diagnosis and decision-making should still be conducted by trained and experienced healthcare pro-

fessionals. ChatFFA should be regarded as an auxiliary tool rather than replacing the expertise and judgment of physicians.

In conclusion, we developed and validated a unified VQA system for FFA images by leveraging well-designed prompts and capabilities of

ChatGPT. This initiative highlights that ChatGPT is a promising tool in enhancing the interpretation of medical images and ChatFFA demon-

strates significant potential in reshaping medical education and clinical management.

Limitations of the study

There are several limitations in the study. Firstly, although our model incorporates information from ophthalmic image reports and the exten-

sive general knowledge in ChatGPT, there are still limitations when it comes to broader medical expertise. Future efforts should focus on

integrating prior knowledge from medical literature, clinical guidelines, and the expertise of ophthalmic specialists through reinforcement

learning with human feedback to enhance the accuracy of medical VQA. Secondly, while our model generates QA data automatically based
6 iScience 27, 110021, July 19, 2024
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on reports, real-world clinical scenarios often involve more personalized interactions. Therefore, gathering actual clinical dialogues is crucial

to achieve a more comprehensive coverage in medical VQA. Finally, while our model underwent automatic and manual evaluations for VQA

tasks and was validated using an external dataset, it is necessary to conduct more comprehensive comparisons with a broader range of FFA

analysis AI tools and prospective trials involving collaborations with ophthalmologists at different levels of expertise. Furthermore, the model

lacks interpretability. There is a need to explore the application of heatmaps, relevant scientific literature references, and authoritative med-

ical websites in future work, subsequently providing clear insights into the decision-making process.25
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

ChatGPT OpenAI https://chat.openai.com/chat

PaddleOCR Github https://github.com/PaddlePaddle/PaddleOCR

Bootstrapping Language-Image Pre-training (BLIP) Github https://github.com/salesforce/BLIP

Caption evaluation Github https://github.com/salaniz/pycocoevalcap

Python (Version 3.1) Python Software Foundation https://www.python.org/

R (Version 4.3.1) R software https://www.r-project.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Danli Shi (danli.shi@polyu.

edu.hk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� De-identified patient standardized data used in this study are available via https://asiateleophth.org/cross-country-datasets/ upon

request. Additional datasets related to this research can be provided by the lead contact upon request.
� Code is available at https://github.com/salesforce/BLIP.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

The study took place between July 26th, 2023 and September 26th, 2023 at the School of Optometry, The Hong Kong Polytechnic University,

Kowloon, Hong Kong SAR, China.

Data

FFA images were retrospectively collected from a tertiary center between 2016 and 2019.20 After data cleaning by removing duplicates,

handlingmissing values, and correcting erroneous data, a total of 654,343 FFA images from 9,392 patients were used formodel development.

All patient datawere anonymized andde-identified, as well as stored in a secure data center,managed and analyzedby authorizedpersonnel.

FFA images were obtained using Zeiss FF450 Plus and Heidelberg Spectralis (Heidelberg, Germany) cameras, with a resolution of 768*768.

The image data normalization process involves using the ImageNet mean and standard deviation values to standardize the data, resizing the

images to a fixed resolution of 320*320 and converting them into PyTorch tensors. This consistent normalization was applied during both

training and testing for a uniform data distribution. Additionally, we excluded low-quality images, with a vascular ratio of less than 0.05. After

filtering, we obtained 768,622 images from the original dataset of 820,853. These filtered images were then matched with the FFA reports,

yielding 654,343 matched FFA images.

For training, we selected images from the period of 2016 to 2017. The images from January to May 2019 were chosen for validation, while

the remaining images were allocated for testing. This temporal split strategy emulates a scenario where amodel is developed using historical

data and then assessed on future cases, thus serving as external validation.26

The study adheres to the tenets of the Declaration of Helsinki. The Institutional Review Board of the Hong Kong Polytechnic University

approved the study. Informed consent was waived as the data were retrospectively collected and de-identified.

Data construction

All FFA reports typically comprise two main sections: findings and impressions. These reports contain crucial information, including the ex-

amination location, detailed descriptions of the angiography process and clinical indications. We used PaddleOCR to extract the data from

the original Chinese reports, denoted as Findings_CN and Impression_CN. To generate bilingual (Chinese and English) versions of the
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reports, we employed ChatGPT to translate Findings_CN and Impressions_CN from Chinese into English using prompt strategy, denoted as

Findings_EN and Impressions_EN. The translation prompt can be found in Table S3A.

Subsequently, we used the extraction as initial inputs for ChatGPT and generated five types of questions:

(1) Direct report generation: Generating the complete angiography report directly from the image.

(2) Diagnosis questions: Generating diagnostic questions related to the images in the report, which usually provides one or more poten-

tial diagnoses based on the impressions of reports.

(3) Open-ended questions: Generating free-text questions that can guide a more detailed description or provide additional information

about the report content.

(4) Multiple-choice questions: Generatingmultiple-choice questions that provide several options for selection, where the respondent can

choose one correct answer.

(5) True or false questions: Generating binary questions that require the respondent to determine whether a given statement is true or

false.

Each type of question was generated in both Chinese and English to obtain a comprehensive bilingual dataset. For the open-ended QA

pairs, we generated ten sets following the prompt illustrated in Table S3B. Our prompt strategy for closed-ended QA pairs drew inspiration

from the process established by Zhang et al.11 Specifically, wemodified themethod and utilizedChatGPT-3.5 to generate ten sets of bilingual

closed-ended QA pairs. These pairs consisted of five sets of multiple-choice questions, each containing four options (Question_EN,

Options_EN, Answer_EN, Question_CN, Options_CN, Answer_CN), and five sets of true/false questions, following a format similar to the

open-ended QA pairs. The modified prompt we used is shown in Table S3C.

Post-processing and quality control

We extracted the pertinent data from the raw outputs produced by ChatGPT and carefully filtered out QA pairs in incorrect formats. Since

ChatGPT could fabricate responses that contained factual errors, we excluded QA pairs that involved causal inference. Furthermore, we

removed pairs that contained information such as visual acuity and prognosis, as these aspects are hardly inferred from the provided report

alone. To ensure a balanced representation of disease conditions and QA types, we sampled and balanced the QA categories.

Modelling

Our model incorporated the BLIP framework,17 which consists of two main components: Bidirectional Encoder Representations from Trans-

formers (BERT) and Vision Transformer (ViT). BERT is a pre-trained languagemodel based on the Transformer architecture.27 Unlike traditional

unidirectional languagemodels, BERT uses a bidirectional Transformer encoder to effectively capture contextual information during the pre-

training phase. BERT is trained on large-scale text corpora to learn universal language representations, which can then be fine-tuned for

various NLP tasks. In this study, we used it as the language encoder and decoder. ViT, introduced by Dosovitskiy et al.,28 is an advanced ar-

chitecture for CV tasks. It divides an image into patches and treats them as tokens, which are then inputted into a series of Transformer layers.

After pre-training, ViT can be fine-tuned for specific downstream tasks such as image classification, object detection, or image segmentation.

In our study, we used it as the image encoder.

We finetuned the pre-trained model on FFA images alongside the generated QA pairs. Input images of size 320*320 were fed to the

encoder, and we employed the AdamW29 optimizer during the fine-tuning process. The initial learning rate was set at 0.00002, accompanied

by a weight decay of 0.05, and a cosine learning rate schedule. The fine-tuning was conducted with amaximum epoch of 20 using twoNVIDIA

Tesla V100 GPUs, the model with the highest BLEU1 score on the validation set was selected for testing.

QUANTIFICATION AND STATISTICAL ANALYSIS

Automatic assessment

Language-based metrics are widely used in previous NLP tasks.30 We utilized metrics such as BLEU, CIDEr and ROUGE-L. BLEU31 calculates

the similarity between generated and reference sentences by measuring n-gram matching and we used 1-4 grams considering the domain-

specific terminology of medicine. CIDEr32 is a precision-and-recall metric that considers word frequency, repetition and phrase diversity to

accurately evaluate the quality of generated descriptions. ROUGE-L33 measures the longest common subsequence of word matches. These

metric values range between 0 and 1, with higher values indicating better performance. Additionally, we conducted a study to investigate the

impact of varying numbers of input images on themodel’s performance. We inputted one to twelve images into the model and observed the

trend in the model’s performance.

Disease-basedmetrics are commonly employed to overcome the limitations of language-basedmetrics in medical abnormality detection.

In our evaluation, we utilized a classification pipeline that involved extracting diagnostic conditions using a manually constructed dictionary

mapping for both the original and generated reports. The evaluation metrics include accuracy, sensitivity, specificity, precision, and F1 score.

Human assessment

To address evaluation aspects that are not covered by automatic assessment, we conducted an extensive human evaluation of theQA gener-

ated by ChatFFA. We randomly sampled 100 FFA images from the test set. Two ophthalmologists (P.X. and F.S.) assessed the quality of the
10 iScience 27, 110021, July 19, 2024
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ChatFFA-generatedQApairs based on the ground truth and their expert judgment of the FFA images. TheQApairs were analyzed to identify

occurrences of unrelated information (Irrelevances), factual errors (Errors), incomplete information (Omissions) and insufficiency of information

to arrive at an answer (Insufficiencies).

Case studies

To further investigate the quality of answers generated by our model, we conducted a qualitative case study using the AngioReport8 dataset.

This dataset encompasses retrospectively collected cases from another center, thereby offering additional external validation. Specifically, we

selected five cases covering five types of VQA tasks. For comparison, we selected the state-of-the-art VQA model, GPT-4V.9 We used the

answers provided by ophthalmologists as a benchmark and compared the answers generated by the two models. To address the issue of

lengthy answers commonly provided by the models, we imposed a constraint on both to generate short, concise answers without lengthy

explanations.

Statistical analysis

Statistical analyses were performed using R (Version 4.3.1, R Foundation, Vienna, Austria). To evaluate the differences in features of data from

three datasets (training set, validation set and test set), we conducted the Kruskal-Wallis rank sum test and Dunn’s multiple comparison post

hoc test. To examine the reliability of the manual scoring results, we assessed the rating consistency between two ophthalmologists using

Cohen’s Kappa.34 Its values represent different levels of agreement: 0.01 to 0.20 (slight agreement), 0.21 to 0.40 (fair agreement), 0.41 to

0.60 (moderate agreement), 0.61 to 0.80 (substantial agreement) and 0.81 to 0.99 (almost perfect agreement). P < 0.05 was considered sta-

tistically significant.
iScience 27, 110021, July 19, 2024 11
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