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SUMMARY

Experimental and computational efforts are constantly made to elucidate
mechanisms controlling cell fate decisions during development and reprogram-
ming. One powerful computationalmethod is to consider cell commitment and re-
programming as movements in an energy landscape. Here, we develop Computa-
tion of Energy Landscapes of Logical Gene Networks (CELLoGeNe), which maps
Boolean implementation of gene regulatory networks (GRNs) into energy land-
scapes. CELLoGeNe removes inadvertent symmetries in the energy landscapes
normally arising from standard Boolean operators. Furthermore, CELLoGeNe
provides tools to visualize and stochastically analyze the shapes of multi-dimen-
sional energy landscapes corresponding to epigenetic landscapes for develop-
ment and reprogramming.We demonstrate CELLoGeNe on twoGRNs governing
different aspects of induced pluripotent stem cells, identifying experimentally
validated attractors and revealing potential reprogramming roadblocks.
CELLoGeNe is a general framework that can be applied to various biological sys-
tems offering a broad picture of intracellular dynamics otherwise inaccessible
with existing methods.

INTRODUCTION

The human body contains more than 200 different types of cells, which is a small number compared to the

approximately 1013 cells in total (Alberts et al., 2008). The distinguishing feature between different cell

types is which genes are activated, or expressed. In natural development, cells can only transition from

pluripotent cells into more specialized cells, a process governed by changing gene expressions. However,

experimental efforts have been made to reprogram cells, from specialized cells into pluripotent cells or

other specialized cell types directly; for instance (Davis et al., 1987; Xie et al., 2004; Takahashi and Yama-

naka, 2006; Takahashi et al., 2007; Zhou et al., 2008; Aasen et al., 2008; Kim et al., 2009; Loh et al., 2010;

Szabo et al., 2010; Staerk et al., 2010; Vierbuchen et al., 2010; Ieda et al., 2010; Huang et al., 2011). Cell re-

programming is conducted by forcing expression of transcription factors (TFs); for recent overviews see

(Aydin and Mazzoni, 2019; Wang et al., 2021). In particular, Takahashi and Yamanaka showed that it is

possible to reprogram adult fibroblasts to induced pluripotent cells (iPSCs) by forcing the expression of

just four TFs (Oct4, Klf4, Sox2, and c-Myc) in both mouse and human cells (Takahashi and Yamanaka,

2006; Takahashi et al., 2007). However, conversion rates are poor with many roadblocks in the reprogram-

ming paths (O’Malley et al., 2013; Chantzoura et al., 2015). Many computational efforts have been made to

elucidate the intricate gene regulatory networks (GRNs) governing cell decisions and reprogramming; for

example (Reinitz et al., 1995; Gardner et al., 2000; Chen et al., 2000; Chickarmane et al., 2012; Dunn et al.,

2014, 2019; Xu et al., 2014; Olariu et al., 2016,2017a,2017b).

The human genome is estimated to contain at least 30,000 genes (Roest Crollius et al., 2000), which either

can be expressed at various levels or not expressed at all. Taking the whole genome with a continuous

expression level into account when constructing a model for reprogramming is not feasible because of

the vast space of possible gene expression patterns a cell can exhibit. Fortunately, there are quite a few

simplifications that can be performed, which still yield good results. In a model, it is often possible to

only consider a handful up to a few dozens of genes shown to play an important role in the reprogramming

process, depending on the complexity of the proposed model. However, the gene expression space still

has an infinite amount of points, leading to another common simplification, namely, binarizing the gene

expression into either being OFF (0) or ON (1). This type of binary representation was pioneered and

studied already in the ’60s and ’70s (Jacob and Monod, 1961; Sugita, 1963; Kauffman, 1969; Thomas,
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1973). With this simplification, the gene expression space is reduced to a finite space with 2N states, where

N is the number of genes used in the model. Such Boolean models have been previously explored, see

(Mendoza et al., 1999; Fauré et al., 2006; Davidson, 2010; Peter et al., 2012).

Considering cell commitment and reprogramming asmovements in an energy landscape is a powerful tool for

analyzing decisions, which has been used in several previous studies (Bhattacharya et al., 2011; Wang et al.,

2011; Zhou et al., 2012; Mojtahedi et al., 2016; Olariu et al., 2017a; Corson and Siggia, 2017; Sáez et al.,

2021). Energy landscapes have their roots in a qualitative metaphor for cell fate decisions where

Waddington envisaged pluripotent cells as marbles at the top of a hill, whereas cell differentiation was

represented by them rolling down different available paths on the valleys and eventually stopping at a special-

ized state (Waddington, 1957). Energy landscapes are based on the same conceptual idea, but with a quanti-

tativemapping fromGRNs. Each theoretically possible cell state is assigned a specific energy value depending

on thegenes’ activation statuses andhowtheyare regulatedaccording to theGRN. Inphysics, energy is aquan-

tity that is as small as possible when a system is completely relaxed. Hence, low energies are awarded to cell

states where the network is ‘‘comfortable’’, i.e., where the gene expressions and regulatory forces agree,

and conversely for high energies. In this paradigm, cell states correspond to the minima in the landscape,

i.e., attractors in the landscape where the metaphoric marbles come to a stop. Cell fate decisions are, hence,

represented by the attractors’ basins of attraction, which include all those states from which the marbles

inevitably will roll down into the attractors; when a marble has entered a basin it cannot escape.

Here, we develop CELLoGeNe (Computation of Energy Landscapes of Logical Gene Networks), which

maps Boolean implementation of GRNs into energy landscapes. Applying standard Boolean rules is

accompanied by symmetries that may not be desired. CELLoGeNe solves this issue by implementing a

three-state extension to Boolean logic where a gene’s expression (ON or OFF) is decoupled from its effect

on a target gene (positive (+ 1), negative (� 1), or neutral (0), see STAR Methods-Logical representation

and STAR Methods-Three-state logic.

An energy landscape is a function with as many dimensions as the number of genes (N) considered in the

GRN. This leads to visualization challenges. CELLoGeNe provides a tool to plot multi-dimensional discrete

energy landscapes (up to seven dimensions before the plot becomes too cluttered). This is achieved by

considering each binary cell state as a corner on an N-dimensional hypercube, which is flattened out to

two dimensions.

In order to analyze the strengths of the basins of attractions, we implemented a stochastic method that

probes the shape of the energy landscape through weighted random walk. In essence, we release a large

number of the metaphorical marbles at each cell state of the energy landscape, add a noise level, and re-

cord at which state they stop. This yields the probability of reaching the different attractors from each state

of the landscape. By specifically analyzing howmarbles maymove from one attractor to another when noise

is included, one effectively analyses cell development and reprogramming.

We applied CELLoGeNe to a GRN governing maintenance and self-renewal of pluripotency (Dunn et al.,

2014). Here, we identify attractors that are experimentally validated (Dunn et al., 2014), establishing that

energy landscapes computed by CELLoGeNe indeed can correspond to experimental findings. Thereafter,

we applied CELLoGeNe to a GRN controlling reprogramming from mouse embryonic fibroblast (MEF) to

iPSCs. The topology of the network was extracted from experimental and computational results published

by our laboratories and others. We identified known cell states as attractors and a few additional attractors

that predict the existence of potential bottlenecks in cell reprogramming.

CELLoGeNe is a general framework that can be applied to various biological systems controlled by a reg-

ulatory network. An important strength of CELLoGeNe is that it provides a broad picture of intracellular

dynamics, as opposed to existing methods like solving systems of rate equations where it is hard to find

all potential stable states. In fact, CELLoGeNe is not confined only to biology applications as it can be

applied to any system that is governed by a logical regulatory network.
RESULTS

The state of the art of computationally studying cell reprogramming consists of twomodeling strategies: (1)

Dynamical systems approach – constructing rate equations for change in gene expression and numerically
2 iScience 25, 104743, August 19, 2022
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Figure 1. CELLoGeNe Workflow and Visualization of High-Dimensional Discrete Energy Landscapes

(A) Flowchart illustrating the main workflow of CELLoGeNe.

(B) Illustration of step-wise construction of an energy landscape in 1 to 5 dimensions, where the number of dimensions is the same as the number of genes in

the corresponding GRN. A landscape of dimension N consists of two instances of the landscape of dimension N � 1, one black and one red, which are

connected with the grey lines.

(C) A landscape node for a 5-dimensional energy landscape indicating the expression statuses of the 5 genes A to E, in this case A= OFF, B = ON, C = OFF,

D = ON, E = OFF.

(D) Example of a full energy landscape plot for a synthetic 4-dimensional landscape. Each landscape node represents a possible state of the logical cell

where the color of the node shows the energy value of that state, where the values are given by the color bar to the right. Each node is divided into four

sectors, where the sectors correspond to the genes as indicated in the legend state above the color bar. Filled sectors correspond to expressed genes

whereas white sectors correspond to unexpressed genes. The arrows connect neighboring states and point toward lower energies. The thickness of the

arrows is proportional to the magnitude of the energy gradient. Dashed lines illustrate flat segments in the landscape, i.e., two neighboring states having

the same energy value. The legend state to the right of the landscape indicates which sector corresponds to which gene and this is the same for all landscape

nodes.
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solve them finding stable states, (ii) Boolean approach – binarizing the GRN and logically updating the

network states until a stable state is reached (Olariu and Peterson, 2019). These two approaches suffer

from a drawback, namely, they do not provide an overview of all available stable states connected to a

GRN. This drawback can be overcome by calculating free energy landscapes linked to the GRN. To this

end, we developed CELLoGeNe, a method for translating Boolean models for GRNs into free energy land-

scapes. CELLoGeNe uses a three-valued logic which provides a better model of gene interactions when

translated to the energy picture.

Overview of CELLoGeNe

The structural workflow of CELLoGeNe is illustrated in Figure 1A. In order to apply CELLoGeNe to a prob-

lem, experimental gene expression data and a GRN topology are needed. The data must contain the gene

expressions for stable cell states which are binarized into gene expression ON (1) or OFF (0). These states

should appear as attractors in the energy landscape in order for the energy landscape to be considered

biologically plausible. The GRN may either be previously known, as they can be inferred from experiments

(Bolouri and Davidson, 2002; Hecker et al., 2009), or hypothetical topologies can be tested through
iScience 25, 104743, August 19, 2022 3
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CELLoGeNe and validated by experimental data. After the GRN topology is fixed, the logical combinations

of operators combining multiple input signals at the GRN nodes are identified (Figure 1A, STAR Methods-

Combining input signals with operators). This can either be done manually (by expert curation), or by lett-

ing CELLoGeNe test possible configurations, either exhaustively or stochastically (STAR Methods-Testing

configurations of operators). After the operators have been assigned, the energy landscape is calculated

by comparing the genes’ binary expression values with their corresponding resulting input signals for each

cell state (STARMethods-The discrete energy). The minima in the energy landscape, i.e., the attractors, are

compared to the binarized experimental data. If the binary expression profiles of the known cell states are

not present as minima in the energy landscape, the search through possible combinations of logical oper-

ators is continued. However, if the search was exhaustive, then the GRN topology does not agree with the

experimental data and should be further optimized. If the known cell states are present in the landscape,

i.e., the data and energy landscape agree, it means that the landscape could be biologically plausible

and can be further analyzed (Figure 1A). The analysis includes finding all minima in the energy landscape

which provides predictions for cell states which could play a role as barriers in cell transitions between

experimentally identified attractors. CELLoGeNe also provides a stochastic method for analyzing the

basins of attraction for each landscape minimum (STAR Methods-Marble simulations).

Moreover, we developed a visualization tool, enabling us to depict energy landscapes withmore than three

dimensions (Figures 1B–1D). In essence, each cell state must be connected to all its neighboring cell states,

where a neighboring state only differs in one gene expression value, i.e., a cell state has as many neighbors

as genes in the GRN. Then it is only a matter to structure the states and their connections between neigh-

bors in an ordered way, as shown in Figure 1B for 1 to 5 genes. Each cell state is represented by a node

which is divided into as many sectors as the number of genes (Figure 1C). Each sector is either colored

or white to represent if a sector’s corresponding gene is ON or OFF. An example of a full energy landscape

plot for a 4-gene system is shown in Figure 1D. Here, the color of a cell state indicates the energy value of

that cell state, as mapped by the color bar to the right. Neighboring cell states are now connected by

arrows where the arrow thickness is proportional to the energy difference between the states. If two neigh-

boring cell states have the same energy, it is represented by a dashed line. The landscape plot is accom-

panied by a labeled cell state in the top right which shows which sector corresponds to which gene and it

applies to all cell states. For full details on this visualization technique, see STAR Methods-Visualisation of

high-dimensional energy landscapes.
Demonstration on a toy model

In the following section, we demonstrate CELLoGeNe by applying it to a toy model. We consider the GRN

in Figure 2A, with five genes (nodes) A to E with (➛) depicting activation and (x) repression. A five-gene

GRN results in 25 = 32 possible cell states. We use CELLoGeNe to compute an energy landscape. Given

a configuration of operators, the energy of each cell state is calculated by adding together the contribu-

tions from each gene. Each gene in a cell state contributes with a low energy (� 1) if its expression value

agrees with the resulting input signal given by the logical operators and the input genes whereas a high

energy (+ 1) is assigned in case of disagreement. In the case of no resulting input signal, we assign a neutral

energy (0).

As outlined above, the two prerequisites for applying CELLoGeNe is to have a GRN and experimental data;

however, because this is a toy model, we do not have any gene expression data. Hence, we introduced

synthetic constraints by considering the states (A = OFF, B = ON, C = ON, D = OFF, E = ON) and (A =

ON, B = OFF, C = ON, D = ON, E = ON) as attractors, depicted as blue and red in Figure 2C. Note that

these states correspond to 10110 and 11101 respectively in the binary number representation (STAR

Methods-Binary representation of genes). The next step is to assign logical operators to combine the input

signals. For instance, gene C receives input both from gene B and E (Figure 2A), thus the dual signal must

be combined with an operator into a single signal (STARMethods-Combining input signals with operators).

Different operators combine the effect of the input genes differently; therefore, the energy landscape

depends on the operators used. For simplicity, we here only considered the two operators n and ^ as

defined in STAR Methods-Combining input signals with operators. CELLoGeNe constructed the energy

landscape for each possible configuration of these two operators (STAR Methods-The discrete energy),

and we picked one valid configuration which yielded an energy landscape fulfilling the synthetic constraints

(Figure 2B). The full energy landscape is displayed in Figure 2D and the found attractors are summarized in

Figure 2C. Each landscape node represents a cell state, and each cell state is denoted by a pie chart. If the
4 iScience 25, 104743, August 19, 2022
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Figure 2. Applying CELLoGeNe on a Toy Model

(A) A GRN for a simple 5-gene toy model.

(B) Example of a configuration of logical operators yielding an energy landscape which fulfils a set of synthetic constraints.

(C) The synthetic constraints used and the resulting attractors for the energy landscape computed from the configuration in B.

(D) The energy landscape corresponding to the configuration of logical operators displayed in B. Each landscape node represents a possible state of the

logical cell where the color of the node shows the energy value of that state, given by the color bar to the right. Each node is divided into five sectors, where

each sector corresponds to the five genes as indicated by the legend above the color bar. Filled sectors correspond to expressed genes whereas white

sectors correspond to unexpressed genes. The arrows connect neighboring states and point toward lower energies. The thickness of the arrows depends on

the magnitude of the energy gradient. Dashed lines illustrate flat segments in the landscape, i.e., the two neighboring states having the same energy value.

The arrows to the three attractors in the landscape are color-coded. The colored ring around each landscape node shows in which basins of attraction the

node resides.

(E) Overview of the basin sizes and relative strengths given from marble simulations. The colored fields represent the probability of reaching the different

attractors for all possible initial states. The initial states are displayed in a continuousmanner on the horizontal axis. The plot is divided into three segments to

highlight how large fraction of the initial states each of the attractors is the dominating attractor. The states are ordered with increasing probability of

reaching the dominating attractor to the right. 10,000 marbles were initialized in each state with noise level b = 1:0. The simulations were repeated three

times and the error band indicates the standard deviations.

(F) Simulated reprogramming with marble simulations using the same settings as in E. Each panel shows the probability distribution of reaching the different

attractors when initialized in the blue, green, and red attractors respectively. The simulations were repeated three times and the error bars indicate the

standard deviations.

ll
OPEN ACCESS

iScience
Article
piece of pie corresponding to, e.g., gene A (see the legend in the top right corner of Figure 2D) is filled with

a color, it means that gene A is expressed. The color of the node reflects the energy value of that cell state,

with energy levels given by the colour bar to the right in Figure 2D. Neighboring states are connected

with arrows, where their thickness is proportional to the magnitude of the energy difference between those

states. Dashed lines illustrate neighboring states with the same energy, i.e., flat areas of the energy

landscape. For more details on the construction of landscape plots, see STAR Methods-Visualisation of

high-dimensional energy landscapes.

In addition to the attractors given by the synthetic constraints (blue and red), we identified another attractor

in the landscape (green). Because the green state is not previously known, CELLoGeNe predicts that a

stable state with only genes B and D ON should exist for this system. In addition, the red state has a neigh-

boring state with the same energy value, i.e., the state is a degenerate attractor. A degenerate attractor

state suggests that the gene which can be either ON or OFF, in this case gene C, does not affect that
iScience 25, 104743, August 19, 2022 5
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specific cell type. Because the blue attractor has lower energy than both the red and green attractors, it

presumably is a stronger attractor. Note that energy � 5 (�N in general) means that all the genes’ expres-

sion values in the cell state agree with their input signal and + 5 (+N) means that all disagree.

The colored circle around each landscape node (Figure 2D) shows which attractors are possible to reach

from the particular cell state by following the direction of the arrows or dashed lines, i.e., the basins of

attraction. To investigate the basins’ relative strengths, we developed a stochastic method to analyze

the probability of reaching each attractor from each cell state (STAR Methods-Marble simulations). In prin-

ciple, we let a metaphorical marble perform a weighted random walk in the landscape. At each step, the

marble either rolls in one random direction, with a probability given by the difference in energy of

the neighboring states, or does not move. One marble simulation corresponds to a single-cell dynamic

fate. We introduced a noise level so that the marble, with a small probability, also can roll uphill. If the

marble comes to a stop and stays in the same state for 3 updates, we consider the marble to have reached

a final state. The stochasticity of marble simulations captures cell-to-cell heterogeneity. By repeating such

simulations many times, the probability of reaching each attractor from a specific initial cell state is

obtained. These stochastic simulations with noise can form a bulk accounting for population average

experimental data allowing all attractors to be reached from each cell state, although, with different prob-

abilities. For degenerate attractors, the probabilities of reaching each of the degenerate states are added.

Note that the degenerative states should have the same probability of being reached because they have

the same energy level. The result from these simulations is presented in Figure 2E shows the probability of

reaching the different attractors from each initial state. In principle, each state could have been repre-

sented by a separate and labeled bar; however, because this kind of plot should be extendable to several

thousands of cell states instead of 32, we chose to represent the cell states in a continuous and unlabelled

manner. The plot is divided into three sections corresponding to different dominating attractors, e.g., the

blue attractor is dominating in the left section. The initial cell states are ordered so that the probability of

reaching the dominating attractor is increased to the right. This plot provides a qualitative illustration of the

strength of each attractor. At the top of Figure 2E, there is a small grey band, which means that for a small

fraction of simulations, the marble stopped at other states than any of the three attractors. This is because

of noise in the simulations.

In cell reprogramming, a cell transition from one stable cell type to another. In our framework, this corre-

sponds to the marble moving from one landscape attractor to another. The noise level perturbs the marble

out from the attractor, which then either rolls back or away into another attractor (Figure 2F). Note that

the three initial attractor states highlighted in Figure 2F are also present in Figure 2E. In this landscape,

the blue attractor corresponds to a cell state which is more difficult to reprogram from. The green and

red attractors represent cell states amenable to be reprogrammed towards the blue cell type.
Maintenance of naı̈ve pluripotency

In this section, we apply CELLoGeNe to a GRN governing self-renewal and maintenance of naı̈ve pluripo-

tency in mouse embryonic stem (ES) cells. In vitro, mouse ES cells can self-renew indefinitely, without losing

their differentiation capacity into all three germ layers, in certain culture conditions including medium con-

taining leukemia inhibitory factor (LIF), inhibitor of glycogen synthase kinase 3 (CHIR99021, CH), and inhib-

itor of mitogen-activated protein (PD0325901, PD), where the latter two are together often referred to as

two inhibitors (2i) (Ying et al., 2008). A minimal GRN controlling maintenance of mouse ES cells in four com-

binations of media LIF +CH+PD, CH+PD, LIF +CH, LIF +PD was put forward by (Dunn et al., 2014). Here,

we apply CELLoGeNe to the published minimal GRN and use the available binarized expression data for

each stable state for the four combinations of medium components (Figures 3A and 3C).

The GRN (Figure 3A) consists of 15 nodes: 12 TFs and 3 medium components acting as input nodes. In the

CELLoGeNe framework, all of these are treated equally and are referred to as genes. In this case, there are

215 = 32 768 possible cell states, which is considerably more than the 32 in the toy model. Furthermore,

because most of the GRN nodes have multiple inputs, there are more than 28 trillion configurations of op-

erators (the exact number of possible configurations is 28 179 280 429 056 � 1013) when using all 6 of the

proposed operators (STAR Methods-Configurations of operators).

With this amount of possible configurations, it is not computationally feasible to exhaustively test all con-

figurations; hence, we performed exhaustive searches for cases when we considered only three sets of two
6 iScience 25, 104743, August 19, 2022
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Figure 3. Applying CELLoGeNe on a Network Governing Maintenance of Pluripotency

(A) GRN describing maintenance of pluripotency (Dunn et al., 2014). Black arrows represent activation, whereas blunted

red arrows represent repression.

(B) Chosen configuration of logical operators.

(C) Experimental constraints (Dunn et al., 2014) and the resulting attractors from CELLoGeNe.

(D) Energy landscape where groups of genes have been collected into the same nodes (see legend in the top-right). Each

landscape node represents a possible state of the logical cell where the color of the node shows the energy value of that state,

where the values are given by the color bar to the right. Each node is divided into seven sectors, where the sectors correspond

to the genes as indicated in the legend. Filled sectors correspond to expressed genes whereas white sectors correspond to

unexpressed genes. The arrows connect neighboring states and point toward lower energies. The thickness of the arrows is

proportional to the magnitude of the energy gradient. Dashed lines illustrate flat segments in the landscape, i.e., two

neighboring states having the same energy value. The connections to the attractors of the landscapes are color-coded.

(E) Overview of the relative basin sizes and strengths given from stochastic marble simulations. The colored fields

represent the probability of reaching the different attractors for all possible initial states. The initial states are displayed in

a continuous manner on the horizontal axis. The plot is divided into two segments to highlight how large fraction of initial

states each of the attractors is the dominating attractor. The states are ordered with increasing probability of reaching the

dominating attractor to the right. 100 marbles per initial state were simulated with noise-level b = 1:5 and the simulations

were repeated three times.

(F) Simulated differentiation corresponding to transferring a stable cell population to a different medium. Each panel

shows the distribution of final attractors reached by marbles initialized from the different attractors. The marbles could

not change media in these simulations. Noise-level b = 1:5 was used with 10 000 marbles per initial state and the

simulations were repeated three times. The error bars indicate the standard deviations.

(G) The five disconnected energy landscapes illustrating differentiation of cells transferred between media.

ll
OPEN ACCESS

iScience
Article
operators { n , ^ }, { n , ^ } and { [ , Y }. Moreover, we stochastically tried 106 configurations with all

operators. No configurations from the three two-operator sets yielded energy landscapes where all

four experimental constraints (Figure 3C) were fulfilled. In the stochastic search, the state in LIF + CH+

PD was the most prevalent attractor occurring in 46 % of the 1106 calculated energy landscapes (Fig-

ure S1A). Thus, the GRN seems extremely robust when it comes to maintaining pluripotency in LIF +

CH+PD. Also the stable state in LIF +CH was one of the 10 most prevalent attractors, occurring in 23 %

of the landscapes. In total, 163 valid configurations were found. Three of them (Figure S1B) were deemed

more plausible than the others because they had lower degeneracy in the attractors. However, none of

these configurations were biologically satisfactory when the operator combinations were scrutinized.

Firstly, all three configurations required that both CH and MEKERK are ON in order to repress Tcf3.

This is not reasonable because the presence of PD inhibitsMEKERK , therefore leaving CH without any ef-

fect on Tcf3, which is against the known behavior of CH. Secondly, in some instances, repressive input is

effectively used as activation. An example of this can be seen in the input for Oct4 in Configuration 2:

Oct4)ðSox2 Y Klf2Þ^Esrrb. Here, Oct4 can only receive an activation signal if all three input genes

are ON, even the repressive Esrrb. There is no way to receive repression ofOct4 from Esrrbwith this config-

uration. Thirdly, in some cases, an inhibitor and an activator are combined with an ^ -operator, i.e., both

the activator and inhibitor must be ON in order for the target gene to receive a repressive signal. An

example of this can be seen in Configuration 3 for Tf cp2l1)
��

Stat3n
�
Esrrb^Oct4

��
^Klf4

�
nTcf3,

where both the activating Esrrb and repressive Oct4 must be ON for Tf cp2l1 to be repressed by Oct4,

effectively turning Esrrb into a repressor.

To avoid unreasonable configurations, we manually curated a configuration (Figure 3B), where none of the

repressors effectively worked as activators or needed an activator in order to repress its target, and where

CH had the authority to inhibit Tcf3 on its own. Although the curated configuration is not unique, the alter-

native configurations respecting all the constraints will produce similar landscapes qualitatively. The result-

ing attractors are presented in Figure 3C. Note that the experimentally stable state in LIF +CH (orange) is

not an attractor in the energy landscape. Nonetheless, we do not consider this to be a problem. The GRN

(Figure 3A) cannot produce the orange state as a single attractor while still following the reasoning about

repressors above because it is very close to the stable state in LIF +CH+PD (blue). The only non-media

gene that differ between the experimentally stable states blue and orange is MEKERK (MEKERK = OFF

in blue and MEKERK = ON in orange). Thus, when PD= OFF, then MEKERK is free and can be either

ON or OFF with the same energy, which corresponds to the same state as blue except in another medium.

This is clearly illustrated in the energy landscape plot (Figure 3D) (in order to not get an incomprehensibly

large plot, we merged groups of genes into shared dimensions as denoted by the legend to the right in

Figure 3D). Here, it is clear that the orange state in LIF +CH and the blue state in LIF +CH+PD only differ
8 iScience 25, 104743, August 19, 2022
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by two genes, and the landscape is flat for changing MEKERK (orange dashed line in the direction of 11

o’clock). Then changing medium from PD= OFF to PD= ON is favorable in energy but cannot happen

spontaneously in experiments. Therefore, the transition between orange and blue states is not possible

automatically because it implies a media change which cannot be conducted by the cell. In Figures 3F

and 3G we instead simulated the scenario where a cell colony is manually transferred between different

media.

The manually curated configuration predicts an additional stable state, labeled ‘‘Extra’’ with cyan color in

Figure 3. This state is in LIF +PD medium but is not a pluripotent state. Only Klf2 of the pluripotent genes

(the pluripotent genes are here considered to beOct4, Sox2,Nanog, and Klf2) is ON. However, this attrac-

tor is very weak as shown by the marble simulations (Figure 3E). The strongest attractor is the blue state in

LIF +CH+PDmedia, which can be reached from all initial states and is the dominating attractor for approx-

imately 80% of the states. The red attractor in LIF +PD is the dominating attractor for around 20% of the

states. The orange LIF +CH state is fairly even, but with a low probability of being reached from all initial

states. The green CH+PD attractor, on the other hand, is quite weak and can practically only be reached

from about half of the states, suggesting that it is easier to maintain the pluripotency with LIF present. The

fact that the blue attractor is found to be the strongest one is in good agreement with the results from

(Dunn et al., 2014) where it was shown that ES cells cultured in LIF +CH+PD are remarkably robust.

Over the whole domain, there is a 5 to 15% probability of reaching other states than the attractors. This

probably is a sign that large regions of the energy landscapes are flat. This might correspond to sponta-

neous exit from pluripotency towards somatic or other unidentified cell fates.

Finally, we performed simulations representing transferring a cell colony cultured in one medium to

another as done experimentally in (Dunn et al., 2014). This is done with the marble simulations, but with

constraints prohibiting the marble to roll in a direction that changes the medium. The simulations take

place on different, disconnected, parts of the energy landscape (Figure 3G), which can be thought of as

an in silico version of putting cell cultures on a plate containing a specific medium in vitro. Simulations

were performed for each of the 25 possible combinations of initial attractors and media (including absence

of medium). The resulting attractor distributions are displayed in Figure 3F where the medium is the

same in each row, and the initial state is the same in each column. This model simulation predicted that

the blue state is the strongest attractor, even in other media than LIF +CH+PD. The reason for this can

be seen in the energy landscapes with disconnected media (Figure 3G). Blue is the sole minimum in three

of the media, and a degenerate minimum together with orange in LIF +CH. It is only in the landscape with

no medium where blue is not a minimum, being replaced by orange.

Merging groups of genes for visualization purposes has the disadvantage that the resulting landscape plot

is not an exact representation of the energy landscape as the neighboring nodes in the merged landscape

are not neighboring cell states (neighboring cell states have Hamming distance 1, e.g. the states 10010 and

10011 in a 5-gene system). For this reason, the green state, for instance, does not appear as a minimum in

the CH+PD landscape. From the green state, there is lower energy in the neighboring state where Gbx2,

Klf4 and Stat3 are all ON; however, in the full landscape, a neighboring state only changes one gene’s

expression. This is also the reason why the cyan attractor has an arrow pointing towards the red attractor

in Figure 3D; the cyan and red attractors are neighbors in the merged landscape, but not in the full. Even

though these merged landscapes do not reveal connections between direct neighbors, they are still very

useful for an illustrative purpose as they show themain directions in the landscape, which is important in the

stochastic marble simulations.

The disconnected landscapes (Figure 3G) explain the attractor distributions. For instance, the green attrac-

tor is stronger for the green initial state in CH+PD than in LIF +CH+PD. Comparing the corresponding

landscapes, there is a larger energy difference between the green and blue state in LIF +CH+PD than

in CH+PD, illustrated both by the color scale and the thickness of the arrow, yielding higher probability

for cells to move from the green state to the blue. The situation is similar for the red and blue states in

LIF +PD compared to the other media. The orange and blue states are degenerate in LIF +CH (Figure 3G

- blue and orange dotted line), which corresponds to the third row of Figure 3F where reaching the blue and

orange states has the same probability, with a slight bias towards the initial state. The orange state is the

strongest attractor state when simulating the no-medium scenario. Experimentally, only MEKERK should

be ON in the absence of media (Dunn et al., 2014). However, the presence of the orange state as an
iScience 25, 104743, August 19, 2022 9
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Figure 4. Applying CELLoGeNe on a Network Controlling Reprogramming from MEF to iPSC

(A) GRN describing reprogramming of fibroblasts to iPSC. Black arrows represent activation, while blunted red arrows represent repression.

(B) Chosen configuration of logical operators.

(C) Experimental constraints (O’Malley et al., 2013) and attractors of the energy landscape.

(D) Overview of the relative basin sizes and strengths given from stochastic marble simulations. The colored fields represent the probability of reaching the

different attractors for all possible initial states. The initial states are displayed in a continuous manner on the horizontal axis. The plot is divided into

segments to highlight how large fraction of the initial states each of the attractors is the dominating attractor. The states are ordered with increasing

probability of reaching the dominating attractor to the right. 1000 marbles per initial state were simulated with noise-level b = 1:5 and the simulations were

repeated three times.

(E) Simulated reprogramming with each of the found attractors as initial states. The height of the bars represents the probability of ending up in an attractor.

The marble simulations were run with b = 0:7 and 10,000 marbles per initial state and were repeated three times. The error bars indicate the standard

deviations.
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attractor in the absence of media can be explained. In CELLoGeNe, when nomedium components are pre-

sent, bothMEKERK and Stat3 receive a neutral input signal. Then, it is clearly beneficial forMEKERK to be

ON and Tcf3 to be OFF because that agrees withMEKERKxTcf3. If all other genes areOFF (i.e., the cell

state with onlyMEKERK=ON), then only Tcf3 andNanog receive input signal and the cell state has energy

� 2. The local landscape area around this state is largely flat because many of the genes have no input

signal. Turning on Stat3 would in itself not yield lower energy, however, the state with all downstream tar-

gets from Stat3 turned ON would be beneficial, which corresponds to the orange state. It should be noted

that for the green initial state within no medium, CELLoGeNe identified a large fraction of ‘‘Other’’ states.

This is probably because of the green state already having many genes OFF, thus being close to the large

flat region around only MEKERK= ON.

When applied to a regulatory circuitry controlling self-renewal, CELLoGeNe uncovers the energy

landscape containing attractors that correspond to experimentally observed stem cell states under various

media. We managed to compress a multitude of experimental results into one framework, which provides

further details such as: (1) Assigned probabilities to possible stem cell states; (2) Identified most likely

destinations when perturbing a cell in a specific medium; (3) Provided plausible explanations for leakage

from pluripotency.

Reprogramming MEF to iPSC

A natural application of CELLoGeNe is analysis of cell reprogramming systems. Here, we apply

CELLoGeNe to a GRN governing the reprogramming of mouse embryonic fibroblasts (MEF) to induced

pluripotent stem cells (iPSCs). Reprogramming experimental protocols have low conversion rates because

of roadblocks preventing efficient reprogramming (O’Malley et al., 2013; Chantzoura et al., 2015). Using

CELLoGeNe, we can analyze the full energy landscape and find unknown potential bottlenecks. We first

applied CELLoGeNe to a GRN which has been updated from governing self-renewal and reprogramming

in Dunn et al. (2019). However, it was not possible to find any configuration of logical operators that fitted

our data. We used experimental data from four stable states MEF, 2NG�, 3NG�, and iPSC, where cells in

the 2NG� and 3NG� states tend to stay in the same states without progressing towards iPSCs (O’Malley

et al., 2013). After binarizing the data we found that 2NG� and 3NG� correspond to the same cell state (Fig-

ure 4C). Because CELLoGene applied to the GRN in (Dunn et al., 2019) could not find the stable states from

our data, we augmented the GRN with interactions found in literature concerning gene expression and

perturbation experiments of reprogramming systems, see Figure 4A and Table 1. Armed with our resulting

network, we succeeded in finding configurations yielding valid energy landscapes.

Our GRN (Figure 4A and Table 1) consists of 14 nodes, 13 TFs and 1 medium component, LIF, yielding

214 = 16 384 possible states. Since only LIF was used in our experiments (O’Malley et al., 2013), CH and

PD inputs were not considered. Because of many input signals for each gene, it becomes computationally

unfeasible to exhaustively test all configurations because of the prohibitively large number (the exact num-

ber is 26 142 282 979 403 407 520 956 416 (� 1025)) of possible configurations when using all 6 operators.

Hence, we explored the configuration space stochastically, testing 106 configurations, where a total of 2

valid configurations were found (Figure S2B).

We found that the iPSC attractor is one of the 10 most prevalent minima in the 106 calculated energy land-

scapes (Figure S2A), occurring in 7.1% of the landscapes (as reference, the most prevalent minimum occurs

in approximately 16% of the energy landscapes). Thus, the GRN is robust in its ability to reprogram to iPSCs
iScience 25, 104743, August 19, 2022 11



Table 1. Components and sources for the gene regulatory network governing reprogramming from MEF to iPSC.

From To Effect Reference(s)

LIF Stat3 activate Dunn et al. (2019); Niwa et al. (2009)

Klf4 Klf2 activate Dunn et al. (2014, 2019)

Esrrb Klf2 activate Xu et al. (2013, 2014); Yeo et al. (2014); Chen et

al. (2008); Dunn et al. (2019)

Tcf3 Klf2 repress Qiu et al. (2015)

LIF MEKERK activate Graf et al. (2011)

MEKERK Tcf3 repress Dunn et al. (2019)

Klf4 Tcf3 activate Zhang et al. (2013); O’Malley et al. (2013)

Stat3 Gbx2 activate Tai and Ying (2013); Dunn et al. (2019)

Sox2 Gbx2 activate Xu et al. (2013, 2014)

Oct4 Gbx2 repress Xu et al. (2013, 2014); Dunn et al. (2019)

Stat3 Klf4 activate Dahéron et al. (2004); Bourillot and Savatier

(2010); Dunn et al. (2019)

Klf2 Klf4 activate Dunn et al. (2019)

Gbx2 Klf4 activate Wang et al. (2017); Xu et al. (2013, 2014)

Klf4 Tbx3 activate Dunn et al. (2019)

Tcf3 Tbx3 repress Tam et al. (2008); Dunn et al. (2019)

Oct4 Tbx3 repress Tam et al. (2008); Xu et al. (2013, 2014)

Esrrb Tbx3 activate Adachi et al. (2018)

Tfcp2l1 Sall4 activate Tanimura et al. (2013); Dunn et al. (2014, 2019)

Sox2 Sall4 activate Dunn et al. (2019)

Tfcp2l1 Esrrb activate Wang et al. (2019); Dunn et al. (2014, 2019)

Nanog Esrrb activate Festuccia et al. (2012); Heurtier et al. (2019);

Dunn et al. (2019)

Sall4 Esrrb activate Tatetsu et al. (2016); Dunn et al. (2019)

Tcf3 Esrrb repress Martello et al. (2012); Dunn et al. (2019)

Sall4 Oct4 activate Tanimura et al. (2013); Ho et al. (2013); Dunn

et al. (2019)

Tcf3 Oct4 activate Ho et al. (2013); Dunn et al. (2019)

Stat3 Tfcp2l1 activate Martello et al. (2013); Dunn et al. (2019)

Esrrb Tfcp2l1 activate Wang et al. (2019); Dunn et al. (2019)

Tcf3 Tfcp2l1 repress Qiu et al. (2015); Martello et al. (2012); Ye et al.

(2017); Dunn et al. (2019)

Oct4 Tfcp2l1 activate Martello et al. (2013); Stirparo et al. (2021)

Oct4 Nanog activate Rodda et al. (2005); Boyer et al. (2005); Loh et

al. (2006); Olariu et al. (2016); Dunn et al. (2019)

Sall4 Nanog activate Zhang et al. (2006); Yang et al. (2008); Lim et al.

(2008); Tatetsu et al. (2016); Dunn et al. (2019)

Sox2 Nanog activate Rodda et al. (2005); Masui et al. (2007); Chen et

al. (2008); Dunn et al. (2019)

MEKERK Nanog repress Ying et al. (2008); Martello et al. (2013);

Hamilton and Brickman (2014); Dunn et al.

(2019)

Tbx3 Sox2 activate Ivanova et al. (2006); Esmailpour and Huang

(2012); Dunn et al. (2019)

(Continued on next page)

ll
OPEN ACCESS

12 iScience 25, 104743, August 19, 2022

iScience
Article



Table 1. Continued

From To Effect Reference(s)

Nanog Sox2 activate Rodda et al. (2005); Boyer et al. (2005);

Chickarmane et al. (2006, 2012); Dunn et al.

(2019)

Sall4 Sox2 activate Tanimura et al. (2013); Tatetsu et al. (2016);

Dunn et al. (2019)

Tcf3 Sox2 activate Yi et al. (2008); Dunn et al. (2019)

MEKERK Sox2 repress Hamilton and Brickman (2014); Dunn et al.

(2019)
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with respect to different configurations of operators. The MEF and 2NG�/3NG� attractors, on the other

hand, only occur in 0.2% and 0.7% of the landscapes, respectively. Thus, the combined probability of

randomly finding an energy landscape containing all three attractors is approximately one per million.

This agrees with finding two valid configurations in the stochastic search. It is not surprising that MEF

has a low probability of occurring because our GRN governs transitions from the MEF state. However,

the CELLoGeNe energy landscape needs to exhibit an attractor corresponding to MEF cells as this is

the starting cell state in our experiments. This leads to important constraints on resulting operator config-

urations. We used a similar strategy as in the previous result section, constructing a manual configuration

which we deemed to be biologically plausible (Figure 4B). This configuration yielded the required attrac-

tors, where MEF is a two-state degenerate attractor whereas 2NG�/3NG� and iPS are both single state at-

tractors (Figure 4C). Also three additional attractors were found, which we refer to as A, B and C (Figure 4C).

We performed marble simulations from each possible state without changing LIF from its initial value in

order to probe the relative strengths and sizes of the basins of attraction (Figure 4D). We observed

dominating attractors corresponding to MEF, 2NG�/3NG� and iPSC states, with the iPSC attractor being

the largest whereas MEF having the smallest dominating region. We also observed smaller regions where

attractors A, B and C are the dominating ones. This reveals that all attractors’ basins have a region where

they are the strongest, as opposed to the landscape for maintenance of pluripotency (Figure 3E). The fact

that all of the three additional attractors A, B and C have regions where they dominate indicates that they all

can act as bottlenecks. Figure 4D also shows that from around 40% of the energy landscape states, i.e., the

section furthest to the right, it is close to impossible to reach any of the experimentally known attractors.

Attractor B and ‘‘Other’’ states are the only reachable attractors from this region. This region corresponds

to those states where LIF is not present demonstrating that it is not possible to reach and maintain plurip-

otency without the adequate medium.

We conducted cell reprogramming simulations starting from the landscape’s six attractors (Figure 4E).

When the cells were initialized in MEF, approximately a quarter of the cells stayed in MEF, barely half tran-

sitioned to 2NG�/3NG� and a fifth transitioned directly to iPSC. The remaining cells ended up in A, C or

other. Most of the cells initialized in 2NG�/3NG� stayed there while the fraction of cells transitioning to

iPSC was increased with a higher noise level (Figure S3). When the cells were initialized in iPSC, most of

the cells stayed in iPSC and a small fraction transitioned to 2NG�/3NG�. These three simulation results

recapitulate experimental results observed in (O’Malley et al., 2013). The relative height of each bar varies

with noise level (Figure S3), however, the general behavior remains the same.

We performed a deeper analysis of the potential bottlenecks, by comparing the gene expressions for

attractor states. Attractor A has the same genes ON as MEF, except three additional expressed genes:

Sall4, Nanog and Sox2 (Figure 4C). Therefore, attractor A seems to be a roadblock when transitioning

from MEF towards iPSC as more genes are turned ON. If the genes are turned ON in the wrong order,

the cell risks getting stuck in attractor A. This could potentially happen if Sall4 is activated which could

turn ONSox2 and in turn activate Nanog, by following the logic of the operator configuration of the

GRN (Figures 4B and 4A). If, instead, the positive feedback loop with Oct4, Tf cp2l1 and Sall4 is activated,

then Oct4 could turn OFFTbx3 and the cells get stuck in 2NG�/3NG�. If a few additional genes are also

activated (Gbx2, Nanog and Sox2), then the cells get stuck in attractor C. Hence, it seems like attractor

A mainly is a roadblock between MEF and iPSC, just like 2NG�/3NG�, whereas attractor C seems to be

a roadblock between 2NG�/3NG� and iPSC. Attractor B is not often reached from MEF or any of the other
iScience 25, 104743, August 19, 2022 13
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attractors because it requires to turn OFFStat3, which is directly activated by LIF. However, if attractor B is

reached, it seems to be impossible for the cells to come back to the iPSC path.

When applied to a GRNgoverning reprogramming fromMEF to iPSC, CELLoGeNe provides an overview of

the energy landscape controlling cell fate decisions. With this broad overview, we identified known cell

states as well as potential cell reprogramming bottlenecks. Marble simulations where we consider all

possible states to be initial states gave a detailed overview of the possible roadblocks for reprogramming

to iPS cells. This in silico analysis represents a powerful tool because a huge number of reprogramming

starting points can be considered, which is virtually impossible experimentally. When we conducted

simulations corresponding to performed reprogramming experiments, we obtained results which recapit-

ulated experimental observations. Moreover, deeper analysis shed light on mechanisms that could lead to

cells being trapped at the attractors corresponding to the observed and newly predicted reprogramming

roadblocks.
DISCUSSION

In this study, we developed a novel framework, CELLoGeNe, which calculates energy landscapes for GRNs

governing important processes like cell commitment, pluripotency maintenance and reprogramming.

CELLoGeNe contains tools to analyse the resulting energy landscapes revealing cell states and reprogram-

ming roadblocks through attractor identification and basins analysis. Getting access to the full energy land-

scape offers an overview of all stable states of the biological system considered. This is not achievable with

the standard methods of solving rate equations or updating a Boolean network. Considering a three-state

logic, undesired symmetries are avoided compared to standard Boolean logic. CELLoGeNe is equipped

with a tool to visualize multidimensional energy landscapes, giving direct insight into how the energy

changes with gene expression variation. Cell lineage commitment and reprogramming to pluripotency

and its maintenance were investigated through the analysis of the basins of attraction surrounding stable

cell states. We used a stochastic tool which provided a measure of the relative strengths of the attractors

and their basin’s extent, which was linked to the impact of reprogramming bottlenecks.

We applied CELLoGeNe to two systems describing aspects of maintaining and acquiring cell pluripotency.

We analyzed a GRN controlling self-renewal of pluripotency and found attractors in the energy landscape

corresponding to experimentally observed stem cell states under various media. CELLoGeNe enabled us

to assign probabilities of finding the cells in a certain state. These probabilities were calculated by perform-

ing perturbation simulations of stable cell states in a specific medium and consequently identifying the

most likely final cell state. When we applied CELLoGeNe to the core network in Dunn et al. (2014) we iden-

tified more attractors than the ones experimentally and computationally presented in Dunn et al. (2014).

The discovery of these attractors offers a plausible explanation of the observed leakage from pluripotency

(Chambers et al., 2007; Chickarmane et al., 2012; Marucci, 2017). CELLoGeNe was applied to a circuitry

governing reprogramming from MEF to iPSC (Takahashi and Yamanaka, 2006; Takahashi et al., 2007).

Cell reprogramming has a low efficiency and several experimental groups tried to improve this using

various strategies: (1) Identifying new reprogramming factors (Buganim et al., 2012; Shu et al., 2013); (2)

Fine-tuning the levels of overexpressed TFs (Papapetrou et al., 2009; Radzisheuskaya et al., 2013); (3) vary-

ing the order of introducing the factors used in reprogramming protocols (Ho et al., 2013; Olariu et al.,

2017a); (4) Monitoring reprogramming progress in a step-wise manner identifying bottlenecks (O’Malley

et al., 2013; Chantzoura et al., 2015). In this study, we used CELLoGeNe for identifying new reprogramming

bottlenecks, which can further be combined with experiments leading to improving reprogramming effi-

ciency. To this end, we constructed a GRN controlling cell reprogramming and uncovered a corresponding

energy landscape containing the MEF- and iPSC-states as well as the experimentally identified

2NG�/3NG� roadblocks (O’Malley et al., 2013). The landscape contains three extra attractors which

could correspond to potential roadblocks. The possibility for the cells to get stuck in these newly uncov-

ered states links to observed inefficient conversion between MEF and iPSC. Analyzing the gene expression

defining these extra attractors sheds light on possible mechanisms leading to conversion inefficiency.

CELLoGeNe can be fused with an experimental CRISPR/Cas9-mediated genome-wide knockout screen in

reprogramming. The experiments could predict genes that can act as barriers to cell reprogramming.

CELLoGeNe can be applied to GRNs containing the core reprogramming circuit augmented with the newly

predicted genes. This would reveal the mechanisms through which the experimentally identified barriers

act on preventing a successful cell reprogramming. Possible outcomes of adding the barrier genes to
14 iScience 25, 104743, August 19, 2022
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the circuit consist of the emergence of new attractors that can act as a reprogramming roadblock or change

of sizes of basins of attraction of existing attractors corresponding to experimentally identified roadblocks.

CELLoGeNe contains a tool that is capable of constructing a continuous energy landscape by interpola-

tion, a feature which has not been used in this study. With a continuous energy landscape, it would be

possible to construct an algorithm to map out optimal reprogramming paths which minimize the risk

and prevents getting stuck at roadblocks. In this context, dynamical systems with cyclic attractors (Nordick

et al., 2022) could be represented as well as cell divisions. Furthermore, CELLoGeNe is a general tool which

can be used on any developmental biological system. A strong candidate for CELLoGeNe applications is

the T-cell development, as it provides an excellent model system for studying lineage commitment from a

multipotent progenitor in general because this biological system has been deeper experimentally and

computationally analyzed. In fact, even though CELLoGeNe was specifically developed for analyzing cell

development and reprogramming systems, it can be applied to any system governed by a regulatory

interaction network with states that can be binarized. It should be noted that multiple operator configura-

tions can produce different landscapes with different attractors that all fit the data. In such cases, it is

recommended to define a score function based on details of the modelled system. Moreover,

CELLoGeNe users should be aware that eventual newly identified attractors are predictions that need to

be validated. To successfully apply CELLoGeNe to a non-biologically system, its network must have binary

nodes affecting each other’s state either positively, negatively or neutrally.

We have developed a powerful framework for computing energy landscapes for GRNs enabling us to over-

view all possible stable cell states, which are inaccessible with other computational means. We applied

CELLoGeNe to two biological systems achieving a better understanding of maintenance of pluripotency

and offering a plausible explanation for spontaneous exit from multipotent stem cell fates. We also

confirmed observed roadblocks and identified new potential cell reprogramming barriers, moreover,

revealing their action mechanisms.
Limitations of the study

One limitation of the study comes from the binarization of the gene expression data. This is a crucial step

because the binary expression patterns of the stable cell states defines the constraints imposed on the

energy landscapes. If the binarization were to be done differently, other energy landscapes with other at-

tractors could be obtained. However, the fact that valid energy landscapes were found for the studied

GRNs given the used constraints indicates that the binarization was satisfactory.

Another limitation comes from the discrete representation of the landscape which is also dependent on the

number of nodes in the gene regulatory network. This is not ideal for simulating stochastic process like cell

division while navigating the landscape. This could be circumvented by developing a method for simu-

lating cell movements in the continuous versions of the landscapes.

In addition, the vast combinations of operator configurations give a considerable amount of freedom to the

energy landscapes wheremany different landscapes could satisfy the same constraints. This means that it is

problematic to know which landscapes best correspond to the biological system of interest. This can be

handled by using prior knowledge about the gene interactions, e.g., the gene activators follow an AND

logic. Furthermore, a ranking score can be constructed based on the landscapes qualities and how they

agree with what is expected from the biological system in question. It should also be noted that the issue

of degrees of freedom is not unique for the energy landscape framework; for a dynamical systemmodel the

freedom would instead lie in choosing the parameters of the rate equations.
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project. VO gratefully acknowledges the support of the USNational Institutes of Health (USPHS-

grantR01HL119102) and Crafoordska Stiftelsen.

AUTHOR CONTRIBUTION

E.A., M.S., and V.O. designed the study. E.A. and M.S. built the CELLoGeNe software platform. E.A con-

ducted the biological applications and computational analysis. K.K. provided, expertly curated and binar-

ized the experimental data. K.K. explicated and conceptualized the use of experimental data. E.A., M.S.,

and V.O. wrote the manuscript. All authors provided inputs and comments on the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: April 4, 2022

Revised: June 1, 2022

Accepted: July 5, 2022

Published: August 19, 2022
REFERENCES

Aasen, T., Raya, A., Barrero, M.J., Garreta, E.,
Consiglio, A., Gonzalez, F., Vassena, R., Bili�c, J.,
Pekarik, V., Tiscornia, G., et al. (2008). Efficient
and rapid generation of induced pluripotent
stem cells from human keratinocytes. Nat.
Biotechnol. 26, 1276–1284. https://doi.org/10.
1038/nbt.1503.

Adachi, K., Kopp, W., Wu, G., Heising, S., Greber,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Binarised data of maintenance and self-

renewal in mouse embryonic stem cells

(Dunn et al., 2014) N/A

Raw data of reprogramming from mouse

embryonic fibroblasts to induced pluripotent

stem cells

(O’Malley et al., 2013) N/A

Software and Algorithms

Python 3.7 Python Software Foundation https://www.python.org/

NumPy 3.4.1 (Harris et al., 2020) https://numpy.org/

Matplotlib 3.4.3 (Hunter, 2007) https://matplotlib.org/

TikZ 3.1.5b (Tantau, 2020) https://www.ctan.org/pkg/pgf

CELLoGeNe This paper https://github.com/Emil-cbbp/

CELLoGeNe.git
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Victor Olariu (victor.olariu@thep.lu.se).
Materials and availability

This study did not generate new unique reagents.

Data and code availability

d All original code making up the CELLoGeNe software is publicly available as of the data of publication at

https://github.com/Emil-cbbp/CELLoGeNe.git.

d This paper analyses existing, publicly available data and are listed in the key resources table.

d Any additional information required to reanalyse the data reported in this paper is available from the

lead contactupon request.
METHOD DETAILS

Binary representation of genes

The expression level of a gene can be normalised and represented with a number in the continuous in-

terval ½0; 1�. As an approximation, the gene expression can also be binarised into either being expressed

(ON) or not expressed (OFF), which we will call a logical gene. Logical genes, thus, exist in the discrete

space B = f0; 1g. The N genes present in a GRN, i.e. the genes of interest, constitute the logical cell

and exist in the space Bn = f0; 1gn, which we call the expression space. Since every gene can be

either ON or OFF, the logical cell has 2n states. Each state of a logical cell can be described by a vector

s = ðg0;g1;.;gn� 1Þ of length N where each component represent a gene’s expression gi ˛ B. Another

useful representation is to convert the vector s into a binary number s. We construct s by letting gi repre-

sent the ith bit of the binary number. Formally, this is equivalent to s =
Pn

i = 02
igi . For instance, consider

the state A= OFF, B=ON, C=ON, D=OFF and E= ON of the toy-network in Figure 2A. The vector

representation of this state is s = ð0; 1; 1; 0; 1Þwhich is equivalent to s = 101102 = 2210 in base 2 and

10 respectively. Thus, each state s of the logical cell can be indexed uniquely by the integer s between

0 and 2n � 1.
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Logical representation

With traditional Boolean logic, the activation A ➛ B is equivalent to B = A, while the repression A x B is

equivalent to B = NOT A. However, as motivated in STAR Methods-Three-state logic, this imposes an un-

wanted symmetry. Thus, we introduce a new three-state logic to describe network motifs.

The expression of the genes are kept in the B, however, we introduce a new space, the effect space

E = f� 1; 0; 1g: negative, neutral and positive effect, where activation and repression are mapped

differently. The effect an input gene’s expression has on a target gene is described with the mapping

B1E depending on the context: 0 always maps to 0 (010), while111 when the input gene is an acti-

vator and 11 � 1 when it is an inhibitor. The interpretations of the elements in the effect space

are quite straightforward. If the effect is neutral, the expression of the target gene is not affected.

If the effect is positive, the expression will become 1 if it was 0, or stay 1 if it was already ON. Simi-

larly for negative effect, the expression will become 0. This can be be encapsulated with the forcing

function

f : E1B; f ðeÞ =

�
1 if e = 1
0 if e = � 1

; (Equation 1)

where e˛ E is the effect and f ð0Þ is left undefined as 0 imposes no forcing.
Combining input signals with operators

Whenmultiple genes act as input for a target gene, their effect must be combined into a single input signal.

In more mathematical terms, operators that map E3E1E are required. Combining the gene effects with

logical operators is not uniquely the only possible way to combine signals. One other possibility would

be to weigh together the input signals into a resulting effect in a similar fashion to artificial neural networks,

with weights still needing to be optimised. This is, however, not considered in this study.

A binary operator in ordinary Boolean logic has 22 = 4 possible inputs, and is uniquely defined by the set of

outputs it assigns to these; therefore, there are 24 = 16 possible Boolean operators. Similarly, an operator

in three-state logic has 32 = 9 possible inputs, giving 39 = 19683 possible operators. The vast majority of

this prohibitively large number of operators are quite useless, so selection is needed.

We takeqði; jÞ to be the result when the operands are i and j, and define three properties that can be de-

manded of any reasonable operator:

� Idempotence — it is reasonable to assume that an interaction where all inputs are equal yields that

same value as the output. Requiresqði; iÞ = i.

� Commutativity — there is no reason why the combination of genes should not be symmetric, and the

lack of this property complicates the arithmetic. Requiresqði; jÞ = qðj; iÞ.

� Associativity — also a basic arithmetic property. Requires qði;qðj;kÞÞ = qðqði; jÞ;kÞ.

Placing these constraints on the standard Boolean operators leaves only AND andOR, which are usually the

only ones that are included in Boolean models (along with unary NOT). On three-valued operators, the first

two constraints leave only three free parameters of the original nine (for instance, qð0; � 1Þ, qð0; + 1Þ and
qð+ 1; � 1Þ), on which the consequences of associativity can be worked out. For clarity, we can write q as a

matrixQ such that qði � 1;j � 1Þ = Qij. With all three constraints, the result is a set of only nine operators,

three of which are quite trivial:

2
4� 1 � 1 � 1
� 1 0 � 1
� 1 � 1 + 1

3
5;

2
4� 1 0 0
0 0 0
0 0 + 1

3
5;

2
4� 1 + 1 + 1
+ 1 0 + 1
+ 1 + 1 + 1

3
5: (Equation 2)

Except when required otherwise by idempotence, these just return a fixed value. The middle one is

actually a rather straightforward generalisation of a two-valued Boolean operator: it acts as AND on

f0; + 1g and f0; � 1g, and maps the additional input combination fG1;H1g to 0. The similarity to AND

is shared with two more interesting operators:
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^ :

2
4� 1 0 + 1
0 0 0
+ 1 0 + 1

3
5 and ^ :

2
4� 1 0 � 1
0 0 0
� 1 0 + 1

3
5: (Equation 3)

We have chosen symbols based on that for AND, ^, with a bar above or below to symbolise mapping the

different-sign inputs to + 1 or � 1, respectively. There exists a similar pair of operators for OR:

n :

2
4� 1 � 1 + 1
� 1 0 + 1
+ 1 + 1 + 1

3
5 and n :

2
4� 1 � 1 � 1
� 1 0 + 1
� 1 + 1 + 1

3
5: (Equation 4)

No associative analogue exists that maps different-sign inputs to 0. The two final operators are

[ :

2
4� 1 0 + 1
0 0 + 1
+ 1 + 1 + 1

3
5 and Y :

2
4� 1 � 1 � 1
� 1 0 0
� 1 0 + 1

3
5: (Equation 5)

They return the maximum and minimum input value, respectively, and act as hybrids of AND and OR.

Either one of the pairs { ^ , n }, { ^ , n } or { Y , [ } provides an operator set that is fairly balanced with

respect to the frequency of each output value. For greater flexibility, but also greater complexity, the

full set of all six operators can be used.

By removing the requirement of idempotence, potentially useful operators such as XOR can be added for

Boolean logic. The corresponding modification gives 63 three-valued operators, none of which seems to

be a good analogue.
The discrete energy

Our goal is to build a stochastic model which shares the general behaviour of a deterministic model built on

the same network. To do so in a straightforward way, we assign an energy L to each gene of a state when-

ever its expression status equals the result of its logical function, and an energyHwhenever it does not. The

energy contributions for each gene are added to form the total energy of a state. This is repeated for each

state to form the energy of the entire network. If L<H, we thereby reward states that ‘‘obey the logic’’ with a

favourable energy.

In more mathematical details, for each state s, a gene g with expression value ag ˛B is chosen. The other

n � 1 genes serve as input to g and form the input space ig ˛Bn� 1. To an input state ig, there is a corre-

sponding resulting effect FðigÞ˛Ewhich is obtained by applying the combination operators, i.e. evaluating

a logical function. The energy for state s;T ðsÞ, is calculated by adding the energy contributions from each

gene tðag; igÞ

T ðsÞ =
X
g

t
�
ag; ig

�
; (Equation 6)

where

t
�
ag; ig

�
=

8>>>><
>>>>:

L if ag = f
�
F
�
ig
��

H if agsf
�
F
�
ig
��

L+H

2
if F

�
ig
�
= 0

(Equation 7)

and f is defined in Equation (1). Thus, the complete discrete energy landscape for the logical cell is

represented by the vector T where each component T s is the energy T ðsÞ of corresponding state s.

With L = � 1;H = 1, a state with energy value T ðsÞ = � n means that all gene expressions ag agree

with their corresponding forcing functions Fðf ðigÞÞ and vice versa for energy value T ðsÞ = n.
The continuous energy

The discrete energy is a function T : f0; 1gn/R, which we can interpolate into a continuous energy

E : ½0; 1�n/R, which then allows each gene to have any degree of expression. Let si be the expression of

the ith gene in the network, and s˛ ½0; 1�n be the vector of all si. We will now write down the most general
22 iScience 25, 104743, August 19, 2022
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form of EðsÞ that is first-order in all si; that is, for each i, EðsÞ = Ai +Bisi whereAi ;Bi are first-order functions of

sj ; jsi. This straightforwardly gives the general expression

EðsÞ = u+
X
i

siui +
X
i < j

sisjuij +
X
i < j < k

sisjskuijk +.+ s1s2/snu12.n; (Equation 8)

where all sums run between 1 and N.

We now claim that the coefficients uij. are uniquely determined by T . We define the vector ua = uij.,

where b = 2i + 2j +. (i.e. the binary representation of b has 1’s only at positions i; j;.), and the vector

T a = T ðsÞ where a =
P
i

2isi (i.e. s forms the binary representation of a). With these definitions, there exists

a 2n32n matrix M such that Equation (8) reduces to

Mu = T : (Equation 9)

It can be proven (as shown below) thatM is invertible and has the beautiful Sierpi�nski-triangle-like structure

MG1
ðn+ 1Þ =

2
4MG1

ðnÞ 0ðnÞ

GMG1
ðnÞ MG1

ðnÞ

3
5; MG1

ð1Þ =

�
1 0
G1 1

�
; (Equation 10)

whereMðnÞ is the 2n 3 2nn-gene matrix, and 0ðnÞ is the zero matrix of the same size. This proves that the en-

ergy function in Equation (8) is uniquely determined by TðsÞ, with

u = M� 1T (Equation 11)

providing the transition from discrete to continuous energy.

There is a final benefit to this energy form. When it is paired with the entropy function

SðsÞ = �
Xn

i = 1

½si logsi + ð1 � siÞlogð1 � siÞ�; (Equation 12)

which contains no cross-terms or additional free parameters, we get a free energy function FðsÞ = EðsÞ�
TSðsÞ (where T is the temperature) that generates sigmoid gain functions very closely approximating the

Hill gain functions conventionally used in transcriptional dynamics (Olariu et al., 2017a). Thus, our model

bridges the gap between stochastic and Boolean treatments.

We will now prove that the matrixM is invertible and we will derive its form. From Equation (9) and the def-

initions of u and T , we find that Mab = sisj/ where a =
P
i

2isi (i.e. T a = T ðsÞ) and ub = uij/. In other

words, Mab is 1 if the binary representation of b has a 1 wherever the binary representation of a has a 1

(and possibly in more places), and 0 otherwise. We can bring this into the language of set theory by iden-

tifying each number as the set of positions in which its binary representation has a 1. This representation has

a close relationship with bitwise operations on binary numbers. In a C-like language, aWb corresponds to (a

| b), aXb to (a & b), B to 0, and a4b to (a & b) = = a. Thus, Mab is 1 if and only if b4a.

From this, the expression forMð1Þ given in Equation (10) should follow straightforwardly. To then prove the

expression for Mðn+ 1Þ, subdivide the 2n+ 1-bit numbera like a = alWah, where al contains its low n bits (i.e.

al = aX2n � 1) and ah its high bit (i.e., ah = aX2n). Subdivide b similarly. ThenMðn+ 1Þ can be split into four

2n32n quadrants:

Mðn+ 1Þ �
�
ðah = 0;bh = 0Þ ðah = 0;bh = 2nÞ
ðah = 2n;bh = 0Þ ðah = 2n;bh = 2nÞ

�
: (Equation 13)

In the upper right quadrant, a?b regardless of al and bl, sincea lacks the high bit b has. Therefore, that

quadrant is the 2n32n zero matrix. In the other quadrants, a4b is equivalent to al4bl , so each of those

quadrants is just a copy of MðnÞ. By induction, this proves the form of Mðn+ 1Þ given in Equation (10).

The form ofM� 1
ðn+ 1Þ easily follows by applying the standard inversion formula for block matrices toMðn+ 1Þ. It

can also be seen by noting thatMðn+ 1Þ = Mð1Þ5MðnÞ (5 being the Kronecker product) and applying the Kro-

necker product inversion formula, giving M� 1
ðn+ 1Þ = M� 1

ð1Þ 5 M� 1
ðnÞ .
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Three-state logic

In this section, we will give a motivation for the introduction of the three-state logic. We will start by consid-

ering the conventional Boolean approach and then extend it stepwise.

A basic Boolean model, which uses the operators AND;OR to build functions and NOT to represent

repression, yields less than satisfactory energy functions when our method is applied. This can be

demonstrated using the simple network B ➛A, which assigns A the function A = B. With L = � 1;

H = + 1, and s = ðA B Þ, we get

T = ð� 1 1 1 � 1 Þ 0 u = ð� 1 2 2 � 4 Þ 0 EðsÞ = � ð2B � 1Þð2A � 1Þ:
(Equation 14)

For BxA, which is represented by the functionA = NOT B, we get the negative of this energy. The energy

functions are entirely symmetric in B and A, even though the networks are directed.

The source of this unwanted symmetry is that B affects A equally much whether it is expressed or not. A

perhaps more reasonable model is that a gene is only affected when its input is expressed; a gene with

an inactive input is ‘‘free’’, which we represent by giving it a third, ‘‘neutral’’ energy value between L and

H (here, 0), regardless of the gene’s state. With these modifications, we get for B ➛A

T = ð 0 0 1 � 1 Þ 0 u = ð 0 0 1 � 2 Þ 0 EðsÞ = Bð1 � 2AÞ; (Equation 15)

which properly reflects the directedness of the network. It also has an intuitive interpretation: the energy

decreases when A is expressed, and the amount by which it does is proportional to B, i.e. how strongly

A is activated. However, for B x A, we get

T = ð 1 � 1 0 0 Þ 0 u = ð 1 � 2 � 1 2 Þ 0 EðsÞ = ðB � 1Þð2A � 1Þ; (Equation 16)

which is drastically different. It is directed, but goes against the above reasoning: B only affects A when it is

not expressed.

To solve this, we stop using NOT altogether, and instead switch to the three-valued logic of TRUE (1), FALSE (0)

and ‘‘negative TRUE’’ (� 1), the latter of which represents a repressing input, as described in STARMethods-

Logical representation. A logical function whose result is � 1 is obeyed if the targeted gene is not

expressed, while 1 and 0 work as before. With the three-valued logic, B➛A gives the same energy as Equa-

tion (15), while B x A gives the negative of it, which is equally reasonable.

The three-valued logic results in presumably better energy functions, but it also incurs increased

complexity, sinceAND and OR need to be replaced with the three-valued operators as described in

STAR Methods-Combining input signals with operators.

Configurations of operators

When multiple genes act as input for a target gene, their effects need to be combined into a single input

signal with an operator, as described in STAR Methods-Combining input signals with operators. Which

operator to use may be given from literature or experimental studies, but most often, it is not known which

operator to use. Given that a real GRN most often has many nodes with several inputs, the network has

many different configurations of operators where each configuration corresponds to a potentially unique

energy landscape. The total number of configurations of a network can be factorised into the product of the

number of configurations there are for each target gene.

If there are p possible operators and a target gene has input from k genes, we denote the number of con-

figurations for that gene Nðp;kÞ. For only one input gene, Nðp; 1Þ = 1 trivially, since no inputs need to be

combined. For only two input genes, Nðp;2Þ = p, since the only thing that can be changed is the operator

that combines the two inputs. The rest is a matter of inductive reasoning, yielding the full recursive

expression

N
�
p; k

�
= N

�
p; k � 1

�
,
�
3
�
p � 1

�
+ 1

�
= N

�
p; k � 1

�
,
�
3p � 2

�
; (Equation 17)

with the base cases given above. This has the closed form

N
�
p; k

�
= p,

�
3p � 2

�k� 2
; k > 1: (Equation 18)
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In Table S1 some sample values for Nðp; kÞ are presented, clearly demonstrating why we wish to limit the

number of operators. Note that the values in the table are for one single target gene of the network only; to

get the total number of the configurations of the network, the correct factors must be multiplied.
Testing configurations of operators

If more than one logical operator is used to combine gene input signals, there exist multiple configurations

of operators. There are two main strategies on how to test different configurations: exhaustively test every

combination, or randomly test a subset of combinations. For small GRNs or when few operators are used,

an exhaustive search is suitable but, as understood from the previous section, sometimes the number of

possible configurations is so large that a stochastic search must be used instead.
Exhaustive search

Given a set of genes and a set of operators, there is a large number of possible ways to combine these. All

possible configurations are not distinct, thanks to commutativity and associativity. For instance, with {A, B,

C} and { ^ , n }, there are eight configurations:

A ^ B ^ C;
�
A ^ B

�
n C;

�
A n B

�
^ C; A n B n C;

and all permutations of the genes in the middle two cases.

We now seek an optimal way to enumerate all non-redundant configurations, so that we can determine

which one produces valid energy landscapes. Considering the example (A n B) ^ C, we note that if we

change the first operator to ^ , both (A ^ B) and (.) ^ C need to be recalculated. But if we change the sec-

ond instead, we can reuse the result in parentheses. With this and other considerations, we can create spec-

ifications for an efficient method:

1. The outermost operators should be changed more often and operators inside parentheses should

be changed only when all outer-level versions have been exhausted.

2. The same should apply to moving genes around within the parenthesis structure: more deeply

nested genes should be accessed only after all permutations of outer genes have been used.

3. Changes should not be performed when commutativity and associativity make them superfluous.

Such a method is devised below.

A convenient representation of configurations that allows for dealing with associativity and commutativity

to avoid redundancy is binary trees: the leaves are genes, and the non-leaves nodes are operators that

combine their children. A n-gene compound can therefore be represented as a tree with n leaves, as

illustrated in Figure S4A. If each node ‘‘knows’’ its logical function, this representation enables reuse of

functions in accordance with specifications 1 and 2. Each target gene in a GRN requires its own binary

tree. For the trivial case where a gene only receives input signal from one other gene, the tree simply

consists of one leaf. If a gene does not receive any input signal, e.g. a medium component such as LIF,

its corresponding tree is empty.

There is a recursive way to move around the parentheses in a tree-based manner that is well in line with the

specifications. Since commutativity makes mirror images of a tree equivalent, we can without loss of gen-

erality only consider the cases where there are more leaves on the left side of the tree. The extreme case of

this is when all operators are placed on the left edge of the tree, with only leaves on the right. This maximally

left-heavy tree is the starting configuration of the method.

A demonstration of how it works is shown in Figure S4B on a minimal tree; after three permutations, it is

back at the starting configuration. If node II has children of their own, the permutation procedure is recur-

sively applied to it; this is shown in Figure S4C. After a single such permutation, it is possible to make a fresh

re-permutation around node I. When that is done, node II is allowed to take another step, and so on. At any

level in the tree, a node only permits its child to permute one step when it has finished its own cycle of

permutations.
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This last rule, which we shall call the parent-first order, ensures two things. Firstly, as soon as the method

reaches a node for which both children are leaves, it is guaranteed to be finished, since all levels above it

have passed through all possible configurations. Secondly, as shown in Figure S4C, a single permutation of

the child replaces node B with a child of node C. It is then moved around by the parent, which puts it avail-

able for the parent’s parent (if present), etc. Applied inductively, this property guarantees that every leaf

and every possible subtree moves around all possible positions in the tree, and thus the tree goes through

all possible configurations regardless of its size.

The process of permuting a tree can be readily extended to include operator changes as well; the full pro-

cedure is given in Figure S5. The algorithm becomes rather convoluted by the efforts to maximise function

reuse and avoid redundant configurations—there are necessarily two associativity-safeguards labelled

‘‘same op. as left child?’’ in the figure—but stays implementation-friendly.

Operators are changed first because changing an operator is the cheapest possible change: it only requires

the node’s own function to change (plus those of its parents), while a permutation also requires that of its

left child to change. Also, a permutation changes which leaves are present in the child’s subtree, so the

function needs to change its list of inputs in addition to its output; hence the ‘‘Update left child’s input’’

step.

Running this algorithm on the root of a tree until it hits FINISHED goes through all possible non-degenerate

combinations of genes and operators. We note that larger trees are somewhatmore costly to work with due

to the larger number of deeply nested changes, so we should keep the trees sorted by ascending size when

applying the algorithm.

Some further complications are straightforward to account for, should they be present for some reason:

� If the operators are non-commutative, insert ‘‘Update function with tree mirrored’’ after ‘‘Update

function’’ in Figure S5

� If the operators are non-associative, always answer ‘‘No’’ to ‘‘Same op. as left child?’’
Stochastic search

Performing a stochastic search of the configuration space is substantially simpler than the exhaustive algo-

rithm outlined above. For a given set of operators, a random binary tree representation (Figure S4A) is

generated for each target gene in the GRN and the energy landscape is calculated. This is repeated until

the desired number of configurations has been tested.
Marble simulations

In order to measure the relative strengths of the attractors’ basins of attraction, we simulate cells

performing weighted random walk in the energy landscape, analogous to letting marbles roll through

the landscape until a minimum is reached. In each update, a cell can transition to a neighbouring state,

i.e. changing one gene’s expression, or remain in the same state. The updates are repeated until a stop-

ping criterion is met. By initialising a large instances of cells in every cell state and counting howmany times

the different attractors are reached as the final state, the probability of reaching each attractor from each

cell state is obtained. By comparing the sizes of the regions of the landscape from which the attractors are

reachable, and the probability of reaching each attractor from each cell state, the basins of attraction, and

their relative strength, is mapped out.

The possible transitions for a cell state are weighted with the Boltzmann factor. A state s has energy Es and

the probability to transition to any of its N neighbours, or not make a transition, depends on the energy

difference between the states (Figure S6). We define the transition probability from state s to m as

pm)s =
e�ðEm �EsÞbP

k ˛ f1;.;n;sg
e�ðEk �EsÞb

; m˛ f1;.;n; sg; (Equation 19)
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where b is the temperature parameter or noise level. By decreasing b, the noise level is increased and the

probability to transition to a state with a higher energy increases. The transition to state m is chosen as the

smallest m fulfilling

Xm
i = 1

pi > r ; (Equation 20)

where r ˛ ½0; 1Þ is a uniform randomnumber. The cell state is updated until it has stayed in the same state

during three consecutive updates, then it is considered to have reached a stable state.
Visualisation of high-dimensional energy landscapes

The energy landscapes treated here are not particularly visualisation-friendly, since they exist in a space of

high dimensionality. With traditional plotting methods, it is hard to depict spaces in more than three di-

mensions. However, by utilising the fact that an N-gene binary GRN has 2N states, and each state has N

neighbouring states (with neighbouring state we mean states where only one bit changes, i.e. states

with Hamming distance equal to 1), we can construct somewhat reasonable representations of energy land-

scapes with up to seven dimensions; beyond seven dimensions the plot becomes incomprehensibly large

and cluttered. A known object which has 2N states and N connections in Ndimensions is a N-dimensional

hypercube. By mapping the corners of the energy function T ˛BN to the corners of a hypercube, it just be-

comes a matter of plotting hypercubes onto two dimensions.

A 2-dimensional hypercube is simply a square. Thus, we let the four corners of a square represent the four

states of a two-gene GRN (Figure 1B). We plot the square with rounded edges for future convenience. A

three-dimensional hypercube is a regular cube. In essence, a cube is just two squares vertically stacked

with edges connecting corresponding corners. Hence, we can plot this in a flat version by arranging one

square outside of another and connecting corresponding corners (Figure 1B). By the same principle, to

represent a four-gene GRN, we can create a four-dimensional flat hypercube by connecting two flattened

cubes (Figure 1B). By continuing this arrangement in a clever way, we can create flat hypercubes up to seven

dimensions before they start becoming incomprehensibly cluttered (see Figure 3D for an exemplary en-

ergy landscape in seven dimensions). In principle, this plotting technique could, of course, be extended

to arbitrarily many dimensions.

Now, we have a structure for the landscape plots in place, where each cell state maps to a corner on a hy-

percube. The next step is to add information. To clearly distinguish the states, we let each node in the

graph be represented by a pie chart, or sector, where each piece of pie represents a gene. A gene is

ON if its corresponding sector is filled, and OFF if it is empty. For example, the state (A = OFF, B = ON,

C = OFF, D = ON, E = OFF) is depicted as shown in Figure 1C. Here, each slice is specifically marked

with a label indicating the corresponding gene. A labelled state like this is always accompanying an energy

landscape plot as a legend applied to all the states. The energy value of each state is represented by a

colour which maps to the energy via a colour bar. The final property of the basic version of the landscape

plots is that every edge describes the energy difference between the connected states. The edge is drawn

as an arrow, pointing towards the state with lower energy, and its width is proportional to the magnitude of

the energy difference. Neighbouring states with the same energy are connected with a dashed line. Thus,

the direction and thickness of the arrows show the relative probabilities of transitions between cell states.

Transitions between states with the same energy are also possible. An example of a complete energy land-

scape is displayed in Figure 1D.

With this plotting technique, it is, as stated above, possible to represent up to seven-gene networks before

the plots get prohibitively large. However, there are ways to circumvent this obstacle. One possible trick is

to only plot hyperplanes of interest. Then, one chooses up to seven genes of interest to be displayed, and

the remaining genes are fixed. Another trick is to merge several genes that behave similarly in the system of

interest into one single dimension. If this can be done with several groups of genes, this has the possibility

to reduce the dimensionality substantially. The downside of this trick is that states that are not neighbours

in the full energy landscape will appear as neighbours in the reduced landscape. However, this can still be

useful in some circumstances.

More details can be added for further clarity. Attractor states and their edges can be colour coded. For full

landscapes, the basins of attraction may be illustrated by a coloured ring around the landscape node. The
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ring is partitioned and colour coded according to which attractors’ basins the state is part of. This requires

that the attractors are colour coded as well. These additional details are utilised in Figure 2D.
QUANTIFICATION AND STATISTICAL ANALYSIS

All quantification and analyses were performed as described in the method details section of the STAR

Methods. Data are presented as mean G standard deviation.
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