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DNA replication and mitotic entry: A brake model for
cell cycle progression
Bennie Lemmens1 and Arne Lindqvist2

The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These
processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and
cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a
key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of
cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step
to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication
and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model
based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.

Introduction
Pioneering autoradiography studies in the 1960s revealed that
the events preceding cell division involved a sequence of distinct
metabolic states, called cell cycle phases. These were charac-
terized by a period of DNA synthesis (S-phase) surrounded by
periods in which no DNA synthesis was detected (G1- and G2-
phase; Baserga, 1965). Decades later, molecular activities that
drive cell cycle progression were identified, and a central role
for cyclins in complex with cyclin-dependent kinases (CDKs)
was established (Nurse, 1990; Stern and Nurse, 1996). D-type
cyclins (which assemble with CDK4 or CDK6) and E-type cy-
clins (which assemble with CDK2) function asmolecular triggers
for cell cycle entry (Sherr, 1993). D- and E-type cyclins generate
positive feedback loops that increase cyclin expression, thereby
producing a surge in cyclin-CDK activity that irreversibly leads
to cell cycle commitment (Bertoli et al., 2013). Overexpression of
D- or E-type cyclins alleviates growth factor dependence, over-
rides G1 arrest, and advances S-phase entry (Brewer et al., 1999;
Ohtsubo and Roberts, 1993; Pagano et al., 1994; Quelle et al., 1993;
Resnitzky et al., 1994). The kinetics of cell cycle commitment is
influenced by external stimuli (e.g., growth factors), genetic
context (e.g., oncogenes), and factors inherited from previous
cell cycles (e.g., DNA damage signals; Arora et al., 2017; Barr
et al., 2017; Moser et al., 2018; Pardee, 1989; Schwarz et al.,
2018; Spencer et al., 2013; Yang et al., 2017).

Once committed to the cell cycle, E- and A-type cyclins
complex with CDK2 to drive DNA replication. These cyclin-CDK2

complexes are later joined in by cyclin A–CDK1 and cyclin
B–CDK1, ensuring a rise in CDK activity. As the cyclin-CDK
complexes transit from low activity to high activity, they phos-
phorylate thousands of residues in various target proteins to
initiate mitosis (Dephoure et al., 2008; Ly et al., 2017; Ohta et al.,
2016; Olsen et al., 2010; Swaffer et al., 2018). Cyclin-CDK activity
is controlled at multiple levels, involving complex formation of
cyclin-CDKs, direct binding of accessory/inhibitory proteins,
posttranslational modifications, and regulated activity of phos-
phatases that reverse cyclin-CDK–mediated phosphorylation
(Hégarat et al., 2016; Malumbres, 2014; Nilsson, 2019). Many
regulators of cyclin-CDK activity are also direct or indirect tar-
gets of cyclin-CDK activity, creating positive feedback loops that
ensure that cyclin-CDK activity continues to rise once activated
(Hégarat et al., 2016; Lindqvist et al., 2009; Pomerening, 2009).
One such regulator is the kinase PLK1, which, apart from acti-
vating cyclin-CDK, plays a key role in mitotic entry and pro-
gression (Combes et al., 2017; Joukov and De Nicolo, 2018; Pintard
and Archambault, 2018). Here we discuss how spiraling cyclin-
CDK activities are kept in check and coordinated with genome
duplication. We incorporate these insights into an updated cell
cycle model based on three molecular brakes that control the
level of CDK activation and thus the timing of cell division.

DNA replication and mitosis: From a gap to a link
What triggers cell division has remained a key unanswered
question for cell cycle research (Mchedlishvili et al., 2015). In
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eukaryotic cells, DNA replication and cell division are separated
by the intervening G2-phase. Due to the several-hour duration
of G2 in somatic cells, DNA replication and cell division were
seen as largely independent events, which suggested that the
trigger of cell division was not directly coupled to DNA repli-
cation (Fig. 1 A). Accordingly, much effort has gone into iden-
tifying what triggers cell division at the end of G2-phase.
Although many proteins are involved (Hégarat et al., 2016;
Lindqvist et al., 2009), recent data suggest a particular involve-
ment of cyclin A–CDK and PLK1 in initiating mitotic entry. Apart
from directly phosphorylating targets that promote mitosis, cy-
clin A in complex with CDK1 or CDK2 phosphorylates the Aurora
A cofactor Bora to stimulate activation of PLK1 (Gheghiani et al.,
2017; Lindqvist et al., 2009; Macůrek et al., 2008; Seki et al.,
2008; Thomas et al., 2016; Vigneron et al., 2018). However, cy-
clin A–CDK complexes are active from the onset of S-phase
(Fotedar et al., 1996; Girard et al., 1991; Minshull et al., 1990),
raising the question, what determines the timing of mitosis?

Recent advances have shown that while DNA replication and
cell division occur at different times, from a signaling perspective,
both processes are heavily connected. While CDK1 and PLK1 are
classified asmitotic kinases, both are active beforemitosis. In fact,
mass spectrometry studies indicated that >100 mitotic phospho-
rylation sites are already phosphorylated in G2-phase (Ly et al.,
2017). Quantitative immunofluorescence approaches also showed
that Lamin A/C and TCTP (substrates of CDK1 and PLK1, re-
spectively) are increasingly phosphorylated through G2-phase.
Importantly, these phosphorylated residues are first detected at
the S/G2 transition, implying a molecular link between DNA
replication and mitotic entry (Akopyan et al., 2014; Cucchi et al.,
2010; Lemmens et al., 2018). A live-cell sensor that responds to
PLK1 activity confirmed these observations and showed nuclear
PLK1 target phosphorylation at the moment cells completed DNA
replication (Akopyan et al., 2014). Similarly, a live-cell sensor
based on the CDK1 phosphorylation motif in SLBP was degraded
the moment cells finished bulk DNA synthesis (Bajar et al., 2016).
Thus, both PLK1 and CDK1 start to phosphorylate target proteins
at the S/G2 transition, suggesting a direct link between S-phase
completion and mitotic kinase activation (Fig. 1 B).

Mitotic entry: From a trigger to a brake
The tight temporal connection between completion of DNA
replication and activation of mitotic kinases raises several

fundamental questions. What triggers the onset of mitotic ki-
nase activities at the S/G2 transition? And if mitotic kinases can
be activated hours before mitosis, why are they not activated
earlier? In fact, inhibition of phosphatases can induce mitosis in
S-phase without production of new proteins (Yamashita et al.,
1990). Similarly, inhibition of WEE1, a negative regulator of
CDK1 and CDK2, can promote premature mitotic entry in
S-phase (Aarts et al., 2012; Sørensen and Syljuåsen, 2012).
Thus, mitotic kinases can, in principle, be activated in S-phase,
but are kept suppressed until the S/G2 transition.

To explain the notion that eukaryotic cells are able to pro-
liferate with high fidelity, Hartwell and Weinert (1989) theo-
rized that human cells might possess surveillance mechanisms
that allow cell division only when DNA replication is complete.
While this idea was postulated decades ago, direct empirical
evidence proved hard to obtain. Recent data show that human
cells that cannot initiate DNA replication prematurely activate
PLK1 and CDK1 and promptly enter mitosis, demonstrating that
DNA replication itself is a key regulator of mitotic kinases
(Lemmens et al., 2018). The absence of DNA replication causes
immediate CDK hyperactivation upon S-phase entry and is
sufficient to trigger premature mitotic entry, showing that the
process of DNA replication generates a brake signal that controls
the timing of mitosis (Lemmens et al., 2018).

While the absence of DNA replication advances mitotic entry
(Lemmens et al., 2018), perturbation of ongoing replication
postpones mitotic entry (Bajar et al., 2016; Boddy et al., 1998;
Darzynkiewicz et al., 2011; Lemmens et al., 2018; Sørensen et al.,
2003; Zineldeen et al., 2017). The latter could be explained by
delayed completion of DNA replication, but altered replication
fork progression typically induces immediate DNA damage,
which obscures the role of unperturbed DNA replication in cell
cycle regulation (Darzynkiewicz et al., 2011). DNA damage is a
potent and well-studied inhibitor of mitotic entry (Harrison and
Haber, 2006; Sancar et al., 2004). Stalled replication forks halt
the cell cycle primarily through the action of ATR and CHK1
kinases, and several studies show that the ATR–CHK1 axis also
plays an important role during an unperturbed S-phase
(Petermann and Caldecott, 2006; Saldivar et al., 2017;
Sørensen and Syljuåsen, 2012). ATR and CHK1 are essential
proteins with highly conserved functions in cell cycle regulation
(Brown and Baltimore, 2000; Cliby et al., 1998; Eykelenboom
et al., 2013; Hekmat-Nejad et al., 2000; Niida et al., 2005;

Figure 1. Models on DNA replication and mitotic triggers.
Gray arrow depicts time toward mitosis, and dashed lines in-
dicate G1/S and S/G2 transitions. (A) Model 1 is based on two
independent triggers: one trigger for DNA replication (blue) and
one trigger for mitotic kinase activation (orange). (B) Model 2 is
based on a single trigger for DNA replication (blue) and mitotic
kinase activation (orange), yet a signaling cascade links both
processes and separates the two events in time. Kinases that
drive mitotic entry are activated when bulk DNA replication is
completed at the S/G2 transition.
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Petermann et al., 2006; Schmitt et al., 2006; Sørensen et al.,
2003; Sørensen et al., 2004). In particular, multiple targets of
ATR and CHK1 can stabilize DNA replication forks and promote
DNA repair (Fig. 2; Kumagai and Dunphy, 2003; Scorah and
McGowan, 2009; Uto et al., 2004; Ward and Chen, 2001; Yuan
et al., 2009). However, although inhibition of ATR is toxic to
cells, it can be rescued by simultaneous depletion of the CDK-
activating phosphatase Cdc25A, suggesting that a key function of
ATR is to counteract CDK activity (Ruiz et al., 2016). In line with
this finding, inhibition of CHK1 was shown to lead to premature
activation of CDK1 and PLK1 in S-phase (Lemmens et al., 2018;
Saldivar et al., 2018; Syljuåsen et al., 2005). Importantly, a CDK1-
dependent transcriptional program of mitotic regulators was
found to be prematurely initiated upon inhibition of ATR in
S-phase (Saldivar et al., 2018). These observations point toward a
model in which mitotic kinases are actively suppressed during
DNA replication (Sørensen and Syljuåsen, 2012). As long as DNA
replication is ongoing, ATR-CHK1 inhibits CDK1 and PLK1, en-
suring that DNA replication and mitosis are separated in time
(Fig. 2). The phosphorylation events triggered by ATR-CHK1 are
likely complemented by other pathways, including ubiquitin-
mediated processes. For instance, the SCF E3 ligase compo-
nent cyclin F shows synthetic lethality with Chk1 inhibition
(Burdova et al., 2019) and, similar to ATR, can attenuate the

transcriptional response that drives mitosis (Burdova et al.,
2019; Clijsters et al., 2019; Klein et al., 2015; Mavrommati
et al., 2018).

Although the exact nature of the replication intermediate
controlling CDK activity during an unperturbed S-phase is un-
known, a recent study suggests it involves single-stranded DNA
(Saldivar et al., 2018). Whether the presence of single-stranded
DNA is complemented by another DNA replication intermediate,
signaling from active replication forks, DNA topological stress,
and/or low levels of stochastic DNA damage, the process of DNA
replication constitutes an integral signaling component of the
human cell cycle. Completion of DNA replication removes the
substrates for ATR-CHK1 activity and hence allows the imme-
diate activation of mitotic kinases at the S/G2 transition
(Lemmens et al., 2018; Saldivar et al., 2018). Thus, changing
from an S-phase state to a G2-phase state requires release of a
brake, rather than the generation of a new trigger (Fig. 2).

Better to brake than to break
Mitosis is sensitive to persisting replication intermediates that
can prevent sister chromatid separation. Hence, persisting
replication intermediates are cut by structure-specific nucleases
to promote faithful sister chromatid disjunction (Chan andWest,
2018; Naim et al., 2013; Ying et al., 2013). While cleavage of a few
remaining replication intermediates during mitosis might be
beneficial, such activities in S-phase would cause genome-wide
havoc. Different mechanisms have evolved to restrict endonu-
cleases to mitosis. Whereas the GEN1 nuclease depends on nu-
clear envelope breakdown for access to DNA (Chan and West,
2018), the Mus81-Slx4 nuclease depends on PLK1 and CDK1 ac-
tivity for assembly (Svendsen et al., 2009; Cucchi et al., 2010;
Duda et al., 2016; Wyatt et al., 2017). Interestingly, PLK1 and
CDK1 also actively suppress DNA double-strand repair during
mitosis (Benada et al., 2015; Orthwein et al., 2014), possibly
preventing immediate religation of cut chromosomes and thus
deleterious chromosome entanglements. Reinstating double-
strand break repair during mitosis is highly toxic and causes
telomere fusions (Orthwein et al., 2014).

The fact that CDK1 and PLK1 suppress DNA repair and acti-
vate endonucleases makes them tailored for mitosis but dan-
gerous in S-phase (Fig. 2; Chen et al., 2009; Cucchi et al., 2010;
Duda et al., 2016; van Vugt et al., 2010; Zhang et al., 2012). In
addition, CDK deregulation can lead to various DNA replication
stresses, including faulty origin firing, nucleotide imbalances,
and RPA exhaustion (Gaillard et al., 2015; Hills and Diffley, 2014;
Toledo et al., 2017). Indeed, inhibition or depletion of the WEE1
kinase, a negative regulator of CDK1 and CDK2, leads to activa-
tion of mitotic kinases in S-phase, DNA damage, and altered
DNA repair (Beck et al., 2010, 2012; Heald et al., 1993; Krajewska
et al., 2013). Mutation of CDK1 so that it can no longer be tar-
geted by WEE1 leads to embryonic lethality in mice, where cells
arrest in S-phase with high levels of damaged DNA (Szmyd et al.,
2019). Similarly, inhibition of CHK1 causes immediate DNA
damage in replicating cells (Lemmens et al., 2018; Syljuåsen
et al., 2005). In all three cases, DNA damage could be pre-
vented by simultaneous CDK inhibition, revealing unrestrained
CDK activity as the cause of genome instability. A brake on PLK1

Figure 2. Molecular switches at the S/G2 transition. The S/G2 transition
is dictated by DNA replication status. DNA replication in S-phase activates
ATR/Chk1 signaling, which represses CDK1 and PLK1 activity and promotes
fork stabilization and DNA repair. Completion of bulk DNA replication allows
CDK1 and PLK1 activation, which promotes mitotic entry and processing
of persistent replication intermediates. Lower panel depicts examples of
phosphorylation targets of ATR/CHK1 or CDK1/PLK1. The ATR/CHK1 axis
inhibits mitotic entry (e.g., via CDC25) and promotes fork stability (e.g., via
H2AX, HARP, and Claspin), while the CDK1/PLK1 axis promotes mitotic entry
(e.g., via FOXM1) and alters DNA repair (e.g., via 53BP1, SLX4, and TCTP).
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and CDK1 activity during S-phase is therefore instrumental for
maintaining DNA integrity.

When cells experience DNA damage, an elaborate DNA
damage response (DDR) is triggered, which inhibits mitotic ki-
nase activities and cell cycle progression (Harrison and Haber,
2006; Sancar et al., 2004). The DDR buys time for DNA repair
and prevents propagation of damaged genomes. A common form
of DNA damage during S-phase is replication stress, which is due
to faulty DNA replication. Replication stress can be caused by
many factors, including deregulation of CDK activity by onco-
genes such as cyclin E and Cdc25A (Beck et al., 2010; Gaillard
et al., 2015; Macheret and Halazonetis, 2015; Toledo et al., 2017).
As treatments that induce premature CDK activation cause DNA
damage, they are expected to trigger a feedback loop in which
the DDR counteracts the rising CDK activities. Indeed, fluctua-
tion of CDK2 activity has been observed upon spontaneous and
ectopic DNA replication stress, and a subset of cells fails to
enter mitosis upon WEE1/CHK1 inhibition (Daigh et al., 2018;
Lemmens et al., 2018). Given that PLK1 and CDK1 control
structure-specific DNA nucleases (Chan and West, 2018; Wyatt
et al., 2017), DNA replication intermediates can act as down-
stream substrates as well as upstream regulators of mitotic ki-
nase activity. Interestingly, forced mitotic entry by WEE1
inhibition requires the structure-specific DNA nuclease Mus81,
suggesting that stalled forks need to be processed to allow pre-
mature mitotic entry (Duda et al., 2016). Thus, high CDK activity
during S-phase leads to replication stress, which in turn limits
CDK activity, revealing a delicate balancing mechanism that
brakes CDK activities in S-phase.

A cell cycle model based on brakes
The quantitative threshold model for cell cycle progression,
originally introduced by Stern and Nurse (1996) to explain that a
single cyclin-CDK can drive the fission yeast cell cycle, has for
decades stood the test of time (Coudreuse and Nurse, 2010;
Swaffer et al., 2016). The quantitative model focuses on the
amount of CDK activity rather than the identity of different
cyclin-CDK complexes. In this model, S-phase requires relatively
low cyclin-CDK activity, whereas mitosis only occurs above a
much higher threshold of cyclin-CDK activity. Although likely
complemented with different specificities of various cyclin-CDK
complexes in other eukaryotes, this model explains why DNA
replication commences before cell division (Hochegger et al.,
2008; Uhlmann et al., 2011). However, it raises the question of
how the cell cycle control system is wired to ensure that cyclin-
CDK activity does not rise too quickly. As discussed earlier, DNA
replication is sensitive to high CDK activity and needs to be
completed before cell division.

Increasing cyclin-CDK activity can in principle be accom-
plished by triggering additional sets of engines that push cyclin-
CDK activity to higher levels. Accordingly, the road to mitosis is
sometimes envisioned as a mountain. Approaching mitosis, the
slope of the mountain is very steep, reflecting the high levels of
CDK activity required for cell division (Fig. 3 A). The increasing
CDK activity observed in cycling cells is primarily due to the
presence of multiple positive feedback loops (Lindqvist et al.,
2009; Medema and Lindqvist, 2011; Pomerening, 2009). These

feedback loops ensure that once CDK activation is initiated, it
will autonomously continue to increase in an exponential fash-
ion, similar to a ball rolling down a mountain picking up speed
without the need for extra engines. As discussed, progressing
from an S-phase state to a G2-phase state requires the release of
a brake (DNA replication), rather than the generation of a new
trigger. Similarly, deficiencies in WEE1 or ATR/CHK1 advance
mitotic entry, revealing a poised state toward cell division that
needs to be restrained. Thus, mitotic entry per se does not re-
quire an extra engine or trigger in G2-phase, but instead might
involve a single trigger in G1-phase and a set of counteracting
brakes. These molecular brakes ensure that CDK activation oc-
curs in a stepwise manner and on par with the processes re-
quired for faithful cell division. For instance, CDK-dependent
FOXM1 phosphorylation is initiated early but plateaus during
S-phase, which postpones full activation of the promitotic
transcriptional program until after genome duplication
(Saldivar et al., 2018). We believe recent discoveries fit a model
in which the road to mitotic entry, instead of a steep climb,
resembles a well-monitored descent (Fig. 3 B). We here propose
a model in which the descent is controlled by three brake
modules that collectively determine CDK activity output and
thus the timing of mitosis (Fig. 3 C).

Instead of focusing solely on the source and amount of CDK
activity, we propose that it is more informative to think of the
cell cycle in terms of an energy landscape, as is frequently done
for chemical reactions, and for cell biology has been made
popular by the cellular route to differentiation (Takahashi, 2012;
Waddington, 1957). Because the signaling landscape in which a
given CDK activity acts is critical to its outcome, we propose that
the kinetics of the cell cycle relies on the condition of the road
and strength of the brakes rather than the power of the engine.
We discriminate a G1/S brake, a S/G2 brake, and an M-entry
brake. While all three brakes regulate CDK activity, they have
different effectors and act at different stages of the cell cycle. In
unchallenged conditions, the release of each brake corresponds
to a cell cycle transition.

G1/S brake
The G1/S brake prevents G1/S transition and ismainly controlled
by the anaphase-promoting complex/cyclosome (APC/C) ubiq-
uitin ligase. Activation of APC/C in mitosis triggers the separa-
tion of duplicated chromosomes and resets the cell cycle. The
APC/C complex triggers the degradation of many CDK activators
(including cyclin A, cyclin B, and PLK1) and thus constitutes a
major brake to cell cycle progression (Alfieri et al., 2017; Watson
et al., 2019). Recent data indicate that inactivation of the APC/C
complex occurs in a switch-like manner and precedes S-phase
entry (Barr et al., 2016; Cappell et al., 2016, 2018; Yuan et al.,
2014). Rising CDK activity in G1-phase, driven by D- and E-type
cyclins that are not targeted by APC/C, ultimately shuts off the
G1/S brake. CDK inactivates APC/C both directly (through in-
activating phosphorylations on CDH1, an activator of APC/C)
and indirectly (through induced expression of EMI1, a negative
regulator of APC/C; Hsu et al., 2002; Kramer et al., 2000; Lukas
et al., 1999). A dual negative feedback between APC/C and EMI1
generates a bistable switch: once a threshold level of CDK
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activity is reached, the G1/S brake is turned off in an irreversible
manner (Barr et al., 2016; Cappell et al., 2016, 2018). Linking
spiraling CDK activation to dual negative feedback loops ensures
full commitment into S-phase (Fig. 3 D).

S/G2 brake
The S/G2 brake requires DNA replication (Lemmens et al., 2018)
and acts via various substrates of ATR/CHK1 that counteract
CDK activation (Lemmens et al., 2018; Saldivar et al., 2018;
Sørensen et al., 2003). While the G1/S brake is controlled by
shifting double-negative feedback loops, the S/G2 brake is
manifested through a transient incoherent feed-forward loop.
Rising CDK2 activity promotes CDK1 activity and triggers the
initiation of DNA replication, which by itself constitutes a brake
on CDK1 activation. In other words, the cell pushes the gas and
brake at the same time, yet the brake is inherently transient.
Completion of DNA replication at the S/G2 transition resolves
the brake signal and allows activation of CDK1 and PLK1
(Fig. 3 D).

Current models suggest that ATR/CHK1 postpones the acti-
vation of CDK1 through Cdc25/Wee1 regulation, similar to the
response to DNA damage (Goto et al., 2019; Sørensen and
Syljuåsen, 2012). How PLK1 is suppressed during unperturbed
proliferation is not clear, but after DNA damage, PLK1 activity is

limited by dephosphorylation, disruption of Aurora A–Bora in-
teraction, and direct methylation (Bruinsma et al., 2017; Hu et al.,
2018; Li et al., 2019). In addition, PLK1 and CDK1 activity
are tightly interlinked, and suppression of one can affect the
other (Gheghiani et al., 2017; Lindqvist et al., 2009; Macůrek
et al., 2008; Seki et al., 2008; Thomas et al., 2016; Vigneron
et al., 2018). How quickly mitotic kinase activity builds up at
the S/G2 transition is likely linked to the kinetics of DNA rep-
lication completion: a cell that completes DNA replication effi-
ciently is expected to activate mitotic kinases promptly, whereas
a cell sustaining stalled forks is expected to activate CDK1 and
PLK1 relatively slowly, providing extra time to resolve DNA
replication issues before mitotic entry.

M-entry brake
Finally, cells are equipped with an M-entry brake that prevents
premature mitosis throughout interphase and is mostly con-
trolled byWEE1 and PP1/PP2A activities. The M-entry brake is a
composite brake module that acts both on CDK itself and on its
substrates. Similar to the G1/S brake, the M-entry brake is
controlled by dual negative feedback loops (Fig. 3 D). Both WEE1
and the PP1/PP2A phosphatases counteract CDK activity but are
also restrained by CDK activity. WEE1 inhibits CDK1 by direct
phosphorylation, but elevated levels of CDK1 activity (together

Figure 3. A brake model for cell cycle progression.
(A) Model 1 is based on multiple independent triggers
that initiate cell cycle engines and push the cell into
mitosis, akin to pushing a ball up a mountain. (B) Model
2 is based on a single trigger and multiple brakes that
restrain cell cycle engines and mitotic entry, akin to
braking a ball rolling down a mountain. (C) At least three
brake modules collectively determine cell cycle pro-
gression. Visualized as an energy landscape, the brakes
define the slope of the descent and thus the speed of the
ball rolling toward mitosis. (D) Basic signaling circuits of
the three brake modules controlling CDK activity (left)
and the timing of the respective brakes during the cell
cycle (right). The G1/S brake and M entry brake are
wired to CDK via double-negative feedback loops, and
eventually are overruled by self-amplifying CDK activity.
The S/G2 brake is wired to CDK via a transient inco-
herent feed-forward loop: CDK2 activity triggers DNA
replication, which inhibits CDK1, but the brake is in-
herently transient because it resolves the moment the
cell completes genome replication.
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with PLK1 activity) target WEE1 for degradation (Parker and
Piwnica-Worms, 1992; Watanabe et al., 2005). Similarly, the
PP2A-B55 phosphatase effectively counteracts CDK1 target
phosphorylation, yet elevated levels of CDK1 activity reduce
PP2A-B55 activity through the Greatwall kinase and the PP1
phosphatase (Dohadwala et al., 1994; Gharbi-Ayachi et al., 2010;
Grallert et al., 2015; Kwon et al., 1997; Mochida et al., 2010). The
M-entry brake thus functions as a constitutive counterweight to
the spiraling CDK activity, which raises the threshold for mitotic
entry and supports full commitment after the G2/M transition.

Together, these three brakes ensure a controlled stepwise
descent toward mitosis: the G1/S brake restricts CDK activity in
G1-phase, the S/G2 brake restricts CDK activity in S-phase, and
the M-entry brake suppresses CDK activity throughout inter-
phase and determines the final kinetics of mitotic entry (Fig. 3).
Defects in any of these brakes cause unrestrained CDK activa-
tion, which leads to hasty cell cycle progression and thus severe
errors in DNA replication and/or chromosome segregation
(Aarts et al., 2012; Beck et al., 2012; Brown and Baltimore, 2000;
Cappell et al., 2016; Labib and De Piccoli, 2011; Lemmens et al.,
2018; Niida et al., 2005; Sørensen and Syljuåsen, 2012;
Yamashita et al., 1990).

From “intrinsic checkpoint” to “intrinsic brake”
Given that the G1/S brake, S/G2 brake, and M-entry brake are
required for cell survival and rely on cues inherent to cell pro-
liferation (i.e., DNA replication and CDK activity oscillations),
we refer to these brakes as “essential” or “intrinsic” brakes.
These intrinsic brakes can also be called “checkpoints” by the
original definition given by Hartwell and Weinert (1989) or as
redefined by Elledge (1996). The word “checkpoint,” however,
has led to confusion in the field because it traditionally refers to
a predefined point or barrier on a street or path that can only be
passed if certain conditions are fulfilled. Using “checkpoints” to
describe cell cycle regulation thus implies that cellular status is
checked at defined moments (e.g., just before cell cycle tran-
sitions) and that the approach leading up to these checkpoints is
not monitored. For example, the terms “S-M checkpoint” or
“S/G2 checkpoint” could imply that DNA replication status is
monitored just before mitotic entry or S/G2 transition, respec-
tively (Eykelenboom et al., 2013; Saldivar et al., 2018). However,
the factors that enforce the cell cycle delay (i.e., ATR/CHK1) are
active throughout S-phase and cause oscillating CDK activities
well before S/G2 transition (Daigh et al., 2018; Lemmens et al.,
2018; Michelena et al., 2019; Saldivar et al., 2018). We therefore
favor the use of “brake” terminology, instead of “checkpoint”
terminology. The timing of cell cycle transitions can be ex-
plained by the sequential release of three essential brake signals
that counteract CDK activation (Fig. 3).

Extra brakes in case of emergency
Thus far we have mainly focused on the intrinsic signaling
circuits that determine cell cycle progression, but cell prolifer-
ation is highly sensitive to external cues. A multitude of devel-
opmental or experimental conditions can slow down or arrest
the cell cycle (Edgar and Lehner, 1996; Elledge, 1996; Kipreos and
van den Heuvel, 2019). As a result, the term “checkpoint” has

gained a secondmeaning in cell biology, referring to a halt in cell
cycle progression due to external stresses. Most famous among
this second class of checkpoints are the DNA damage check-
points, which prevent G1/S and G2/M transition upon DNA
damage (Cuadrado et al., 2009; Falck et al., 2001; Gutierrez et al.,
2010; Jackson and Bartek, 2009; Mirzayans et al., 2012; Privette
and Petty, 2008; Zarubin and Han, 2005). Examples of effectors
of DNA damage checkpoints are ATM and the p53-p21 axis,
which are critical for maintaining genome integrity but are not
required for cell cycle progression per se (Bartkova et al., 2006;
Sancar et al., 2004; Zhou and Elledge, 2000). Although a DNA
damage checkpoint can be induced by a single DNA break (van
den Berg et al., 2018), low levels of DNA damage are often not
sufficient to sustain a cell cycle arrest (Deckbar et al., 2007,
2010; Syljuåsen et al., 2006). In G2-phase, this depends on the
self-amplifying properties of promitotic signaling, which even-
tually overcomes checkpoint signaling (Jaiswal et al., 2017; Liang
et al., 2014). Apart from strengthening CDK activity, in partic-
ular PLK1 can by multiple means counteract checkpoint kinases
(Mailand et al., 2006; Mamely et al., 2006; Peschiaroli et al.,
2006; Syljuåsen et al., 2006; van Vugt et al., 2004, 2010). The
G2 DNA damage checkpoint therefore delays rather than blocks
mitosis, arguing that also DNA damage checkpoints can function
as brakes rather than strict checkpoint barriers. The cell cycle
thus is controlled by two distinct classes of brakes: (a) “essential”
brakes that are inherent to the cell cycle and (b) “emergency”
brakes that are conditional and come into play upon stress.
Examples of brake effectors for each class are depicted in Fig. 4.
The process of DNA replication can modulate the timing and
amplitude of both types of brakes. For instance, DNA replication
triggers ATR/CHK1 signaling (Lemmens et al., 2018; Saldivar
et al., 2018; Sørensen et al., 2003) but also p21 degradation
(Abbas et al., 2008; Coleman et al., 2015), substantiating a tight
link between genome duplication and cell cycle progression.

Concluding remarks
The activities capable of copying a living cell have intrigued
scientists for decades, and through the years many fundamental
concepts of the cell cycle have been exposed (Baserga, 1965;
Dephoure et al., 2008; Nurse, 1990; Ohta et al., 2016; Stern and
Nurse, 1996). One key feature of cycling cells is the distinct surge
of DNA incorporation in S-phase, in which the cell duplicates its
genome before cell division. It is now clear that DNA replication
is not just an output of the cell cycle, but in fact feeds back into
the signaling networks controlling mitotic entry. Linking DNA
replication to the mitotic entry network dismisses the need for
separate triggers while allowing temporal separation. We pro-
pose a cell cycle model based on a single trigger, which together
with a set of three molecular brakes generates distinct waves of
protein activities. This brake model can explain gradual cyclin-
CDK activation and distinct phase transitions, as well as com-
mitment to complete the cell cycle once initiated.

Many aspects of this model require further study. Are there
situations in which additional triggers are needed? What is the
molecular identity of the DNA replication intermediate post-
poning mitosis? How can DNA replication impose differential
regulation on different cyclin-CDK complexes? What systems
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properties are emerging for the S/G2 transition, and how does
that affect signaling sensitivity and stability? Moreover, while
we propose three basic brake circuits controlling CDK activa-
tion, more work is needed to determine their exact wiring.
Understanding the nature of these brake modules will help ex-
plain and predict the kinetics and behaviors of the different cell
cycle transitions. The current pace of discoveries in the cell cycle
field is encouraging, and the continuous development of time-
resolved technologies at single-cell resolution will surely further
our understanding of how cells establish concerted waves of
protein activities to control the road to cell division.
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limitations of the G1-S checkpoint. Cancer Res. 70:4412–4421. https://doi
.org/10.1158/0008-5472.CAN-09-3198

Dephoure, N., C. Zhou, J. Villén, S.A. Beausoleil, C.E. Bakalarski, S.J. Elledge,
and S.P. Gygi. 2008. A quantitative atlas of mitotic phosphorylation.
Proc. Natl. Acad. Sci. USA. 105:10762–10767. https://doi.org/10.1073/pnas
.0805139105

Dohadwala, M., E.F. da Cruz e Silva, F.L. Hall, R.T. Williams, D.A. Carbonaro-
Hall, A.C. Nairn, P. Greengard, and N. Berndt. 1994. Phosphorylation
and inactivation of protein phosphatase 1 by cyclin-dependent kinases.
Proc. Natl. Acad. Sci. USA. 91:6408–6412. https://doi.org/10.1073/pnas.91
.14.6408

Duda, H., M. Arter, J. Gloggnitzer, F. Teloni, P. Wild, M.G. Blanco, M. Alt-
meyer, and J. Matos. 2016. A Mechanism for Controlled Breakage of
Under-replicated Chromosomes during Mitosis. Dev. Cell. 39:740–755.
https://doi.org/10.1016/j.devcel.2016.11.017

Edgar, B.A., and C.F. Lehner. 1996. Developmental control of cell cycle reg-
ulators: a fly’s perspective. Science. 274:1646–1652. https://doi.org/10
.1126/science.274.5293.1646

Elledge, S.J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science.
274:1664–1672. https://doi.org/10.1126/science.274.5293.1664

Eykelenboom, J.K., E.C. Harte, L. Canavan, A. Pastor-Peidro, I. Calvo-Asensio,
M. Llorens-Agost, and N.F. Lowndes. 2013. ATR activates the S-M
checkpoint during unperturbed growth to ensure sufficient replication
prior tomitotic onset. Cell Reports. 5:1095–1107. https://doi.org/10.1016/j
.celrep.2013.10.027
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